1
|
Liu Y, Feng A, Li F, Zhao L, Cai Q, Li D, HuaixiaYang. An electrochemical biosensor using AuNPs-Ti 3C 2Tx and ARGET ATRP reactions as signal amplification strategies for ultra-sensitive detection of HER2 protein. Bioelectrochemistry 2025; 165:108970. [PMID: 40120226 DOI: 10.1016/j.bioelechem.2025.108970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
Human epidermal growth factor receptor 2 (HER2) status is an important factor in evaluating the prognosis of breast cancer patients. Therefore, it is particularly important to develop a simple and sensitive method for the detection of HER2-positive breast cancer. Here, an ultra-sensitive electrochemical biosensor for detecting HER2-specific proteins was assembled using gold nanoparticles and Two-dimensional carbides (AuNPs-Ti3C2Tx) as a conducting substrate. The prepared AuNPs-Ti3C2Tx not only has good electrical conductivity and strong electrochemical signal output, but also provides a large number of active sites for the AuS bonds assembly aptamer. In addition, the antibodies-modified functionalized graphene oxide (GO) as a carrier platform, which provides an additional boost for the detection of trace targets with high sensitivity under optimal conditions. Afterwards,HER2 protein was detected by signal amplification effect of AuNPs-Ti3C2Tx and functionalized GO combined with Electron transfer activated regeneration catalyst atomic transfer radical polymerization (ARGET ATRP). In the range of 1 to 105 ng·mL-1, there was a good linear relationship between the HER2 concentration and the signal intensity, with a limit of detection of 0.19 pg·mL-1. Moreover, this method has good selectivity and stability, and then still maintains good detection performance and strong anti-interference ability in the complex environment of normal human serum, which is expected to be applied in clinical application.
Collapse
Affiliation(s)
- Yanju Liu
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Aozi Feng
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China
| | - Fengzhi Li
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Liying Zhao
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Qiyong Cai
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Daoxiang Li
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - HuaixiaYang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Well-Defined pH-Sensitive Self-Assembled Triblock Copolymer-Based Crosslinked Micelles for Efficient Cancer Chemotherapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238153. [PMID: 36500245 PMCID: PMC9735831 DOI: 10.3390/molecules27238153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Delivery of chemotherapeutics to cancer cells using polymeric micelles is a promising strategy for cancer treatment. However, limited stability of micelles, premature drug release and off-target effect are the major obstacles that restrict the utilization of polymeric micelles as effective drug delivery systems. In this work, we addressed these issues through the innovative design of targeted pH-sensitive crosslinked polymeric micelles for chemotherapeutic delivery. A well-defined triblock copolymer, poly(ethylene glycol)-b-poly(2-hydroxyethyl methacrylate)-b-poly(butyl acrylate) (PEG-b-PHEMA-b-PBA), was synthesized by living radical polymerization, and then modified by using 4-pentenoic anhydride to incorporate pendant crosslinkable alkene groups in the middle block. The resulting copolymer underwent self-assembly in aqueous solution to form non-crosslinked micelles (NCMs). Subsequently, intramicellar thiol-ene crosslinking was performed by using 1,4-butanediol bis(3-mercaptopropionate) to give crosslinked micelles (CMs) with pH-sensitive crosslinks. The targeted CM (cRGD-DOX10-CM5) was readily prepared by using tumor-targeting ligand cyclo(Arg-Gly-Asp-D-Phe-Cys) (cRGD) together with the 1,4-butanediol bis(3-mercaptopropionate) during the crosslinking step. The study of cumulative DOX release revealed the pH-sensitive feature of drug release from these CMs. An in vitro MTT assay revealed that NCMs and CMs are biocompatible with MCF 10A cells, and the samples exhibited significant therapeutic efficiency as compared to free DOX. Cellular uptake studies confirmed higher uptake of cRGD-DOX10-CM5 by MCF 10A cancer cells via cRGD-receptor-mediated endocytosis as compared to the corresponding analogues without cRGD. These results indicate that such pH-responsive crosslinked PEG-b-PHEMA-b-PBA-based micelles are therapeutically effective against cancer cells and hold remarkable promise to act as smart drug delivery systems for cancer therapy.
