1
|
Nature of bilayer lipids affects membranes deformation and pore resealing during nanoparticle penetration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 132:112530. [DOI: 10.1016/j.msec.2021.112530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/17/2021] [Accepted: 10/30/2021] [Indexed: 01/31/2023]
|
2
|
Nademi Y, Tang T, Uludağ H. Modeling Uptake of Polyethylenimine/Short Interfering RNA Nanoparticles in Breast Cancer Cells Using Machine Learning. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Yousef Nademi
- Department of Chemical and Materials Engineering Donadeo Innovation Centre for Engineering University of Alberta Edmonton AB T6G 1H9 Canada
| | - Tian Tang
- Department of Mechanical Engineering Donadeo Innovation Centre for Engineering University of Alberta Edmonton AB T6G 1H9 Canada
| | - Hasan Uludağ
- Department of Chemical and Materials Engineering Donadeo Innovation Centre for Engineering University of Alberta Edmonton AB T6G 1H9 Canada
- Department of Biomedical Engineering Donadeo Innovation Centre for Engineering University of Alberta Edmonton AB T6G 1H9 Canada
- Faculty of Pharmacy and Pharmaceutical Sciences Donadeo Innovation Centre for Engineering University of Alberta Edmonton AB T6G 1H9 Canada
| |
Collapse
|
3
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Tieu T, Wojnilowicz M, Huda P, Thurecht KJ, Thissen H, Voelcker NH, Cifuentes-Rius A. Nanobody-displaying porous silicon nanoparticles for the co-delivery of siRNA and doxorubicin. Biomater Sci 2021; 9:133-147. [DOI: 10.1039/d0bm01335h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Targeted delivery of chemotherapeutics to cancer cells has the potential to yield high drug concentrations in cancer cells while minimizing any unwanted side effects.
Collapse
Affiliation(s)
- Terence Tieu
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing
| | - Marcin Wojnilowicz
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing
- Clayton
- Australia
| | - Pie Huda
- Centre for Advanced Imaging
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology
- University of Queensland
- Brisbane
| | - Kristofer J. Thurecht
- Centre for Advanced Imaging
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology
- University of Queensland
- Brisbane
| | - Helmut Thissen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing
- Clayton
- Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing
| | - Anna Cifuentes-Rius
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| |
Collapse
|
5
|
Wang F, Li D, Zheng Z, Kin Wah To K, Chen Z, Zhong M, Su X, Chen L, Fu L. Reversal of ABCB1-related multidrug resistance by ERK5-IN-1. J Exp Clin Cancer Res 2020; 39:50. [PMID: 32164732 PMCID: PMC7066765 DOI: 10.1186/s13046-020-1537-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/31/2020] [Indexed: 11/11/2022] Open
Abstract
Background Inhibition of ABC transporters is considered the most effective way to circumvent multidrug resistance (MDR). In the present study, we evaluated the MDR modulatory potential of ERK5-IN-1, a potent extracelluar signal regulated kinase 5 (ERK5) inhibitor. Methods The cytotoxicity and MDR reversal effect of ERK5-IN-1 were assessed by MTT assay. The KBv200-inoculated nude mice xenograft model was used for the in vivo study. Doxorubicin efflux and accumulation were measured by flow cytometry. The modulation of ABCB1 activity was measured by colorimetric ATPase assay and [125I]-iodoarylazidoprazosin (IAAP) photolabeling assay. Effect of ERK5-IN-1 on expression of ABCB1 and its downstream markers was measured by PCR and/or Western blot. Cell surface expression and subcellular localization of ABCB1 were tested by flow cytometry and immunofluorescence. Results Our results showed that ERK5-IN-1 significantly increased