1
|
Ryabchevskaya EM, Granovskiy DL, Evtushenko EA, Ivanov PA, Kondakova OA, Nikitin NA, Karpova OV. Designing Stable Bacillus anthracis Antigens with a View to Recombinant Anthrax Vaccine Development. Pharmaceutics 2022; 14:pharmaceutics14040806. [PMID: 35456639 PMCID: PMC9025368 DOI: 10.3390/pharmaceutics14040806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Anthrax is a disease caused by Bacillus anthracis that affects mammals, including humans. Recombinant B. anthracis protective antigen (rPA) is the most common basis for modern anthrax vaccine candidates. However, this protein is characterised by low stability due to proteolysis and deamidation. Here, for the first time, two modification variants leading to full-size rPA stabilisation have been implemented simultaneously, through deamidation-prone asparagine residues substitution and by inactivation of proteolysis sites. Obtained modified rPA (rPA83m) has been demonstrated to be stable in various temperature conditions. Additionally, rPA1+2 containing PA domains I and II and rPA3+4 containing domains III and IV, including the same modifications, have been shown to be stable as well. These antigens can serve as the basis for a vaccine, since the protective properties of PA can be attributed to individual PA domains. The stability of each of three modified anthrax antigens has been considerably improved in compositions with tobacco mosaic virus-based spherical particles (SPs). rPA1+2/rPA3+4/rPA83m in compositions with SPs have maintained their antigenic specificity even after 40 days of incubation at +37 °C. Considering previously proven adjuvant properties and safety of SPs, their compositions with rPA83m/rPA1+2/rPA3+4 in any combinations might be suitable as a basis for new-generation anthrax vaccines.
Collapse
|
2
|
van der Kant R, van Durme J, Rousseau F, Schymkowitz J. SolubiS: Optimizing Protein Solubility by Minimal Point Mutations. Methods Mol Biol 2019; 1873:317-333. [PMID: 30341620 DOI: 10.1007/978-1-4939-8820-4_21] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein solubility is adapted to endogeneous protein abundance in the cell where protein folding is also assisted by multiple chaperones. During recombinant protein production, purification and storage proteins are frequently handled at concentrations that are several orders of magnitude above their physiological concentration, often resulting in protein aggregation. Here we describe SolubiS, a method allowing for (1) detection of aggregation prone linear segments within a protein sequence and (2) identification of mutations that abolish the aggregation propensity of these segments without affecting the thermodynamic stability of the protein. Provided the availability of structural information this method is applicable to all globular proteins including antibodies, resulting both in increased in vitro protein solubility and in better protein production yields.
Collapse
Affiliation(s)
- Rob van der Kant
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
| | - Joost van Durme
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Harris JR, Soliakov A, Watkinson A, Lakey JH. Recombinant anthrax protective antigen: Observation of aggregation phenomena by TEM reveals specific effects of sterols. Micron 2016; 93:1-8. [PMID: 27883989 DOI: 10.1016/j.micron.2016.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
Abstract
Negatively stained transmission electron microscope images are presented that depict the aggregation of recombinant anthrax protective antigen (rPA83 monomer and the PA63 prepore oligomer) under varying in vitro biochemical conditions. Heat treatment (50°C) of rPA83 produced clumped fibrils, but following heating the PA63 prepore formed disordered aggregates. Freeze-thaw treatment of the PA63 prepore generated linear flexuous aggregates of the heptameric oligomers. Aqueous suspensions of cholesterol microcrystals were shown to bind small rPA83 aggregates at the edges of the planar bilayers. With PA63 a more discrete binding of the prepores to the crystalline cholesterol bilayer edges occurs. Sodium deoxycholate (NaDOC) treatment of rPA83 produced quasi helical fibrillar aggregate, similar but not identical to that produced by heat treatment. Remarkably, NaDOC treatment of the PA63 prepores induced transformation into pores, with a characteristic extended ß-barrel. The PA63 pores aggregated as dimers, that aggregated further as angular chains and closed structures in higher NaDOC concentrations. The significance of the sterol interaction is discussed in relation to its likely importance for PA action in vivo.