Collapse
|
3
|
Surmacz K, Błoniarz P, Chmielarz P. Coffee Beverage: A New Strategy for the Synthesis of Polymethacrylates via ATRP. Molecules 2022; 27:molecules27030840. [PMID: 35164104 PMCID: PMC8840111 DOI: 10.3390/molecules27030840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Coffee, the most popular beverage in the 21st century society, was tested as a reaction environment for activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) without an additional reducing agent. Two blends were selected: pure Arabica beans and a proportional blend of Arabica and Robusta beans. The use of the solution received from the mixture with Robusta obtained a high molecular weight polymer product in a short time while maintaining a controlled structure of the synthesized product. Various monomers with hydrophilic characteristics, i.e., 2-(dimethylamino)ethyl methacrylate (DMAEMA), oligo(ethylene glycol) methyl ether methacrylate (OEGMA500), and glycidyl methacrylate (GMA), were polymerized. The proposed concept was carried out at different concentrations of coffee grounds, followed by the determination of the molar concentration of caffeine in applied beverages using DPV and HPLC techniques.
Collapse
Affiliation(s)
- Karolina Surmacz
- Doctoral School of Engineering and Technical Sciences, Rzeszow University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszow, Poland;
| | - Paweł Błoniarz
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland;
| | - Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland;
- Correspondence:
| |
Collapse
|
4
|
Peters JT, Wechsler ME, Peppas NA. Advanced biomedical hydrogels: molecular architecture and its impact on medical applications. Regen Biomater 2021; 8:rbab060. [PMID: 34925879 PMCID: PMC8678442 DOI: 10.1093/rb/rbab060] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogels are cross-linked polymeric networks swollen in water, physiological aqueous solutions or biological fluids. They are synthesized by a wide range of polymerization methods that allow for the introduction of linear and branched units with specific molecular characteristics. In addition, they can be tuned to exhibit desirable chemical characteristics including hydrophilicity or hydrophobicity. The synthesized hydrogels can be anionic, cationic, or amphiphilic and can contain multifunctional cross-links, junctions or tie points. Beyond these characteristics, hydrogels exhibit compatibility with biological systems, and can be synthesized to render systems that swell or collapse in response to external stimuli. This versatility and compatibility have led to better understanding of how the hydrogel's molecular architecture will affect their physicochemical, mechanical and biological properties. We present a critical summary of the main methods to synthesize hydrogels, which define their architecture, and advanced structural characteristics for macromolecular/biological applications.
Collapse
Affiliation(s)
- Jonathan T Peters
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Marissa E Wechsler
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Surgery and Perioperative Care, and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, 1601 Trinity St., Bldg. B, Austin, TX 78712, USA
| |
Collapse
|
5
|
Spencer DS, Shodeinde AB, Beckman DW, Luu BC, Hodges HR, Peppas NA. Cytocompatibility, membrane disruption, and siRNA delivery using environmentally responsive cationic nanogels. J Control Release 2021; 332:608-619. [PMID: 33675879 PMCID: PMC8089052 DOI: 10.1016/j.jconrel.2021.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022]
Abstract
Advances in the formulation of nucleic acid-based therapeutics have rendered them a promising avenue for treating diverse ailments. Nonetheless, clinical translation of these therapies is hindered by a lack of strategies to ensure the delivery of these nucleic acids in a safe, efficacious manner with the required spatial and temporal control. To this aim, environmentally responsive hydrogels are of interest due to their ability to provide the desired characteristics of a protective carrier for siRNA delivery. Previous work in our laboratory has demonstrated the ability to synthesize nanoparticle formulations with targeted pKa, swelling, and surface PEG density. Here, a library of nanoparticle formulations was assessed on their in vitro toxicity, hemolytic capacity, siRNA loading, and gene-silencing efficacy. Successful candidates exhibited the lowest degrees of cytotoxicity, pH-dependent membrane disruption potential, the highest siRNA loading, and the highest transfection efficacies.
Collapse
Affiliation(s)
- David S Spencer
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX 78712, USA
| | - Aaliyah B Shodeinde
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX 78712, USA
| | - David W Beckman
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Bryan C Luu
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Hannah R Hodges
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA; Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX 78712, USA; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave. Stop A1900, Austin, TX 78712, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX 78712, USA; Departments of Pediatrics, Surgery, and Perioperative Care, Dell Medical School, 1601 Trinity St., Bldg. B, Stop Z0800, Austin, TX 78712, USA.
| |
Collapse
|
6
|
Spencer DS, Shodeinde AB, Beckman DW, Luu BC, Hodges HR, Peppas NA. Biodegradable cationic nanogels with tunable size, swelling and pK a for drug delivery. Int J Pharm 2020; 588:119691. [PMID: 32721561 DOI: 10.1016/j.ijpharm.2020.119691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Cationic polymers have garnered significant interest for their utility in intracellular drug delivery and gene therapy. However, due to their associated toxicities, novel synthesis approaches must be explored to develop materials that are biocompatible. The novel library of nanoparticles synthesized in this study exhibit tunable hydrodynamic diameters, composition and pH-responsive properties as a function of synthesis parameters. In addition, differences in the responsiveness of these nanoparticles under different pH conditions affords greater control over intracellular drug release.