the sensitivity of vincristine, paclitaxel and doxorubicin in KBv200, MCF7/adr and HEK293/ABCB1 cells, respectively. This effect was not found in respective drug sensitive parental cell lines. Moreover, in vivo combination studies showed that ERK5-IN-1 effectively enhanced the antitumor activity of paclitaxel in KBv200 xenografts without causing addition toxicity. Mechanistically, ERK5-IN-1 increased intracellular accumulation of doxorubicin dose dependently by directly inhibiting the efflux function of ABCB1. ERK5-IN-1 stimulated the ABCB1 ATPase activity and inhibited the incorporation of [125I]-iodoarylazidoprazosin (IAAP) into ABCB1 in a concentration-dependent manner. In addition, ERK5-IN-1 treatment neither altered the expression level of ABCB1 nor blocked the phosphorylation of downstream Akt or Erk1/2. No significant reversal effect was observed on ABCG2-, ABCC1-, MRP7- and LRP-mediated drug resistance. Conclusions Collectively, these results indicated that ERK5-IN-1 efficiently reversed ABCB1-mediated MDR by competitively inhibiting the ABCB1 drug efflux function. The use of ERK5-IN-1 to restore sensitivity to chemotherapy or to prevent resistance could be a potential treatment strategy for cancer patients.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Delan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - ZongHeng Zheng
- Department of Gastrointestinal surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Kenneth Kin Wah To
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Zhen Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Mengjun Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Xiaodong Su
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Likun Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
6
|
Enabling Combinatorial siRNA Delivery against Apoptosis-Related Proteins with Linoleic Acid and α-Linoleic Acid Substituted Low Molecular Weight Polyethylenimines. Pharm Res 2020; 37:46. [PMID: 32016611 DOI: 10.1007/s11095-020-2770-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Short interfering RNA (siRNA) therapy promises a new era in treatment of breast cancers but effective delivery systems are needed for clinical use. Since silencing complementary targets may offer improved efficacy, this study was undertaken to identify non-viral carriers for combinatorial siRNA delivery for more effective therapy. METHODS A library of lipid-substituted polymers from low molecular weight polyethyleneimine (PEI), linoleic acid (LA) and α-linoleic acid (αLA) with amide or thioester linkages was prepared and investigated for delivering Mcl-1, survivin and STAT5A siRNAs in breast cancer cells. RESULTS The effective polymers formed 80-190 nm particles with similar zeta-potentials, but the serum stability was greater for complexes formed with amide-linked lipid conjugates. The LA and αLA substitutions, with the low molecular weight PEI (1.2 kDa and 2.0 kDa) were able to deliver siRNA effectively to cells and retarded the growth of breast cancer cells. The amide-linked lipid substituents showed higher cellular delivery of siRNA as compared to thioester linkages. Upon combinational delivery of siRNAs, growth of MCF-7 cells was inhibited to a greater extent with 2.0PEI-LA9 mediated delivery of Mcl-1 combined survivin siRNAs as compared to individual siRNAs. The qRT-PCR analysis confirmed the decrease in mRNA levels of target genes with specific siRNAs and 2.0PEI-LA9 was the most effective polymer for delivering siRNAs (either single or in combination). CONCLUSIONS This study yielded effective siRNA carriers for combinational delivery of siRNAs. Careful choice of siRNA combinations will be critical since targeting individual genes might alter the expression of other critical mediators.
