1
|
Khodabakhsh F, Salimian M, Ziaee P, Kazemi-Lomedasht F, Behdani M, Ahangari Cohan R. Designing and Development of a Tandem Bivalent Nanobody against VEGF 165. Avicenna J Med Biotechnol 2021; 13:58-64. [PMID: 34012520 PMCID: PMC8112138 DOI: 10.18502/ajmb.v13i2.5519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Inhibition of angiogenesis using monoclonal antibodies is an effective strategy in cancer therapy. However, they could not penetrate sufficiently into solid tumors. Antibody fragments have solved this issue. However, they suffer from short in vivo half-life. In the current study, a tandem bivalent strategy was used to enhance the pharmacokinetic parameters of an anti-VEGF165 nanobody. Methods: Homology modeling and MD simulation were used to check the stability of protein. The cDNA was cloned into pHEN6C vector and the expression was investigated in WK6 Escherichia coli (E. coli) cells by SDS-PAGE and western blot. After purification, the size distribution of tandem bivalent nanobody was investigated by dynamic light scattering. Moreover, in vitro antiproliferative activity and pharmacokinetic study were studied in HUVECs and Balb/c mice, respectively. Results: RMSD analysis revealed the tandem bivalent nanobody had good structural stability after 50 ns of simulation. A hinge region of llama IgG2 was used to fuse the domains. The expression was induced by 1 mM IPTG at 25°C for overnight. A 30 kDa band in 12% polyacrylamide gel and nitrocellulose paper has confirmed the expression. The protein was successfully purified using metal affinity chromatography. MTT assay revealed there is no significant difference between the antiproliferative activity of tandem bivalent nanobody and the native protein. The hydrodynamic radius and terminal half-life of tandem bivalent nanobody increased approximately 2-fold by multivalency compared to the native protein. Conclusion: Our data revealed that the physicochemical as well as in vivo pharmacokinetic parameters of tandem bivalent nanobody was significantly improved.
Collapse
Affiliation(s)
- Farnaz Khodabakhsh
- Department of Genetics and Advanced Medical Technology, Medical Biotechnology Research Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Morteza Salimian
- Department of Medical Laboratory, Kashan University of Medical Sciences, Kashan, Iran
| | - Pardis Ziaee
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Department of Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Department of Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Khodabakhsh F, Salimian M, Mehdizadeh A, Khosravy MS, Vafabakhsh A, Karami E, Cohan RA. New Proline, Alanine, Serine Repeat Sequence for Pharmacokinetic Enhancement of Anti-VEGF Single-Domain Antibody. J Pharmacol Exp Ther 2020; 375:69-75. [PMID: 32669367 DOI: 10.1124/jpet.120.000012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/10/2020] [Indexed: 01/14/2023] Open
Abstract
Therapeutic fragmented antibodies show a poor pharmacokinetic profile that leads to frequent high-dose administration. In the current study, for the first time, a novel proline, alanine, serine (PAS) repeat sequence called PAS#208 was designed to extend the plasma half-life of a nanosized anti-vascular endothelial growth factor-A single-domain antibody. Polyacrylamide gel electrophoresis, circular dichroism, dynamic light scattering, and electrophoretic light scattering were used to assess the physicochemical properties of the newly designed PAS sequence. The effect of PAS#208 on the biologic activity of a single-domain antibody was studied using an in vitro proliferation assay. The pharmacokinetic parameters, including terminal half-life, the volume of distribution, elimination rate constant, and clearance, were determined in mice model and compared with the native protein and PAS#1(200) sequence. The novel PAS repeat sequence showed comparable physicochemical, biologic, and pharmacokinetic features to the previously reported PAS#1(200) sequence. The PAS#208 increased the hydrodynamic radius and decreased significantly the electrophoretic mobility of the native protein without any change in zeta potential. Surprisingly, the fusion of PAS#208 to the single-domain antibody increased the binding potency. In addition, it did not alter the biologic activity and did not show any cytotoxicity on the normal cells. The PAS#208 sequence improved the terminal half-life (14-fold) as well as other pharmacokinetic parameters significantly. The simplicity as well as superior effects on half-life extension make PAS#208 sequence a novel sequence for in vivo pharmacokinetic enhancement of therapeutic fragmented antibodies. SIGNIFICANCE STATEMENT: In the current study, a new proline, alanine, serine (PAS) sequence was developed that showed comparable physicochemical, biological, and pharmacokinetic features to the previously reported PAS#1(200) sequence. The simplicity as well as superior effects on half-life extension make PAS#208 sequence a novel sequence for in vivo pharmacokinetic enhancement of recombinant small proteins.