Collapse
Affiliation(s)
- D S Spencer
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX 78712, USA
| | - A B Shodeinde
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX 78712, USA
| | - D W Beckman
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX 78712, USA
| | - B C Luu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - H R Hodges
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - N A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX 78712, USA; Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX 78712, USA; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave. Stop A1900, Austin, TX 78712, USA; Department of Surgery and Perioperative Care, Dell Medical School, 1601 Trinity St., Bldg. B, Stop Z0800, Austin, TX 78712, USA
| |
Collapse
|
7
|
Zhang J, Ba Y, Liu Q, Zhao L, Wang D, Yang H, Kong J. CuBr 2/EDTA-mediated ATRP for ultrasensitive fluorescence detection of lung cancer DNA. J Adv Res 2020; 22:77-84. [PMID: 31956444 PMCID: PMC6961214 DOI: 10.1016/j.jare.2019.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 10/28/2022] Open
Abstract
In this paper, we reported a system for the ultrasensitive fluorescence detection of cytokeratin fragment antigen 21-1 DNA (CYFRA21-1 DNA) for the early diagnosis of lung cancer. The approach used electron transfer atom transfer radical polymerization (ARGET-ATRP) with ethylenediaminetetraacetic acid (EDTA) as the metal ligand. Firstly, thiolated peptide nucleic acid (PNA) was linked to aminated magnetic beads solutions (MBs) by a cross-linking agent and then hybridized with CYFRA21-1 DNA (tDNA). Subsequently, Zr4+ was introduced into the MBs by conjugating with the phosphate group of tDNA, and the initiator of ARGET-ATRP was introduced into via phosphate-Zr4+-carboxylate chemistry. Next, Cu(II)Br/EDTA was reduced to Cu(I)/EDTA by ascorbic acid (AA) to trigger ARGET-ATRP and then a large amount of fluorescein-o-acrylate (FA) molecules were grafted from the surface of the MBs, which amplified significantly the fluorescent signal. Under optimal conditions, a strong linear relationship of tDNA over the range from 0.1 fM to 1 nM (R2 = 0.9988). The limit of detection was as low as 23.8 aM (~143 molecules). The fluorescence detection based on the ARGET-ATRP strategy yielded excellent sensitivity, selectivity, outstanding anti-interference properties, and cost-effectiveness. These results indicated that this strategy has considerable potential for biological detection and early clinical diagnosis.
Collapse
Affiliation(s)
- Jingyu Zhang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450008, PR China
| | - Yanyan Ba
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450008, PR China
| | - Qianrui Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Liying Zhao
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450008, PR China
| | - Dazhong Wang
- People's Hospital of Zhengzhou, Zhengzhou 450008, PR China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450008, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| |
Collapse
|
8
|
Polysaccharide-enhanced ARGET ATRP signal amplification for ultrasensitive fluorescent detection of lung cancer CYFRA 21-1 DNA. Anal Bioanal Chem 2020; 412:2413-2421. [PMID: 32047944 DOI: 10.1007/s00216-020-02394-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/15/2019] [Accepted: 01/07/2020] [Indexed: 12/18/2022]
Abstract
An ultrasensitive fluorescence biosensor for detecting cytokeratin fragment antigen 21-1 (CYFRA 21-1) DNA of non-small cell lung carcinoma (NSCLC) is designed using polysaccharide and activator regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) signal amplification strategy. Thiolated peptide nucleic acid (PNA) is fixed on magnetic nanoparticles (MNPs) by a cross-linking agent and hybridized with CYFRA 21-1 DNA. Hyaluronic acid (HA) is linked to PNA/tDNA heteroduplexes in the form of carboxy-Zr4+-phosphate. Subsequently, multiple 2-bromo-2-methylpropionic acid (BMP) molecules are linked with HA to initiate ARGET ATRP reaction. Finally, a large number of fluorescein o-acrylate (FA) monomers are polymerized on the macro-initiators, and the fluorescence signal is significantly amplified. Under optimal conditions, this biosensor shows a significant linear correlation between the fluorescence intensity and logarithm of CYFRA 21-1 DNA concentration (0.1 fM to 0.1 nM), and the limit of detection is as low as 78 aM. Furthermore, the sensor has a good ability to detect CYFRA 21-1 DNA in serum samples and to recognize mismatched bases. It suggests that the strategy has broad application in early diagnosis by virtue of its high sensitivity and selectivity. Graphical abstract A novel and highly sensitive fluorescence biosensor for quantitatively detecting CYFRA 21-1 DNA via dual signal amplification of hyaluronic acid and ARGET ATRP reaction was developed. This proposed method has a low detection limit, wide detection range, high selectivity, and strong anti-interference.