Collapse
|
7
|
Daryabari SS, Fathi M, Mahdavi M, Moaddab Y, Hosseinpour Feizi MA, Shokoohi B, Safaralizadeh R. Overexpression of CFL1 in gastric cancer and the effects of its silencing by siRNA with a nanoparticle delivery system in the gastric cancer cell line. J Cell Physiol 2020; 235:6660-6672. [PMID: 31990066 DOI: 10.1002/jcp.29562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 01/13/2020] [Indexed: 12/21/2022]
Abstract
Gastric adenocarcinoma, like other cancers, is a multifactorial genetic disease, and metastasis of cancer cells is one of the main features of this illness. The expression levels of the CFL1 gene have been modulated in this pathway. Using small interfering RNA (siRNA) in the treatment of gastric cancer is considered a hopeful gene therapeutic approach. The present study reported the level of CFL1 genes between tumor and margin and healthy tissue of gastric cancer. Also, the features of a cationic nanoparticle with a polymer coating containing polyacrylic acid and polyethyleneimine that were used in the delivery of CFL1 siRNA, were shown. Then the cytotoxicity, cellular uptake, and gene silencing efficiency of this nanoparticle were evaluated with CFL1siRNA. METHOD In this study, the CFL1 gene expression was measured in 40 gastric adenocarcinoma, marginal and 15 healthy biopsy samples by a real-time polymerase chain reaction. Physicochemical characteristics, apoptosis, and inhibition of migration of the delivery of CFL1 siRNA by nanoparticle and lipofectamine were investigated in gastric cancer cells. RESULT The CFL1 expression was remarkably increased in gastric cancer tissues in comparison with the marginal samples and normal tissues (p < .05) and the biomarker index for CFL1 was obtained as 0.94, then this gene can be probably used as a biomarker for gastric cancer. After treatment of the AGS cell line by CFL1 siRNA, the CFL1 expression level of mRNA and migration in AGS cells were remarkably suppressed after transfection. Furthermore, the amount of apoptosis increased (p < .05). CONCLUSION Our results demonstrated that CFL1 downregulation in AGS cells can interdict cell migration. Finally, our outcomes propose that CFL1 can function as an oncogenic gene in gastric cancer and would be considered as a potential purpose of gene therapy for gastric cancer treatment.
Collapse
Affiliation(s)
| | - Marziyeh Fathi
- Research Center for Pharmaceuticals Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Yaghoub Moaddab
- Liver and Gastroenterology Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behrouz Shokoohi
- Pathology Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
8
|
da Costa RC, Pereira ED, Silva FM, de Jesus EO, Souza Jr. FG. Drug Micro-Carriers Based on Polymers and Their Sterilization. CHEMISTRY & CHEMICAL TECHNOLOGY 2018. [DOI: 10.23939/chcht12.04.473] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Nademi Y, Tang T, Uludağ H. Steered molecular dynamics simulations reveal a self-protecting configuration of nanoparticles during membrane penetration. NANOSCALE 2018; 10:17671-17682. [PMID: 30206609 DOI: 10.1039/c8nr04287j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cell entry of polynucleotide-based therapeutic agents can be facilitated by nanoparticle (NP) mediated delivery. In this work, using steered molecular dynamics simulations, we simulated the membrane penetration process of a NP formed by 2 short interfering RNA (siRNA) and 6 polyethylenimine (PEI) molecules. To the best of our knowledge, this is the first set of simulations that explore the direct penetration of an siRNA/PEI NP through a membrane at an all-atom scale. Three types of PEI molecules were used for NP formation: a native PEI, a PEI modified with caprylic acids and a PEI modified with linoleic acids. We found that hydrogen bond formation between the PEIs and the membrane did not lead to instability of the siRNA/PEI NPs during the internalization process. Instead, our results suggested adoption of a "self-protecting" configuration by the siRNA/PEI NP during membrane penetration, where the siRNA/PEI NP becomes more compact and siRNAs become aligned, leading to more stable configurations while detaching from the membrane. The siRNA/PEI NP modified with linoleic acid showed the smallest structural change due to its strong intra-particle lipid associations and the resulting rigidity, while NP modified with caprylic acid showed the largest structural changes. Our observations provide unique insight into the structural changes of siRNA/PEI NPs when crossing the cell membrane, which can be important for the design of new NP carriers for nucleic acid delivery.
Collapse
Affiliation(s)
- Yousef Nademi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada.