Collapse
Affiliation(s)
- Farnaz Khodabakhsh
- Department of Genetics and Advanced Medical Technology, Medical Biotechnology Research Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran (F.K.); Department of Medical Laboratory, Kashan University of Medical Sciences, Kashan, Iran (M.S.); Department of Civil Engineering, Sharif University of Technology, Tehran, Iran (A.M.); Department of Rabies, Virology Research Group (S.K.) and Department of Nanobiotechnology, New Technologies Research Group (R.A.C.), Pasteur Institute of Iran, Tehran, Iran; and Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran (A.V., E.K.)
| | - Morteza Salimian
- Department of Genetics and Advanced Medical Technology, Medical Biotechnology Research Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran (F.K.); Department of Medical Laboratory, Kashan University of Medical Sciences, Kashan, Iran (M.S.); Department of Civil Engineering, Sharif University of Technology, Tehran, Iran (A.M.); Department of Rabies, Virology Research Group (S.K.) and Department of Nanobiotechnology, New Technologies Research Group (R.A.C.), Pasteur Institute of Iran, Tehran, Iran; and Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran (A.V., E.K.)
| | - Ardavan Mehdizadeh
- Department of Genetics and Advanced Medical Technology, Medical Biotechnology Research Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran (F.K.); Department of Medical Laboratory, Kashan University of Medical Sciences, Kashan, Iran (M.S.); Department of Civil Engineering, Sharif University of Technology, Tehran, Iran (A.M.); Department of Rabies, Virology Research Group (S.K.) and Department of Nanobiotechnology, New Technologies Research Group (R.A.C.), Pasteur Institute of Iran, Tehran, Iran; and Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran (A.V., E.K.)
| | - Mohammad Sadeq Khosravy
- Department of Genetics and Advanced Medical Technology, Medical Biotechnology Research Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran (F.K.); Department of Medical Laboratory, Kashan University of Medical Sciences, Kashan, Iran (M.S.); Department of Civil Engineering, Sharif University of Technology, Tehran, Iran (A.M.); Department of Rabies, Virology Research Group (S.K.) and Department of Nanobiotechnology, New Technologies Research Group (R.A.C.), Pasteur Institute of Iran, Tehran, Iran; and Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran (A.V., E.K.)
| | - Alireza Vafabakhsh
- Department of Genetics and Advanced Medical Technology, Medical Biotechnology Research Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran (F.K.); Department of Medical Laboratory, Kashan University of Medical Sciences, Kashan, Iran (M.S.); Department of Civil Engineering, Sharif University of Technology, Tehran, Iran (A.M.); Department of Rabies, Virology Research Group (S.K.) and Department of Nanobiotechnology, New Technologies Research Group (R.A.C.), Pasteur Institute of Iran, Tehran, Iran; and Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran (A.V., E.K.)
| | - Elmira Karami
- Department of Genetics and Advanced Medical Technology, Medical Biotechnology Research Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran (F.K.); Department of Medical Laboratory, Kashan University of Medical Sciences, Kashan, Iran (M.S.); Department of Civil Engineering, Sharif University of Technology, Tehran, Iran (A.M.); Department of Rabies, Virology Research Group (S.K.) and Department of Nanobiotechnology, New Technologies Research Group (R.A.C.), Pasteur Institute of Iran, Tehran, Iran; and Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran (A.V., E.K.)
