1
|
Jin H, Wen J, Wang L, Zhang Y, Sui X. Synthesis and characterization of ion-induced sodium alginate/soy protein isolate microgels for the controlled release. Food Chem 2024; 452:139588. [PMID: 38754168 DOI: 10.1016/j.foodchem.2024.139588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
In this study, sodium alginate/ soy protein isolate (SPI) microgels cross-linked by various divalent cations including Cu2+, Ba2+, Ca2+, and Zn2+ were fabricated. Cryo-scanning electron microscopy observations revealed distinctive structural variations among the microgels. In the context of gastric pH conditions, the degree of shrinkage of the microgels followed the sequence of Ca2+ > Ba2+ > Cu2+ > Zn2+. Meanwhile, under intestinal pH conditions, the degree of swelling was ranked as Zn2+ > Ca2+ > Ba2+ > Cu2+. The impact of these variations was investigated through in vitro digestion studies, revealing that all microgels successfully delayed the release of β-carotene within the stomach. Within the simulated intestinal fluid, the microgel cross-linked with Zn2+ exhibited an initial burst release, while those cross-linked with Cu2+, Ba2+, or Ca2+ displayed a sustained release pattern. This research underscores the potential of sodium alginate/SPI microgels cross-linked with different divalent cations as efficient controlled-release delivery systems.
Collapse
Affiliation(s)
- Hainan Jin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiayu Wen
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lei Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Zhang C, D'Angelo D, Buttini F, Yang M. Long-acting inhaled medicines: Present and future. Adv Drug Deliv Rev 2024; 204:115146. [PMID: 38040120 DOI: 10.1016/j.addr.2023.115146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Inhaled medicines continue to be an essential part of treatment for respiratory diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis. In addition, inhalation technology, which is an active area of research and innovation to deliver medications via the lung to the bloodstream, offers potential advantages such as rapid onset of action, enhanced bioavailability, and reduced side effects for local treatments. Certain inhaled macromolecules and particles can also end up in different organs via lymphatic transport from the respiratory epithelium. While the majority of research on inhaled medicines is focused on the delivery technology, particle engineering, combination therapies, innovations in inhaler devices, and digital health technologies, researchers are also exploring new pharmaceutical technologies and strategies to prolong the duration of action of inhaled drugs. This is because, in contrast to most inhaled medicines that exert a rapid onset and short duration of action, long-acting inhaled medicines (LAIM) improve not only the patient compliance by reducing the dosing frequency, but also the effectiveness and convenience of inhaled therapies to better manage patients' conditions. This paper reviews the advances in LAIM, the pharmaceutical technologies and strategies for developing LAIM, and emerging new inhaled modalities that possess a long-acting nature and potential in the treatment and prevention of various diseases. The challenges in the development of the future LAIM are also discussed where active research and innovations are taking place.
Collapse
Affiliation(s)
- Chengqian Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Davide D'Angelo
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Mingshi Yang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016, Shenyang, China.
| |
Collapse
|
3
|
Magramane S, Vlahović K, Gordon P, Kállai-Szabó N, Zelkó R, Antal I, Farkas D. Inhalation Dosage Forms: A Focus on Dry Powder Inhalers and Their Advancements. Pharmaceuticals (Basel) 2023; 16:1658. [PMID: 38139785 PMCID: PMC10747137 DOI: 10.3390/ph16121658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
In this review, an extensive analysis of dry powder inhalers (DPIs) is offered, focusing on their characteristics, formulation, stability, and manufacturing. The advantages of pulmonary delivery were investigated, as well as the significance of the particle size in drug deposition. The preparation of DPI formulations was also comprehensively explored, including physico-chemical characterization of powders, powder processing techniques, and formulation considerations. In addition to manufacturing procedures, testing methods were also discussed, providing insights into the development and evaluation of DPI formulations. This review also explores the design basics and critical attributes specific to DPIs, highlighting the significance of their optimization to achieve an effective inhalation therapy. Additionally, the morphology and stability of 3 DPI capsules (Spiriva, Braltus, and Onbrez) were investigated, offering valuable insights into the properties of these formulations. Altogether, these findings contribute to a deeper understanding of DPIs and their development, performance, and optimization of inhalation dosage forms.