| | | | | |
Collapse
|
10
|
Meneksedag-Erol D, Tang T, Uludağ H. Mechanistic insights into the role of glycosaminoglycans in delivery of polymeric nucleic acid nanoparticles by molecular dynamics simulations. Biomaterials 2018; 156:107-120. [DOI: 10.1016/j.biomaterials.2017.11.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/02/2017] [Accepted: 11/21/2017] [Indexed: 11/17/2022]
|
11
|
Appelbe OK, Kim BK, Rymut N, Wang J, Kron SJ, Yeo Y. Radiation-enhanced delivery of plasmid DNA to tumors utilizing a novel PEI polyplex. Cancer Gene Ther 2017; 25:196-206. [PMID: 29255216 PMCID: PMC6008165 DOI: 10.1038/s41417-017-0004-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 01/17/2023]
Abstract
The excitement surrounding the potential of gene therapy has been tempered due to the challenges that have thus far limited its successful implementation in the clinic such as issues regarding stability, transfection efficiency, and toxicity. In this study, low molecular weight linear polyethyleneimine (2.5 kDa) was modified by conjugation to a lipid, lithocholic acid, and complexed with a natural polysaccharide, dermatan sulfate (DS), to mask extra cationic charges of the modified polymer. In vitro examination revealed that these modifications improved complex stability with plasmid DNA (pDNA) and transfection efficiency. This novel ternary polyplex (pDNA/3E/DS) was used to investigate if tumor-targeted radiotherapy led to enhanced accumulation and retention of gene therapy vectors in vivo in tumor-bearing mice. Imaging of biodistribution revealed that tumor irradiation led to increased accumulation and retention as well as decreased off-target tissue buildup of pDNA in not only pDNA/3E/DS, but also in associated PEI-based polyplexes and commercial DNA delivery vehicles. The DS-containing complexes developed in this study displayed the greatest increase in tumor-specific pDNA delivery. These findings demonstrate a step forward in nucleic acid vehicle design as well as a promising approach to overall cancer gene therapy through utilization of radiotherapy as a tool for enhanced delivery.
Collapse
Affiliation(s)
- Oliver K Appelbe
- Ludwig Center for Metastasis Research, The University of Chicago, 5758 South Maryland Avenue, MC 9006, Chicago, IL, 60637, USA.,Department of Molecular Genetics and Cellular Biology, The University of Chicago, 929 East 57th Street, GCIS W519, Chicago, IL, 60637, USA
| | - Bieong-Kil Kim
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA
| | - Nick Rymut
- Ludwig Center for Metastasis Research, The University of Chicago, 5758 South Maryland Avenue, MC 9006, Chicago, IL, 60637, USA.,Department of Molecular Genetics and Cellular Biology, The University of Chicago, 929 East 57th Street, GCIS W519, Chicago, IL, 60637, USA
| | - Jianping Wang
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA.,Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Stephen J Kron
- Ludwig Center for Metastasis Research, The University of Chicago, 5758 South Maryland Avenue, MC 9006, Chicago, IL, 60637, USA. .,Department of Molecular Genetics and Cellular Biology, The University of Chicago, 929 East 57th Street, GCIS W519, Chicago, IL, 60637, USA.
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
12
|
Sharma M, El-Sayed NS, Do H, Parang K, Tiwari RK, Aliabadi HM. Tumor-targeted delivery of siRNA using fatty acyl-CGKRK peptide conjugates. Sci Rep 2017; 7:6093. [PMID: 28733622 PMCID: PMC5522445 DOI: 10.1038/s41598-017-06381-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/12/2017] [Indexed: 12/13/2022] Open
Abstract
Tumor-targeted carriers provide efficient delivery of chemotherapeutic agents to tumor tissue. CGKRK is one of the well-known tumor targeting peptides with significant specificity for angiogenic blood vessels and tumor cells. Here, we designed fatty acyl conjugated CGKRK peptides, based on the hypothesis that hydrophobically-modified CGKRK peptide could enhance cellular permeation and delivery of siRNA targeted to tumor cells for effective silencing of selected proteins. We synthesized six fatty acyl-peptide conjugates, using a diverse chain of saturated and unsaturated fatty acids to study the efficiency of this approach. At peptide:siRNA weight/weight ratio of 10:1 (N/P ≈ 13.6), almost all the peptides showed complete binding with siRNA, and at a w/w ratio of 20:1 (N/P ≈ 27.3), complete protection of siRNA from early enzymatic degradation was observed. Conjugated peptides and peptide/siRNA complexes did not show significant cytotoxicity in selected cell lines. The oleic acid-conjugated peptide showed the highest efficiency in siRNA uptake and silencing of kinesin spindle protein at peptide:siRNA w/w ratio of 80:1 (N/P ≈ 109). The siRNA internalization into non-tumorigenic kidney cells was negligible with all fatty acyl-peptide conjugates. These results indicate that conjugation of fatty acids to CGKRK could create an efficient delivery system for siRNA silencing specifically in tumor cells.