Collapse
|
9
|
Kang H, Jeong W, Hong D. Antifouling Surface Coating Using Droplet-Based SI-ARGET ATRP of Carboxybetaine under Open-Air Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7744-7750. [PMID: 31117731 DOI: 10.1021/acs.langmuir.9b00822] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The formation of a dense zwitterionic brush through surface-initiated atom transfer radical polymerization (SI-ATRP) is a typical graft-from approach used to achieve antifouling surfaces with high fidelity; however, their air-tightness may cause inconvenience to users. In this context, activator regenerated by electron transfer (ARGET) ATRP is emerging as an alternative surface-coating tool because limited amount of air is allowed to form a dense polymer brush. However, the degree of air tolerance that can ensure a thick polymer brush has not been clearly defined, limiting its practical usage under ambient-air conditions. In this study, we investigated the SI-ARGET ATRP of carboxybetaine (CB) by changing the air conditions, along with the air-related parameters, such as the concentration of the reducing agent, the volume of the polymerization solution (PS), or the solvent composition, and correlated their effects with the poly(CB) thickness. Based on the optimized reaction conditions, a poly(CB) brush with reliable thickness was feasibly formed even under open-air conditions without a degassing step. In addition, a microliter droplet (∼100 μL) of PS was sufficient to proceed with the SI-ARGET ATRP for the covering of a poly(CB) brush on the surface area of interest. By applying an optimized SI-ARGET ATRP of CB, antifouling was feasibly achieved in the surface region of interest using an array to form a large surface area under fully exposed air conditions. In other words, optimized SI-ARGET ATRP enabled the formation of a thick poly(CB) brush on the surfaces of various dimensions under open-air conditions.
Collapse
Affiliation(s)
- Hyeongeun Kang
- Department of Chemistry, Chemistry Institute of Functional Materials , Pusan National University , Busan 46241 , South Korea
| | - Wonwoo Jeong
- Department of Chemistry, Chemistry Institute of Functional Materials , Pusan National University , Busan 46241 , South Korea
| | - Daewha Hong
- Department of Chemistry, Chemistry Institute of Functional Materials , Pusan National University , Busan 46241 , South Korea
| |
Collapse
|
10
|
Mendrek B, Fus A, Klarzyńska K, Sieroń AL, Smet M, Kowalczuk A, Dworak A. Synthesis, Characterization and Cytotoxicity of Novel Thermoresponsive Star Copolymers of N, N'-Dimethylaminoethyl Methacrylate and Hydroxyl-Bearing Oligo(Ethylene Glycol) Methacrylate. Polymers (Basel) 2018; 10:E1255. [PMID: 30961179 PMCID: PMC6401879 DOI: 10.3390/polym10111255] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022] Open
Abstract
Novel, nontoxic star copolymers of N,N-dimethylaminoethyl methacrylate (DMAEMA) and hydroxyl-bearing oligo(ethylene glycol) methacrylate (OEGMA-OH) were synthesized via atom transfer radical polymerization (ATRP) using hyperbranched poly(arylene oxindole) as the macroinitiator. Stars with molar masses from 100,000 g/mol to 257,000 g/mol and with various amounts of OEGMA-OH in the arms were prepared. As these polymers can find applications, e.g., as carriers of nucleic acids, drugs or antibacterial or antifouling agents, in this work, much attention has been devoted to exploring their solution behavior and their stimuli-responsive properties. The behavior of the stars was studied in aqueous solutions under various pH and temperature conditions, as well as in PBS buffer, in Dulbecco's modified Eagle's medium (DMEM) and in organic solvents for comparison. The results indicated that increasing the content of hydrophilic OEGMA-OH units in the arms up to 10 mol% increased the cloud point temperature. For the stars with an OEGMA-OH content of 10 mol%, the thermo- and pH-responsivity was switched off. Since cytotoxicity experiments have shown that the obtained stars are less toxic than homopolymer DMAEMA stars, the presented studies confirmed that the prepared polymers are great candidates for the design of various nanosystems for biomedical applications.