Collapse
Affiliation(s)
- Sabrina Magramane
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Kristina Vlahović
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Péter Gordon
- Department of Electronics Technology, Budapest University of Technology and Economics, Egry J. Str. 18, H-1111 Budapest, Hungary;
| | - Nikolett Kállai-Szabó
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Romána Zelkó
- Department of Pharmacy Administration, Semmelweis University, Hőgyes Str. 7–9, H-1092 Budapest, Hungary;
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Dóra Farkas
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| |
Collapse
|
4
|
Gupta C, Jaipuria A, Gupta N. Inhalable Formulations to Treat Non-Small Cell Lung Cancer (NSCLC): Recent Therapies and Developments. Pharmaceutics 2022; 15:139. [PMID: 36678768 PMCID: PMC9861595 DOI: 10.3390/pharmaceutics15010139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Cancer has been the leading cause of mortalities, with lung cancer contributing 18% to overall deaths. Non-small cell lung cancer (NSCLC) accounts for about 85% of all lung cancers. The primary form of therapy used to treat lung cancer still includes oral and systemic administration of drugs, radiotherapy, or chemotherapy. Some patients have to go through a regime of combination therapy. Despite being the only available form of therapy, their use is limited due to the adverse effects, toxicity, and development of resistance over prolonged use. This led to a shift and progressive evolution into using pulmonary drug delivery systems. Being a non-invasive method of drug-administration and allowing localized delivery of drugs to cancer cells, inhalable drug delivery systems can lead to lower dosing and fewer systemic toxicities over other conventional routes. In this way, we can increase the actual local concentration of the drug in lungs, which will ultimately lead to better antitumor therapy. Nano-based systems also provide additional diagnostic advantages during lung cancer treatment, including imaging, screening, and tracking. Regardless of the advantages, pulmonary delivery is still in the early stages of development and various factors such as pharmacology, immunology, and toxicology should be taken into consideration for the development of suitable inhalable nano-based chemotherapeutic drugs. They face numerous physiological barriers such as lung retention and efficacy, and could also lead to toxicity due to prolonged exposure. Nano-carriers with a sustained drug release mechanism could help in overcoming these challenges. This review article will focus on the various inhalable formulations for targeted drug delivery, including nano-based delivery systems such as lipids, liposome, polymeric and inorganic nanocarriers, micelles, microparticles and nanoaggregates for lung cancer treatment. Various devices used in pulmonary drug delivery loaded on various nano-carriers are also discussed in detail.
Collapse
Affiliation(s)
- Chetna Gupta
- Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Aadya Jaipuria
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, USA
| | - Nikesh Gupta
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
5
|
Dissolution and Absorption of Inhaled Drug Particles in the Lungs. Pharmaceutics 2022; 14:pharmaceutics14122667. [PMID: 36559160 PMCID: PMC9781681 DOI: 10.3390/pharmaceutics14122667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Dry powder inhalation therapy has been effective in treating localized lung diseases such asthma, chronic obstructive pulmonary diseases (COPD), cystic fibrosis and lung infections. In vitro characterization of dry powder formulations includes the determination of physicochemical nature and aerosol performance of powder particles. The relationship between particle properties (size, shape, surface morphology, porosity, solid state nature, and surface hydrophobicity) and aerosol performance of an inhalable dry powder formulation has been well established. However, unlike oral formulations, there is no standard dissolution method for evaluating the dissolution behavior of the inhalable dry powder particles in the lungs. This review focuses on various dissolution systems and absorption models, which have been developed to evaluate dry powder formulations. It covers a summary of airway epithelium, hurdles to developing an in vitro dissolution method for the inhaled dry powder particles, fine particle dose collection methods, various in vitro dissolution testing methods developed for dry powder particles, and models commonly used to study absorption of inhaled drug.