Collapse
Affiliation(s)
- Meenakshi Sharma
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, 92618, United States
| | - Naglaa Salem El-Sayed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, 92618, United States
- Cellulose and Paper Department, National Research Center, Dokki, 12622, Cairo, Egypt
| | - Hung Do
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, 92618, United States
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, 92618, United States
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, 92618, United States.
| | - Hamidreza Montazeri Aliabadi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, 92618, United States.
| |
Collapse
|
13
|
Meenakshi Sundaram DN, Kucharski C, Parmar MB, Kc RB, Uludağ H. Polymeric Delivery of siRNA against Integrin-β1 (CD29) to Reduce Attachment and Migration of Breast Cancer Cells. Macromol Biosci 2017; 17. [PMID: 28160423 DOI: 10.1002/mabi.201600430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/23/2016] [Indexed: 12/22/2022]
Abstract
Cell surface integrins, which play important roles in the survival, proliferation, migration, and invasion of cancer cells, are a viable target for treatment of metastatic breast cancer. This line of therapy still remains challenging due to the lack of proper identification and validation of effective targets as well as the lack of suitable therapeutic agents for treatment. The focus is on one such molecular target for this purpose, namely integrin-β1, and effective lowering of integrin-β1 levels on a breast cancer model (MDA-MB-231 cells) is achieved by delivering a dicer-substrate short interfering RNA (siRNA) targeting integrin-β1 with lipid-modified low molecular weight polyethylenimine polymers. Reduction of integrin-β1 levels leads to reduced adhesion of MDA-MB-231 cells to extracellular matrix component fibronectin as well as to human bone marrow cells. A reduced migration of the breast cancer cells is also observed after integrin-β1 silencing in "scratch" and "transwell" migration assays. These results highlight the importance of integrin-β1 for the migration of metastatic breast cancer cells by effectively silencing this target with a practical dose of siRNA.
Collapse
Affiliation(s)
| | - Cezary Kucharski
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V2, Canada
| | - Manoj B Parmar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H1, Canada
| | - Remant Bahadur Kc
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V2, Canada
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H1, Canada.,Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V2, Canada.,Department of Biomedical Engineering, University of Alberta, Edmonton, AB, 2V2, Canada
| |
Collapse
|
14
|
Aliabadi HM, Mahdipoor P, Bisoffi M, Hugh JC, Uludağ H. Single and Combinational siRNA Therapy of Cancer Cells: Probing Changes in Targeted and Nontargeted Mediators after siRNA Treatment. Mol Pharm 2016; 13:4116-4128. [DOI: 10.1021/acs.molpharmaceut.6b00711] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hamidreza Montazeri Aliabadi
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California 92618, United States
- Department of Chemical & Material Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada
| | - Parvin Mahdipoor
- Department of Chemical & Material Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada
| | - Marco Bisoffi
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California 92618, United States
- Schmid
College of Science and Technology; Biological Sciences, Chapman University, Orange, California 92866, United States
| | - Judith C. Hugh
- Department of Pathology & Laboratory Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Hasan Uludağ
- Department of Chemical & Material Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada
- Faculty of Pharmacy and Pharmaceutical
Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department
of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G
2R3, Canada
| |
Collapse
|
15
|
Arami S, Mahdavi M, Rashidi MR, Fathi M, Hejazi MS, Samadi N. Novel polyacrylate-based cationic nanoparticles for survivin siRNA delivery combined with mitoxantrone for treatment of breast cancer. Biologicals 2016; 44:487-496. [DOI: 10.1016/j.biologicals.2016.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/04/2016] [Accepted: 09/13/2016] [Indexed: 02/02/2023] Open
|
16
|
Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett 2015; 370:153-64. [PMID: 26499806 DOI: 10.1016/j.canlet.2015.10.010] [Citation(s) in RCA: 555] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 12/21/2022]
Abstract
Multidrug resistance (MDR) is a serious phenomenon employed by cancer cells which hampers the success of cancer pharmacotherapy. One of the common mechanisms of MDR is the overexpression of ATP-binding cassette (ABC) efflux transporters in cancer cells such as P-glycoprotein (P-gp/ABCB1), multidrug resistance-associated protein 2 (MRP2/ABCC2), and breast cancer resistance protein (BCRP/ABCG2) that limits the prolonged and effective use of chemotherapeutic drugs. Researchers have found that developing inhibitors of ABC efflux transporters as chemosensitizers could overcome MDR. But the clinical trials have shown that most of these chemosensitizers are merely toxic and only show limited or no benefits to cancer patients, thus new inhibitors are being explored. Recent findings also suggest that efflux pumps of the ABC transporter family are subject to epigenetic gene regulation. In this review, we summarize recent findings of the role of ABC efflux transporters in MDR.