Collapse
Affiliation(s)
- J Robin Harris
- Institute of Zoology, University of Mainz, 55099 Mainz, Germany.
| | - Andrei Soliakov
- Fujifilm Diosynth Biotechnologies, Belasis Avenue, Billingham TS23 1LH, UK
| | - Allan Watkinson
- Envigo, Wooley Road, Alcon bury, Huntingdon, Cambridgeshire PE28 4HS, UK
| | - Jeremy H Lakey
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| |
Collapse
|
4
|
Van Durme J, De Baets G, Van Der Kant R, Ramakers M, Ganesan A, Wilkinson H, Gallardo R, Rousseau F, Schymkowitz J. Solubis: a webserver to reduce protein aggregation through mutation. Protein Eng Des Sel 2016; 29:285-9. [PMID: 27284085 DOI: 10.1093/protein/gzw019] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 11/12/2022] Open
Abstract
Protein aggregation is a major factor limiting the biotechnological and therapeutic application of many proteins, including enzymes and monoclonal antibodies. The molecular principles underlying aggregation are by now sufficiently understood to allow rational redesign of natural polypeptide sequences for decreased aggregation tendency, and hence potentially increased expression and solubility. Given that aggregation-prone regions (APRs) tend to contribute to the stability of the hydrophobic core or to functional sites of the protein, mutations in these regions have to be carefully selected in order not to disrupt protein structure or function. Therefore, we here provide access to an automated pipeline to identify mutations that reduce protein aggregation by reducing the intrinsic aggregation propensity of the sequence (using the TANGO algorithm), while taking care not to disrupt the thermodynamic stability of the native structure (using the empirical force-field FoldX). Moreover, by providing a plot of the intrinsic aggregation propensity score of APRs corrected by the local stability of that region in the folded structure, we allow users to prioritize those regions in the protein that are most in need of improvement through protein engineering. The method can be accessed at http://solubis.switchlab.org/.
Collapse
Affiliation(s)
- Joost Van Durme
- VIB Switch Laboratory, VIB, Leuven, Belgium Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Greet De Baets
- VIB Switch Laboratory, VIB, Leuven, Belgium Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Rob Van Der Kant
- VIB Switch Laboratory, VIB, Leuven, Belgium Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Meine Ramakers
- VIB Switch Laboratory, VIB, Leuven, Belgium Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Ashok Ganesan
- VIB Switch Laboratory, VIB, Leuven, Belgium Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Hannah Wilkinson
- VIB Switch Laboratory, VIB, Leuven, Belgium Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Rodrigo Gallardo
- VIB Switch Laboratory, VIB, Leuven, Belgium Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Frederic Rousseau
- VIB Switch Laboratory, VIB, Leuven, Belgium Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- VIB Switch Laboratory, VIB, Leuven, Belgium Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Structural hot spots for the solubility of globular proteins. Nat Commun 2016; 7:10816. [PMID: 26905391 PMCID: PMC4770091 DOI: 10.1038/ncomms10816] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 01/25/2016] [Indexed: 12/25/2022] Open
Abstract
Natural selection shapes protein solubility to physiological requirements and recombinant applications that require higher protein concentrations are often problematic. This raises the question whether the solubility of natural protein sequences can be improved. We here show an anti-correlation between the number of aggregation prone regions (APRs) in a protein sequence and its solubility, suggesting that mutational suppression of APRs provides a simple strategy to increase protein solubility. We show that mutations at specific positions within a protein structure can act as APR suppressors without affecting protein stability. These hot spots for protein solubility are both structure and sequence dependent but can be computationally predicted. We demonstrate this by reducing the aggregation of human α-galactosidase and protective antigen of Bacillus anthracis through mutation. Our results indicate that many proteins possess hot spots allowing to adapt protein solubility independently of structure and function. Mutations in aggregation prone regions of recombinant proteins often improve their solubility, although they might cause negative effects on their structure and function. Here, the authors identify proteins hot spots that can be exploited to optimize solubility without compromising stability.