Collapse
|
6
|
Qbd based and Box-Behnken design assisted Oral delivery of stable lactone (active) form of Topotecan as PLGA nanoformulation: Cytotoxicity, pharmacokinetic, in vitro, and ex vivo gut permeation studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Zinc insulin hexamer loaded alginate zinc hydrogel: preparation, characterization and in vivo hypoglycemic ability. Eur J Pharm Biopharm 2022; 179:173-181. [PMID: 36087882 DOI: 10.1016/j.ejpb.2022.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/21/2022]
Abstract
Alginate zinc hydrogel loaded with zinc insulin hexamer was prepared and characterized for oral insulin administration. The hydrogel was fabricated by dripping zinc insulin hexamer into sodium alginate solution and followed by crosslinking by zinc chloride. SEM image reveals the zinc insulin hexamer was integrated into the matrix of hydrogel. Zinc insulin hexamer loaded hydrogel shows no obvious cytotoxicity to both HT29 and Caco-2 cells. The developed hydrogel retards the burst release of insulin in simulated gastric fluid but promotes the release when in simulated intestinal fluid. In the diabetic mice, zinc insulin hexamer loaded alginate hydrogel demonstrates significant and prolonged hypoglycemic effect.
Collapse
|
8
|
Naz FF, Shah KU, Niazi ZR, Zaman M, Lim V, Alfatama M. Polymeric Microparticles: Synthesis, Characterization and In Vitro Evaluation for Pulmonary Delivery of Rifampicin. Polymers (Basel) 2022; 14:2491. [PMID: 35746067 PMCID: PMC9230634 DOI: 10.3390/polym14122491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/10/2022] Open
Abstract
Rifampicin, a potent broad-spectrum antibiotic, remains the backbone of anti-tubercular therapy. However, it can cause severe hepatotoxicity when given orally. To overcome the limitations of the current oral therapy, this study designed inhalable spray-dried, rifampicin-loaded microparticles using aloe vera powder as an immune modulator, with varying concentrations of alginate and L-leucine. The microparticles were assessed for their physicochemical properties, in vitro drug release and aerodynamic behavior. The spray-dried powders were 2 to 4 µm in size with a percentage yield of 45 to 65%. The particles were nearly spherical with the tendency of agglomeration as depicted from Carr’s index (37 to 65) and Hausner’s ratios (>1.50). The drug content ranged from 0.24 to 0.39 mg/mg, with an association efficiency of 39.28 to 96.15%. The dissolution data depicts that the in vitro release of rifampicin from microparticles was significantly retarded with a higher L-leucine concentration in comparison to those formulations containing a higher sodium alginate concentration due to its hydrophobic nature. The aerodynamic data depicts that 60 to 70% of the aerosol mass was emitted from an inhaler with MMAD values of 1.44 to 1.60 µm and FPF of 43.22 to 55.70%. The higher FPF values with retarded in vitro release could allow sufficient time for the phagocytosis of synthesized microparticles by alveolar macrophages, thereby leading to the eradication of M. tuberculosis from these cells.
Collapse
Affiliation(s)
- Faiqa Falak Naz
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (F.F.N.); (K.U.S.); (Z.R.N.); (M.Z.)
| | - Kifayat Ullah Shah
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (F.F.N.); (K.U.S.); (Z.R.N.); (M.Z.)
| | - Zahid Rasul Niazi
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (F.F.N.); (K.U.S.); (Z.R.N.); (M.Z.)
| | - Mansoor Zaman
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (F.F.N.); (K.U.S.); (Z.R.N.); (M.Z.)
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Penang, Malaysia
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia
| |
Collapse
|
9
|
Monou PK, Andriotis EG, Bouropoulos N, Panteris E, Akrivou M, Vizirianakis IS, Ahmad Z, Fatouros DG. Engineered mucoadhesive microparticles of formoterol/budesonide for pulmonary administration. Eur J Pharm Sci 2021; 165:105955. [PMID: 34298141 DOI: 10.1016/j.ejps.2021.105955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
In the present study, a multi-component system comprised of dipalmitylphospatidylcholine (DPPC), Chitosan, Lactose, and L-Leucine was developed for pulmonary delivery. Microparticles were engineered by the spray drying process and the selection of the critical parameters was performed by applying experimental design. The microcarriers with the appropriate size and yield were co-formulated with two active pharmaceutical ingredients (APIs), namely, Formoterol fumarate and Budesonide, and they were further investigated. All formulations exhibited spherical shape, appropriate aerodynamic performance, satisfying entrapment efficiency, and drug load. Their physicochemical properties were evaluated using Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and Differential Scanning Calorimetry (DSC). The aerodynamic particle size characterization was determined using an eight-stage Andersen cascade impactor, whereas the release of the actives was monitored in vitro in simulated lung fluid. Additional evaluation of the microparticles' mucoadhesive properties was performed by ζ-potential measurements and ex vivo mucoadhesion study applying a falling liquid film method using porcine lung tissue. Cytotoxicity and cellular uptake studies in Calu-3 lung epithelial cell line were conducted to further investigate the safety and efficacy of the developed formulations.