Collapse
|
17
|
Arnason T, Harkness T. Development, Maintenance, and Reversal of Multiple Drug Resistance: At the Crossroads of TFPI1, ABC Transporters, and HIF1. Cancers (Basel) 2015; 7:2063-82. [PMID: 26501324 PMCID: PMC4695877 DOI: 10.3390/cancers7040877] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/10/2015] [Indexed: 12/21/2022] Open
Abstract
Early detection and improved therapies for many cancers are enhancing survival rates. Although many cytotoxic therapies are approved for aggressive or metastatic cancer; response rates are low and acquisition of de novo resistance is virtually universal. For decades; chemotherapeutic treatments for cancer have included anthracyclines such as Doxorubicin (DOX); and its use in aggressive tumors appears to remain a viable option; but drug resistance arises against DOX; as for all other classes of compounds. Our recent work suggests the anticoagulant protein Tissue Factor Pathway Inhibitor 1α (TFPI1α) plays a role in driving the development of multiple drug resistance (MDR); but not maintenance; of the MDR state. Other factors; such as the ABC transporter drug efflux pumps MDR-1/P-gp (ABCB1) and BCRP (ABCG2); are required for MDR maintenance; as well as development. The patient population struggling with therapeutic resistance specifically requires novel treatment options to resensitize these tumor cells to therapy. In this review we discuss the development, maintenance, and reversal of MDR as three distinct phases of cancer biology. Possible means to exploit these stages to reverse MDR will be explored. Early molecular detection of MDR cancers before clinical failure has the potential to offer new approaches to fighting MDR cancer.
Collapse
Affiliation(s)
- Terra Arnason
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Correspondence: ; Tel.:+1-306-844-1119; Fax: +1-306-844-1512
| | - Troy Harkness
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada;
| |
Collapse
|
18
|
Effect of siRNA pre-Exposure on Subsequent Response to siRNA Therapy. Pharm Res 2015; 32:3813-26. [DOI: 10.1007/s11095-015-1741-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/10/2015] [Indexed: 12/13/2022]
|
19
|
Natarajan K, Baer MR, Ross DD. Role of Breast Cancer Resistance Protein (BCRP, ABCG2) in Cancer Outcomes and Drug Resistance. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-09801-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Zhang J, Li X, Huang L. Non-viral nanocarriers for siRNA delivery in breast cancer. J Control Release 2014; 190:440-50. [PMID: 24874288 PMCID: PMC4142098 DOI: 10.1016/j.jconrel.2014.05.037] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/20/2014] [Indexed: 12/13/2022]
Abstract
Breast cancer is the most frequently diagnosed malignancy in American women. While significant progress has been made in the development of modern diagnostic tools and surgical treatments, only marginal improvements have been achieved with relapsed metastatic breast cancer. Small interfering RNAs (siRNAs) mediate gene silencing of a target protein by disrupting messenger RNAs in an efficient and sequence-specific manner. One application of this technology is the knockdown of genes responsible for tumorigenesis, including those driving oncogenesis, survival, proliferation and death of cells, angiogenesis, invasion and metastasis, and resistance to treatment. Non-viral nanocarriers have attracted attention based on their potential for targeted delivery of siRNA and efficient gene silencing without toxicity. Here, we review promising, non-viral delivery strategies employing liposomes, nanoparticles and inorganic materials in breast cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Xiang Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Leaf Huang
- Division of Molecular Pharmaceutics and Center of Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
21
|
Structure and function of BCRP, a broad specificity transporter of xenobiotics and endobiotics. Arch Toxicol 2014; 88:1205-48. [PMID: 24777822 DOI: 10.1007/s00204-014-1224-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/06/2014] [Indexed: 12/20/2022]
|
22
|
Rose L, Mahdipoor P, Kucharski C, Uludağ H. Pharmacokinetics and transgene expression of implanted polyethylenimine-based pDNA complexes. Biomater Sci 2014; 2:833-42. [DOI: 10.1039/c3bm60200a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Videira M, Arranja A, Rafael D, Gaspar R. Preclinical development of siRNA therapeutics: towards the match between fundamental science and engineered systems. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:689-702. [PMID: 24333589 DOI: 10.1016/j.nano.2013.11.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/21/2013] [Accepted: 11/24/2013] [Indexed: 12/14/2022]