| | - Reza Ahangari Cohan
- Department of Genetics and Advanced Medical Technology, Medical Biotechnology Research Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran (F.K.); Department of Medical Laboratory, Kashan University of Medical Sciences, Kashan, Iran (M.S.); Department of Civil Engineering, Sharif University of Technology, Tehran, Iran (A.M.); Department of Rabies, Virology Research Group (S.K.) and Department of Nanobiotechnology, New Technologies Research Group (R.A.C.), Pasteur Institute of Iran, Tehran, Iran; and Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran (A.V., E.K.)
| |
Collapse
|
3
|
Roohvand F, Ehsani P, Abdollahpour-Alitappeh M, Shokri M, Kossari N. Biomedical applications of yeasts - a patent view, part two: era of humanized yeasts and expanded applications. Expert Opin Ther Pat 2020; 30:609-631. [PMID: 32529867 DOI: 10.1080/13543776.2020.1781816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Yeast humanization, ranging from a simple point mutation to substitution of yeast gene(s) or even a complete pathway by human counterparts has enormously expanded yeast biomedical applications. AREAS COVERED General and patent-oriented insights into the application of native and humanized yeasts for production of human glycoproteins (gps) and antibodies (Abs), toxicity/mutagenicity assays, treatments of gastrointestinal (GI) disorders and potential drug delivery as a probiotic (with emphasis on Saccharomyces bulardii) and studies on human diseases/cancers and screening effective drugs. EXPERT OPINION Humanized yeasts cover the classical advantageous features of a 'microbial eukaryote' together with advanced human cellular processes. These unique characteristics would permit their use in the production of functional and stable therapeutic gps and Abs in lower prices compared to mammalian (CHO) production-based systems. Availability of yeasts humanized for cytochrome P450 s will expand their application in metabolism-related chemical toxicity assays. Engineered S. bulardii for expression of human proteins might expand its application by synergistically combining the probiotic activity with the treatment of metabolic diseases such as phenylketonuria via GI-delivery. Yeast models of human diseases will facilitate rapid functional/phenotypic characterization of the disease-producing mutant genes and screening of the therapeutic compounds using yeast-based high-throughput research techniques (Yeast one/two hybrid systems) and viability assays.
Collapse
Affiliation(s)
- Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran , Tehran, Iran
| | - Parastoo Ehsani
- Department of Molecular Biology, Pasteur Institute of Iran , Tehran, Iran
| | | | - Mehdi Shokri
- ; Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Niloufar Kossari
- ; Universite de Versailles, Service de ne 'phrologie-transplantation re'nale, Hopital Foch, 40 rue Worth, Suresnes , Paris, France
| |
Collapse
|
4
|
Rouhani M, Khodabakhsh F, Norouzian D, Cohan RA, Valizadeh V. Molecular dynamics simulation for rational protein engineering: Present and future prospectus. J Mol Graph Model 2018; 84:43-53. [DOI: 10.1016/j.jmgm.2018.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 12/19/2022]
|
5
|
Wu Y, Cai Z, Wu S, Xiong W, Ma S. Protein purification by chemo-selective precipitation using thermoresponsive polymers. Biopolymers 2018; 109:e23222. [DOI: 10.1002/bip.23222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/25/2018] [Accepted: 04/09/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Yuanzi Wu
- College of Biological Science and Engineering; Fuzhou University; Fuzhou 350002 China
| | - Zhen Cai
- College of Biological Science and Engineering; Fuzhou University; Fuzhou 350002 China
| | - Shuigen Wu
- College of Biological Science and Engineering; Fuzhou University; Fuzhou 350002 China
| | - Wenli Xiong
- College of Biological Science and Engineering; Fuzhou University; Fuzhou 350002 China
| | - Shanyun Ma
- College of Biological Science and Engineering; Fuzhou University; Fuzhou 350002 China
| |
Collapse
|
6
|