Collapse
Affiliation(s)
- Paraskevi Kyriaki Monou
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleftherios G Andriotis
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, 26504 Rio, Patras, Greece; Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, 26504 Patras, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Melpomeni Akrivou
- Department of Pharmacy, Division of Pharmacology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis S Vizirianakis
- Department of Pharmacy, Division of Pharmacology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Department of Life and Health Sciences, University of Nicosia, CY-1700 Nicosia, Cyprus
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| | - Dimitrios G Fatouros
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
10
|
Cun D, Zhang C, Bera H, Yang M. Particle engineering principles and technologies for pharmaceutical biologics. Adv Drug Deliv Rev 2021; 174:140-167. [PMID: 33845039 DOI: 10.1016/j.addr.2021.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
The global market of pharmaceutical biologics has expanded significantly during the last few decades. Currently, pharmaceutical biologic products constitute an indispensable part of the modern medicines. Most pharmaceutical biologic products are injections either in the forms of solutions or lyophilized powders because of their low oral bioavailability. There are certain pharmaceutical biologic entities formulated into particulate delivery systems for the administration via non-invasive routes or to achieve prolonged pharmaceutical actions to reduce the frequency of injections. It has been well documented that the design of nano- and microparticles via various particle engineering technologies could render pharmaceutical biologics with certain benefits including improved stability, enhanced intracellular uptake, prolonged pharmacological effect, enhanced bioavailability, reduced side effects, and improved patient compliance. Herein, we review the principles of the particle engineering technologies based on bottom-up approach and present the important formulation and process parameters that influence the critical quality attributes with some mathematical models. Subsequently, various nano- and microparticle engineering technologies used to formulate or process pharmaceutical biologic entities are reviewed. Lastly, an array of commercialized products of pharmaceutical biologics accomplished based on various particle engineering technologies are presented and the challenges in the development of particulate delivery systems for pharmaceutical biologics are discussed.
Collapse
Affiliation(s)
- Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Chengqian Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
11
|
Hariyadi DM, Islam N. Current Status of Alginate in Drug Delivery. Adv Pharmacol Pharm Sci 2020; 2020:8886095. [PMID: 32832902 PMCID: PMC7428837 DOI: 10.1155/2020/8886095] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Alginate is one of the natural polymers that are often used in drug- and protein-delivery systems. The use of alginate can provide several advantages including ease of preparation, biocompatibility, biodegradability, and nontoxicity. It can be applied to various routes of drug administration including targeted or localized drug-delivery systems. The development of alginates as a selected polymer in various delivery systems can be adjusted depending on the challenges that must be overcome by drug or proteins or the system itself. The increased effectiveness and safety of sodium alginate in the drug- or protein-delivery system are evidenced by changing the physicochemical characteristics of the drug or proteins. In this review, various routes of alginate-based drug or protein delivery, the effectivity of alginate in the stem cells, and cell encapsulation have been discussed. The recent advances in the in vivo alginate-based drug-delivery systems as well as their toxicities have also been reviewed.
Collapse
Affiliation(s)
- Dewi Melani Hariyadi
- Pharmaceutics Department, Faculty of Pharmacy, Airlangga University, Nanizar Zaman Joenoes Building, Jl. Mulyorejo Campus C, Surabaya 60115, Indonesia
| | - Nazrul Islam
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Abstract
Growth factors are powerful molecules that regulate cellular growth, proliferation, healing, and cellular differentiation. A delivery matrix that incorporates growth factors with high loading efficiencies, controls their release, and maintains bioactivity would be a powerful tool for regenerative medicine. Alginate has several unique properties that make it an excellent platform for the delivery of proteins. Mild gelling conditions can minimize the risk of protein denaturation; moreover, alginate can serve as protection from degradation until protein release. Various modifications have been proposed to tune alginate binding and release proteins, simultaneously adjusting alginate degradability, mechanical stiffness, swelling, gelation properties and cell affinity. The primary objective of this article is to review the literature related to recent advances in the application of alginate matrices in protein delivery in regenerative medicine. A special emphasis is put on the relevance of delivery of growth factors and chemokine.