Abstract
UNLABELLED The evolution of synthetic RNAi faces the paradox of interfering with the human biological environment. Due to the fact that all cell physiological processes can be target candidates, silencing a precise biological pathway could be challenging if target selectivity is not properly addressed. Molecular biology has provided scientific tools to suppress some of the most critical issues in gene therapy, while setting the standards for siRNA clinical application. However, the protein down-regulation through the mRNA silencing is intimately related to the sequence-specific siRNA ability to interact accurately with the potential target. Moreover, its in vivo biological fate is highly dependent on the successful design of a vehicle able to overcome both extracellular and intracellular barriers. Anticipating a great deal of innovation, crucial to meet the challenges involved in the RNAi therapeutics, the present review intends to build up a synopsis on the delivery strategies currently developed. FROM THE CLINICAL EDITOR This review discusses recent progress and pertinent limiting factors related to the use of siRNA-s as efficient protein-specific "silencing" agents, focusing on targeted delivery not only to cells of interest, but to the proper intracellular destination.
Collapse
Affiliation(s)
- M Videira
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal.
| | - A Arranja
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - D Rafael
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - R Gaspar
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
24
|
Meng Q, Yin Q, Li Y. Nanocarriers for siRNA delivery to overcome cancer multidrug resistance. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-6030-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Effective response of doxorubicin-sensitive and -resistant breast cancer cells to combinational siRNA therapy. J Control Release 2013; 172:219-228. [DOI: 10.1016/j.jconrel.2013.08.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/10/2013] [Accepted: 08/12/2013] [Indexed: 12/16/2022]
|
26
|
Falamarzian A, Aliabadi HM, Molavi O, Seubert JM, Lai R, Uludağ H, Lavasanifar A. Effective down-regulation of signal transducer and activator of transcription 3 (STAT3) by polyplexes of siRNA and lipid-substituted polyethyleneimine for sensitization of breast tumor cells to conventional chemotherapy. J Biomed Mater Res A 2013; 102:3216-28. [PMID: 24167124 DOI: 10.1002/jbm.a.34992] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/06/2013] [Accepted: 10/08/2013] [Indexed: 01/11/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that plays a major role in the development of resistance to conventional anti-cancer drugs in many types of cancer, when constitutively activated. Inhibition of STAT3 is considered as a promising strategy for inhibition of tumor growth and overcoming the drug resistance manifested. In this study, the capability of STAT3 knockdown by lipid substituted low molecular weight (2 kDa) polyethyleneimine (PEI2) complexes of STAT3-siRNA was assessed. The efficiency of PEI/STAT3-siRNA polyplexes in the induction of STAT3 associated cell death in wild type and drug-resistant MDA-MB-435 breast cancer cells as monotherapy and upon combination with chemotherapeutic agents, doxorubicin and paclitaxel, was also investigated. Our results identified linoleic acid-substituted (PEI-LA) polymer as the most efficient carrier among different lipid substituted PEI2 for siRNA delivery, leading to most STAT3 associated loss of cell viability in MDA-MB-435 cells. STAT3-siRNA delivery by the PEI-LA polymer resulted in efficient down-regulation of STAT3 at both mRNA and protein levels. Furthermore, pre-treatment of cancer cells with STAT3-siRNA formulation increased the cytotoxic effect of doxorubicin and paclitaxel in both wild type and drug resistant MDA-MB-435 cells. The results of this study point to the potential of PEI-LA polyplexes of STAT3-siRNA as inhibitors of STAT3 expression in breast tumor cells. The results also demonstrate an improved efficacy for chemotherapeutic drugs in combination with lipid-substituted low molecular weight PEI-LA/STAT3-siRNA complexes in comparison to drug therapy alone.