Khodabakhsh F, Norouzian D, Vaziri B, Ahangari Cohan R, Sardari S, Mahboudi F, Behdani M, Mansouri K, Mehdizadeh A. Development of a novel nano-sized anti-VEGFA nanobody with enhanced physicochemical and pharmacokinetic properties. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1402-1414. [PMID: 28841807 DOI: 10.1080/21691401.2017.1369426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Since physiological and pathological processes occur at nano-environments, nanotechnology has considered as an efficient tool for designing of next generation specific biomolecules with enhanced pharmacodynamic and pharmacodynamic properties. In the current investigation, by control of the size and hydrodynamic volume at the nanoscale, for the first time, physicochemical and pharmacokinetic properties of an anti-VEGFA nanobody was remarkably improved by attachment of a Proline-Alanine-Serine (PAS) rich sequence. The results elucidated unexpected impressive effects of PAS sequence on physicochemical properties especially on size, hydrodynamics radius, and even solubility of nanobody. CD analysis revealed an increment in random coil structure of the PASylated protein in comparison to native one without any change in charge state or binding kinetic parameters of nanobody assessed by isoelectric focusing and surface plasmon resonance measurements, respectively. In vitro biological activities of nanobody were not affected by coupling of the PAS sequence. In contrast, the terminal half-life was significantly increased by a factor of 14 for the nanobody-PAS after single dose IV injection to the mice. Our study demonstrated that the control of size in the design of small therapeutic proteins has a promising effect on the stability and solubility, in addition to their physiochemical and pharmacokinetic properties. The designed new anti-VEGFA nanobody could promise a better therapeutic agent with a long administration intervals and lower dose, which in turn leads to a better patient compliance. Size adjustment of an anti-VEGF nanobody at the nanoscale by the attachment of a natural PAS polymer remarkably improves physicochemical properties, as well as a pharmacokinetic profile without any change in biological activity of the miniaturized antibody.
Collapse
Affiliation(s)
- Farnaz Khodabakhsh
- a Department of Nanobiotechnology , Advanced Technology Group, Pasteur Institute of Iran , Tehran , Iran.,b Biotechnology Research Center, Pasteur Institute of Iran , Tehran , Iran
| | - Dariush Norouzian
- a Department of Nanobiotechnology , Advanced Technology Group, Pasteur Institute of Iran , Tehran , Iran
| | - Behrouz Vaziri
- b Biotechnology Research Center, Pasteur Institute of Iran , Tehran , Iran
| | - Reza Ahangari Cohan
- a Department of Nanobiotechnology , Advanced Technology Group, Pasteur Institute of Iran , Tehran , Iran
| | - Soroush Sardari
- c Drug Design and Bioinformatics Unit, Department of Medical Biotechnology , Biotechnology Research Center, Pasteur Institute of Iran , Tehran , Iran
| | - Fereidoun Mahboudi
- b Biotechnology Research Center, Pasteur Institute of Iran , Tehran , Iran
| | - Mahdi Behdani
- d Venom & Biotherapeutics Molecules Laboratory , Biotechnology Research Center, Pasteur Institute of Iran , Tehran , Iran
| | - Kamran Mansouri
- e Medical Biology Research Center, Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Ardavan Mehdizadeh
- f Department of Civil Engineering , Sharif University of Technology , Tehran , Iran
| |
Collapse
|
7
|
Hoffmann E, Streichert K, Nischan N, Seitz C, Brunner T, Schwagerus S, Hackenberger CPR, Rubini M. Stabilization of bacterially expressed erythropoietin by single site-specific introduction of short branched PEG chains at naturally occurring glycosylation sites. MOLECULAR BIOSYSTEMS 2017; 12:1750-5. [PMID: 26776361 DOI: 10.1039/c5mb00857c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The covalent attachment of polyethylene glycol (PEG) to therapeutic proteins can improve their physicochemical properties. In this work we utilized the non-natural amino acid p-azidophenylalanine (pAzF) in combination with the chemoselective Staudinger-phosphite reaction to install branched PEG chains to recombinant unglycosylated erythropoietin (EPO) at each single naturally occurring glycosylation site. PEGylation with two short 750 or 2000 Da PEG units at positions 24, 38, or 83 significantly decreased unspecific aggregation and proteolytic degradation while biological activity in vitro was preserved or even increased in comparison to full-glycosylated EPO. This site-specific bioconjugation approach permits to analyse the impact of PEGylation at single positions. These results represent an important step towards the engineering of site-specifically modified EPO variants from bacterial expression with increased therapeutic efficacy.