Collapse
Affiliation(s)
- E. WAWRZYŃSKA
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | | |
Collapse
|
13
|
Dry powder inhalers: An overview of the in vitro dissolution methodologies and their correlation with the biopharmaceutical aspects of the drug products. Eur J Pharm Sci 2018; 113:18-28. [DOI: 10.1016/j.ejps.2017.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 11/17/2022]
|
14
|
|
15
|
Lee DH, Park HM, No HK, Prinyawiwatkul W, Hong JH. Physicochemical properties and storage stability of spray-dried soya bean sprout extract. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dae-Hoon Lee
- Department of Food Science and Technology; Catholic University of Daegu; Gyeongsan 38430 South Korea
| | - Hye-Mi Park
- Department of Food Science and Technology; Catholic University of Daegu; Gyeongsan 38430 South Korea
| | - Hong Kyoon No
- Department of Food Science and Technology; Catholic University of Daegu; Gyeongsan 38430 South Korea
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences; Louisiana State University Agricultural Center; Baton Rouge LA 70803-4200 USA
| | - Joo-Heon Hong
- Department of Food Science and Technology; Catholic University of Daegu; Gyeongsan 38430 South Korea
| |
Collapse
|
16
|
Zhang B, Yang T, Wang Q, Zhang G, Huo J, Huang J, Wang L. Fabrication of uniform alginate-agarose microcapsules loading FeSO4 using water-oil-water-oil multiple emulsions system combined with premix membrane emulsification technique. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.03.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Soluble vitamins (vitamin B12 and vitamin C) microencapsulated with different biopolymers by a spray drying process. POWDER TECHNOL 2016. [DOI: 10.1016/j.powtec.2015.11.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Woitovich Valetti N, Picó G. Adsorption isotherms, kinetics and thermodynamic studies towards understanding the interaction between cross-linked alginate-guar gum matrix and chymotrypsin. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1012-1013:204-10. [DOI: 10.1016/j.jchromb.2016.01.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 01/14/2016] [Accepted: 01/20/2016] [Indexed: 01/21/2023]
|
19
|
Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm 2015; 496:173-90. [DOI: 10.1016/j.ijpharm.2015.10.057] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/11/2022]
|
20
|
Elsayed I, AbouGhaly MHH. Inhalable nanocomposite microparticles: preparation, characterization and factors affecting formulation. Expert Opin Drug Deliv 2015; 13:207-22. [DOI: 10.1517/17425247.2016.1102224] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Reddy N, Reddy R, Jiang Q. Crosslinking biopolymers for biomedical applications. Trends Biotechnol 2015; 33:362-9. [PMID: 25887334 DOI: 10.1016/j.tibtech.2015.03.008] [Citation(s) in RCA: 346] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 02/07/2023]
Abstract
Biomaterials made from proteins, polysaccharides, and synthetic biopolymers are preferred but lack the mechanical properties and stability in aqueous environments necessary for medical applications. Crosslinking improves the properties of the biomaterials, but most crosslinkers either cause undesirable changes to the functionality of the biopolymers or result in cytotoxicity. Glutaraldehyde, the most widely used crosslinking agent, is difficult to handle and contradictory views have been presented on the cytotoxicity of glutaraldehyde-crosslinked materials. Recently, poly(carboxylic acids) that can crosslink in both dry and wet conditions have been shown to provide the desired improvements in tensile properties, increase in stability under aqueous conditions, and also promote cell attachment and proliferation. Green chemicals and newer crosslinking approaches are necessary to obtain biopolymeric materials with properties desired for medical applications.