Collapse
Affiliation(s)
- Arash Falamarzian
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | | | | | | | | | | | | |
Collapse
|
27
|
Fatemian T, Othman I, Chowdhury EH. Strategies and validation for siRNA-based therapeutics for the reversal of multi-drug resistance in cancer. Drug Discov Today 2013; 19:71-8. [PMID: 23974068 DOI: 10.1016/j.drudis.2013.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 01/20/2023]
Abstract
Resistance of cancer cells to anticancer drugs is the main reason for the failure of traditional cancer treatments. Various cellular components and different loops within the signaling pathways contribute to drug resistance which could be modulated with the aim to restore drug efficacy. Unveiling the molecular mechanisms for cancer drug resistance has now paved the way for the development of novel approaches to regulate the response rates to anticancer drugs at the genetic level. The recent progress on identification and validation of the vital genes directly or indirectly involved in development of cancer drug resistance with the aid of the specific knock down ability of RNA interference technology is discussed in this review.
Collapse
Affiliation(s)
- Tahereh Fatemian
- Jeffrey Cheah School of Medicine and Health Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Malaysia
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Malaysia.
| |
Collapse
|
28
|
Polymeric delivery of siRNA for dual silencing of Mcl-1 and P-glycoprotein and apoptosis induction in drug-resistant breast cancer cells. Cancer Gene Ther 2013; 20:169-77. [DOI: 10.1038/cgt.2013.8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Sun C, Tang T, Uludag H. A molecular dynamics simulation study on the effect of lipid substitution on polyethylenimine mediated siRNA complexation. Biomaterials 2013; 34:2822-33. [PMID: 23352043 DOI: 10.1016/j.biomaterials.2013.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/02/2013] [Indexed: 01/16/2023]
Abstract
Polycations have been explored as non-viral carriers for effective delivery of small interfering RNA (siRNA). Modifying polycations such as polyethylenimine (PEI) with lipid substitution was found to improve the siRNA delivery efficiency of polycationic carriers. However, the role of such lipid modification is not clear and remains to be probed at the atomistic level. In this work, we elucidate the role of lipid modification through a series of all-atom molecular dynamics simulations on siRNA complexation mediated by a native PEI and four analogous obtained by different lipid modifications. The lipid modification does not affect PEI's capability of neutralizing the siRNA charge, neither does it affect the polyion bridging which plays an important role in siRNA complexation. Significant linkages among the lipid modified PEIs via association of lipid side-groups are observed and this results in more stable and compact PEI/siRNA polyplexes. The lipid associations between short lipids form and break frequently while the lipid associations between long lipids are more stable. For PEIs modified with short lipids, increasing the lipid substitution level results in more compact and stable siRNA structure. For PEIs modified with long lipids, increasing the lipid substitution does not change the amount of PEI linkage via lipid association, and has a reverse effect on compacting siRNA structure due to increased steric hindrance brought by the lipid association on individual PEIs. The simulation results generally correlate well with experimental data and suggest a framework of designing and systematic evaluation of polycation-based siRNA carriers using molecular dynamics simulations.
Collapse
Affiliation(s)
- Chongbo Sun
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 2G8, Canada
| | | | | |
Collapse
|
30
|
Gonçalves AS, Macedo AS, Souto EB. Therapeutic nanosystems for oncology nanomedicine. Clin Transl Oncol 2012; 14:883-90. [DOI: 10.1007/s12094-012-0912-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
|