Collapse
Affiliation(s)
- E Hoffmann
- Department of Organic Chemistry, University of Konstanz, D-78464 Konstanz, Germany.
| | - K Streichert
- Leibniz Institute of Molecular Pharmacology, D-13125 Berlin and Humboldt Universität zu Berlin, D-12489 Berlin, Germany.
| | - N Nischan
- Leibniz Institute of Molecular Pharmacology, D-13125 Berlin and Humboldt Universität zu Berlin, D-12489 Berlin, Germany.
| | - C Seitz
- Department of Biochemical Pharmacology, University of Konstanz, D-78464 Konstanz, Germany
| | - T Brunner
- Department of Biochemical Pharmacology, University of Konstanz, D-78464 Konstanz, Germany
| | - S Schwagerus
- Leibniz Institute of Molecular Pharmacology, D-13125 Berlin and Humboldt Universität zu Berlin, D-12489 Berlin, Germany.
| | - C P R Hackenberger
- Leibniz Institute of Molecular Pharmacology, D-13125 Berlin and Humboldt Universität zu Berlin, D-12489 Berlin, Germany.
| | - M Rubini
- Department of Organic Chemistry, University of Konstanz, D-78464 Konstanz, Germany.
| |
Collapse
|
8
|
Hedayati MH, Norouzian D, Aminian M, Teimourian S, Ahangari Cohan R, Sardari S, Khorramizadeh MR. Molecular Design, Expression and Evaluation of PASylated Human Recombinant Erythropoietin with Enhanced Functional Properties. Protein J 2017; 36:36-48. [DOI: 10.1007/s10930-017-9699-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Mirzaei H, Kazemi B, Bandehpour M, Shoari A, Asgary V, Ardestani MS, Madadkar-Sobhani A, Cohan RA. Computational and nonglycosylated systems: a simpler approach for development of nanosized PEGylated proteins. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1193-200. [PMID: 27042012 PMCID: PMC4801162 DOI: 10.2147/dddt.s98323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cysteine PEGylation includes several steps, and is difficult to manage in practice. In the current investigation, the cysteine PEGylation of erythropoietin analogs was examined using computational and nonglycosylated systems to define a simpler approach for specific PEGylation. Two model analogs (E31C and E89C) were selected for PEGylation based on lowest structural deviation from the native form, accessibility, and nucleophilicity of the free thiol group. The selected analogs were cloned and the expression was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot using Coomassie blue staining and anti-His monoclonal antibody, respectively. PEGylation with 20 kDa mPEG-maleimide resulted in 79% and 82% conjugation yield for E31C and E89C nonglycosylated erythropoietin (ngEPO) analogs, respectively. The size distribution and charge analysis showed an increase in size and negative charge of the PEGylated forms compared with nonconjugated ones. Biological assay revealed that E31C and E89C mutations and subsequent PEGylation of ngEPO analogs have no deleterious effects on in vitro biological activity when compared to CHO-derived recombinant human erythropoietin. In addition, PEG-conjugated ngEPOs showed a significant increase in plasma half-lives after injection into rats when compared to nonconjugated ones. The development of the cysteine-PEGylated proteins using nonglycosylated expression system and in silico technique can be considered an efficient approach in terms of optimization of PEGylation parameters, time, and cost.
Collapse
Affiliation(s)
- Hadi Mirzaei
- Department of Biotechnology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Department of Biotechnology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Department of Biotechnology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Shoari
- Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Vahid Asgary
- Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Pharmacy Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Reza Ahangari Cohan
- Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Theoretical study of hydrogen and halogen bond interactions of methylphosphines with hypohalous acids. COMPUT THEOR CHEM 2013. [DOI: 10.1016/j.comptc.2013.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Simón-Yarza T, Formiga FR, Tamayo E, Pelacho B, Prosper F, Blanco-Prieto MJ. PEGylated-PLGA microparticles containing VEGF for long term drug delivery. Int J Pharm 2013; 440:13-8. [DOI: 10.1016/j.ijpharm.2012.07.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/05/2012] [Indexed: 01/10/2023]
|