Collapse
Affiliation(s)
- Narendra Reddy
- Center for Emerging Technologies, Jain University, Jakkasandra Post, Ramanagara District, Bengaluru 562112, India.
| | - Roopa Reddy
- Center for Emerging Technologies, Jain University, Jakkasandra Post, Ramanagara District, Bengaluru 562112, India
| | - Qiuran Jiang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, P.R. China; Department of Technical Textiles, College of Textiles, Donghua University, Shanghai, P.R. China
| |
Collapse
|
22
|
Recent advances in controlled pulmonary drug delivery. Drug Discov Today 2015; 20:380-9. [DOI: 10.1016/j.drudis.2014.09.020] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/12/2014] [Accepted: 09/23/2014] [Indexed: 12/18/2022]
|
23
|
Yang J, Han S, Zheng H, Dong H, Liu J. Preparation and application of micro/nanoparticles based on natural polysaccharides. Carbohydr Polym 2015; 123:53-66. [PMID: 25843834 DOI: 10.1016/j.carbpol.2015.01.029] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 12/13/2014] [Accepted: 01/16/2015] [Indexed: 02/08/2023]
Abstract
Polysaccharides have attracted more and more attentions and been recognized to be the most promising materials in recent years because of their outstanding merits such as easily available, non-toxic, biocompatible, biodegradable, and easily modified. Considerable research efforts have been directed toward developing polysaccharides-based micro/nanoparticles (PM/NPs). The new major studies of PM/NPs over the past few years are outlined in this review. Methods of preparation, including self-assembly, ionic-gelation, complex coacervation, emulsification, and desolvation method and some others, are summarized. Different applications of PM/NPs in the field of drug-delivery system are highlighted. Besides, another novel application of PM/NPs that are used as emulsifiers to stabilize Pickering emulsion is also introduced. These environmental-friendly particle emulsifiers have received reasonable attention due to their novel applications, especially in food, cosmetics, and pharmaceutics. From literature surveys, we realized that studies on PM/NP systems for different applications have increased rapidly. Hence, the present review is timely.
Collapse
Affiliation(s)
- Jisheng Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Suya Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Haicheng Zheng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Hongbiao Dong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jiubing Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
24
|
Abulateefeh SR, Khanfar MA, Al Bakain RZ, Taha MO. Synthesis and characterization of new derivatives of alginic acid and evaluation of their iron(III)-crosslinked beads as potential controlled release matrices. Pharm Dev Technol 2014; 19:856-867. [PMID: 24032476 DOI: 10.3109/10837450.2013.836222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT The excellent gelling and safety profiles of alginic acid combined, however, with drawbacks of its ionotropically crosslinked beads (i.e. their quick release of loaded drugs) prompted us to chemically modify alginic acid. OBJECTIVE Alginic acid was chemically conjugated with four amines of varying hydrophilic-hydrophobic properties (i.e. tris(hydroxymethyl)methyl-, allyl-, benzyl- or pentyl-amines) in an attempt to enhance the drug release profiles from respective metal crosslinked beads. MATERIALS AND METHODS Chemical conjugation procedures were performed using dicyclohexylcarbodiimide as a coupling agent and the resulting new derivatives were characterized using proton nuclear magnetic resonance ((1)H NMR), infrared (IR) spectroscopy and differential scanning calorimetry (DSC). These modified polymers were used to prepare iron (III)-crosslinked beads loaded with folic acid as model drug, which were tested in vitro to assess their folic acid release profiles. RESULTS AND DISCUSSION Interestingly, the resulting beads accessed enteric release kinetics, with tris(hydroxymethyl)methyl-amide alginic conjugate producing most pronounced enteric profile. CONCLUSION The results suggest the possibility of achieving controlled drug release from alginate-based beads via facile chemical modification of alginic acid.