Collapse
|
6
|
Ganesan A, Debulpaep M, Wilkinson H, Van Durme J, De Baets G, Jonckheere W, Ramakers M, Ivarsson Y, Zimmermann P, Van Eldere J, Schymkowitz J, Rousseau F. Selectivity of Aggregation-Determining Interactions. J Mol Biol 2015; 427:236-47. [DOI: 10.1016/j.jmb.2014.09.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/26/2014] [Accepted: 09/02/2014] [Indexed: 01/11/2023]
|
7
|
Lassner P, Adler M, Lee G. Formation of Insoluble Particulates in a Spray-Dried F(ab’)2 Fragment. J Pharm Sci 2014; 103:1021-31. [DOI: 10.1002/jps.23891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/16/2014] [Accepted: 01/16/2014] [Indexed: 11/12/2022]
|
8
|
Increasing the potency of an alhydrogel-formulated anthrax vaccine by minimizing antigen-adjuvant interactions. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1659-68. [PMID: 23986317 DOI: 10.1128/cvi.00320-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aluminum salts are the most widely used vaccine adjuvants, and phosphate is known to modulate antigen-adjuvant interactions. Here we report an unexpected role for phosphate buffer in an anthrax vaccine (SparVax) containing recombinant protective antigen (rPA) and aluminum oxyhydroxide (AlOH) adjuvant (Alhydrogel). Phosphate ions bind to AlOH to produce an aluminum phosphate surface with a reduced rPA adsorption coefficient and binding capacity. However, these effects continued to increase as the free phosphate concentration increased, and the binding of rPA changed from endothermic to exothermic. Crucially, phosphate restored the thermostability of bound rPA so that it resembled the soluble form, even though it remained tightly bound to the surface. Batches of vaccine with either 0.25 mM (subsaturated) or 4 mM (saturated) phosphate were tested in a disease model at batch release, which showed that the latter was significantly more potent. Both formulations retained their potency for 3 years. The strongest aluminum adjuvant effects are thus likely to be via weakly attached or easily released native-state antigen proteins.
Collapse
|
9
|
Manish M, Rahi A, Kaur M, Bhatnagar R, Singh S. A single-dose PLGA encapsulated protective antigen domain 4 nanoformulation protects mice against Bacillus anthracis spore challenge. PLoS One 2013; 8:e61885. [PMID: 23637922 PMCID: PMC3639271 DOI: 10.1371/journal.pone.0061885] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/14/2013] [Indexed: 12/11/2022] Open
Abstract
Bacillus anthracis, the etiological agent of anthrax, is a major bioterror agent. Vaccination is the most effective prophylactic measure available against anthrax. Currently available anthrax vaccines have issues of the multiple booster dose requirement, adjuvant-associated side effects and stability. Use of biocompatible and biodegradable nanoparticles to deliver the antigens to immune cells could solve the issues associated with anthrax vaccines. We hypothesized that the delivery of a stable immunogenic domain 4 of protective antigen (PAD4) of Bacillus anthracis encapsulated in a poly (lactide-co-glycolide) (PLGA)--an FDA approved biocompatible and biodegradable material, may alleviate the problems of booster dose, adjuvant toxicity and stability associated with anthrax vaccines. We made a PLGA based protective antigen domain 4 nanoparticle (PAD4-NP) formulation using water/oil/water solvent evaporation method. Nanoparticles were characterized for antigen content, morphology, size, polydispersity and zeta potential. The immune correlates and protective efficacy of the nanoparticle formulation was evaluated in Swiss Webster outbred mice. Mice were immunized with single dose of PAD4-NP or recombinant PAD4. The PAD4-NP elicited a robust IgG response with mixed IgG1 and IgG2a subtypes, whereas the control PAD4 immunized mice elicited low IgG response with predominant IgG1 subtype. The PAD4-NP generated mixed Th1/Th2 response, whereas PAD4 elicited predominantly Th2 response. When we compared the efficacy of this single-dose vaccine nanoformulation PAD4-NP with that of the recombinant PAD4 in providing protective immunity against a lethal challenge with Bacillus anthracis spores, the median survival of PAD4-NP immunized mice was 6 days as compared to 1 day for PAD4 immunized mice (p<0.001). Thus, we demonstrate, for the first time, the possibility of the development of a single-dose and adjuvant-free protective antigen based anthrax vaccine in the form of PAD4-NP. Further work in this direction may produce a better and safer candidate anthrax vaccine.
Collapse
Affiliation(s)
- Manish Manish
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Amit Rahi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Manpreet Kaur
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Samer Singh
- Special Centre for Nano Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
10
|
D'Souza AJM, Mar KD, Huang J, Majumdar S, Ford BM, Dyas B, Ulrich RG, Sullivan VJ. Rapid Deamidation of Recombinant Protective Antigen when Adsorbed on Aluminum Hydroxide Gel Correlates with Reduced Potency of Vaccine. J Pharm Sci 2013; 102:454-61. [DOI: 10.1002/jps.23422] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/13/2012] [Accepted: 11/28/2012] [Indexed: 12/26/2022]
|