Collapse
Affiliation(s)
- Samer R Abulateefeh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy
| | | | | | | |
Collapse
|
25
|
Microencapsulation of β-galactosidase with different biopolymers by a spray-drying process. Food Res Int 2014; 64:134-140. [DOI: 10.1016/j.foodres.2014.05.057] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/24/2014] [Accepted: 05/30/2014] [Indexed: 11/23/2022]
|
26
|
Loira-Pastoriza C, Todoroff J, Vanbever R. Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev 2014; 75:81-91. [PMID: 24915637 DOI: 10.1016/j.addr.2014.05.017] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/15/2014] [Accepted: 05/28/2014] [Indexed: 01/09/2023]
Abstract
Drug delivery to the lungs by inhalation offers a targeted drug therapy for respiratory diseases. However, the therapeutic efficacy of inhaled drugs is limited by their rapid clearance in the lungs. Carriers providing sustained drug release in the lungs can improve therapeutic outcomes of inhaled medicines because they can retain the drug load within the lungs and progressively release the drug locally at therapeutic levels. This review presents the different formulation strategies developed to control drug release in the lungs including microparticles and the wide array of nanomedicines. Large and porous microparticles offer excellent aerodynamic properties. Their large geometric size reduces their uptake by alveolar macrophages, making them a suitable carrier for sustained drug release in the lungs. Similarly, nanocarriers present significant potential for prolonged drug release in the lungs because they largely escape uptake by lung-surface macrophages and can remain in the pulmonary tissue for weeks. They can be embedded in large and porous microparticles in order to facilitate their delivery to the lungs. Conjugation of drugs to polymers as polyethylene glycol can be particularly beneficial to sustain the release of proteins in the lungs as it allows high protein loading. Drug conjugates can be readily delivered to respiratory airways by any current nebulizer device. Nonetheless, liposomes represent the formulation most advanced in clinical development. Liposomes can be prepared with lipids endogenous to the lungs and are particularly safe. Their composition can be adjusted to modulate drug release and they can encapsulate both hydrophilic and lipophilic compounds with high drug loading.
Collapse
Affiliation(s)
- Cristina Loira-Pastoriza
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Julie Todoroff
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Rita Vanbever
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
27
|
Spray-dried alginate microparticles carrying caffeine-loaded and potentially bioactive nanoparticles. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.05.040] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
Ceschan NE, Bucalá V, Ramírez-Rigo MV. New alginic acid–atenolol microparticles for inhalatory drug targeting. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 41:255-66. [DOI: 10.1016/j.msec.2014.04.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/19/2014] [Accepted: 04/18/2014] [Indexed: 12/21/2022]
|
29
|
Development of Budesonide Loaded Biopolymer Based Dry Powder Inhaler: Optimization, In Vitro Deposition, and Cytotoxicity Study. JOURNAL OF PHARMACEUTICS 2014; 2014:795371. [PMID: 26556201 PMCID: PMC4590799 DOI: 10.1155/2014/795371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/02/2014] [Accepted: 05/18/2014] [Indexed: 12/20/2022]
Abstract
The progress in the development of DPI technology has boosted the use of sensitive drug molecules for lung diseases. However, delivery of these molecules from conventional DPI to the active site still poses a challenge with respect to deposition efficiency in the lung. At same time, serious systemic side effects of drugs have become a cause for concern. The developed budesonide loaded biopolymer based controlled release DPI had shown maximum in vitro lung deposition with least toxicity. The subject of present study, lactose-free budesonide loaded biopolymer based DPI, further corroborates the great potential of antiasthmatic drugs. This technology is expected to revolutionize the approaches towards enhanced therapeutic delivery of prospective drugs.
Collapse
|
30
|
Abstract
A significant number of research articles have focused on pulmonary delivery as an alternative administration route owing to no first-pass metabolism, low protease activity, thin epithelium barrier and large surface area in the lung system. Controlled release in the pulmonary delivery system further reduces loading dose, frequency of dosing and systemic side effects, and also increases duration of action and patient compliance. Compared with other microparticles used in controlled-release pulmonary administration, hydrogels (3D polymeric matrix networks) have recently been investigated due to their swelling and mucoadhesive properties that could help bypass pulmonary delivery barriers. This review introduces controlled-release drug delivery to the lung, followed by a summary of currently available approaches for controlled-release pulmonary drug delivery. Lastly, the origin, advantages, detailed applications and concerns of hydrogels in pulmonary delivery are discussed.
Collapse
|
31
|
Silva AE, Oliveira EE, Gomes MCS, Marcelino HR, Silva KCH, Souza BS, Nagashima T, Ayala AP, Oliveira AG, Egito ESTD. Producing xylan/Eudragit® S100-based microparticles by chemical and physico-mechanical approaches as carriers for 5-aminosalicylic acid. J Microencapsul 2013; 30:787-95. [DOI: 10.3109/02652048.2013.788087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Microencapsulated chitosan–dextran sulfate nanoparticles for controled delivery of bioactive molecules and cells in bone regeneration. POLYMER 2013. [DOI: 10.1016/j.polymer.2012.10.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|