Collapse
Affiliation(s)
- Barbara Mendrek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland.
| | - Agnieszka Fus
- Department of Molecular Biology and Genetics, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland.
| | - Katarzyna Klarzyńska
- Department of Molecular Biology and Genetics, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland.
| | - Aleksander L Sieroń
- Department of Molecular Biology and Genetics, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland.
| | - Mario Smet
- Department of Chemistry, University of Leuven, Celestijnenlaan, 200F, B-3001 Leuven (Heverlee), Belgium.
| | - Agnieszka Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland.
| | - Andrzej Dworak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland.
| |
Collapse
|
11
|
Spencer DS, Luu BC, Beckman DW, Peppas NA. Control of Cationic Nanogel PEGylation in Heterogeneous ARGET ATRP Emulsion Polymerization with PEG Macromonomers. JOURNAL OF POLYMER SCIENCE. PART A, POLYMER CHEMISTRY 2018; 56:1536-1544. [PMID: 30906114 PMCID: PMC6426315 DOI: 10.1002/pola.29035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/14/2018] [Indexed: 12/14/2022]
Abstract
Crosslinked cationic nanoscale networks with hydrophobic cores are an environmentally robust alternative to self-assembled polymeric drug delivery carriers with respect to therapeutic encapsulation and stability to dilution. However, the ability to tune the degree of PEG incorporated into nanogels during synthesis is more challenging. In this work, biodegradable cationic nanogels were synthesized by ARGET ATRP emulsion polymerization in a single step. The density of PEG in the final nanogels ranged from zero to 40 wt % and was dependent on the feed concentration of PEG monomer, surfactant concentration, surfactant hydrophilic-lipophilic balance, and the ratio of cationic to nonionic surfactant. A comprehensive analysis of nanogel material properties as a function of PEG graft density is presented including analysis of composition, monomer conversion, thermal properties, size, surface charge, and degradation. This study provides a robust analysis for the synthesis of degradable cationic nanogels via a controlled radical polymerization with predictable degrees of PEGylation.
Collapse
Affiliation(s)
- David S Spencer
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712
- Institute of Biomaterials Drug Delivery and Regenerative Medicine, The University of Texas at Austin, Austin, Texas 78712
| | - Bryan C Luu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712
| | - David W Beckman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712
- Institute of Biomaterials Drug Delivery and Regenerative Medicine, The University of Texas at Austin, Austin, Texas 78712
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712
- Department of Pediatrics, The University of Texas at Austin, Austin, Texas 78712
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
12
|
Pérez-Luna VH, González-Reynoso O. Encapsulation of Biological Agents in Hydrogels for Therapeutic Applications. Gels 2018; 4:E61. [PMID: 30674837 PMCID: PMC6209244 DOI: 10.3390/gels4030061] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 01/03/2023] Open
Abstract
Hydrogels are materials specially suited for encapsulation of biological elements. Their large water content provides an environment compatible with most biological molecules. Their crosslinked nature also provides an ideal material for the protection of encapsulated biological elements against degradation and/or immune recognition. This makes them attractive not only for controlled drug delivery of proteins, but they can also be used to encapsulate cells that can have therapeutic applications. Thus, hydrogels can be used to create systems that will deliver required therapies in a controlled manner by either encapsulation of proteins or even cells that produce molecules that will be released from these systems. Here, an overview of hydrogel encapsulation strategies of biological elements ranging from molecules to cells is discussed, with special emphasis on therapeutic applications.
Collapse
Affiliation(s)
- Víctor H Pérez-Luna
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, 10 West 33rd Street, Chicago, IL 60616, USA.
| | - Orfil González-Reynoso
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán # 1451, Guadalajara, Jalisco C.P. 44430, Mexico.
| |
Collapse
|
13
|
Wagner AM, Gran MP, Peppas NA. Designing the new generation of intelligent biocompatible carriers for protein and peptide delivery. Acta Pharm Sin B 2018; 8:147-164. [PMID: 29719776 PMCID: PMC5925450 DOI: 10.1016/j.apsb.2018.01.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/11/2022] Open
Abstract
Therapeutic proteins and peptides have revolutionized treatment for a number of diseases, and the expected increase in macromolecule-based therapies brings a new set of challenges for the pharmaceutics field. Due to their poor stability, large molecular weight, and poor transport properties, therapeutic proteins and peptides are predominantly limited to parenteral administration. The short serum half-lives typically require frequent injections to maintain an effective dose, and patient compliance is a growing issue as therapeutic protein treatments become more widely available. A number of studies have underscored the relationship of subcutaneous injections with patient non-adherence, estimating that over half of insulin-dependent adults intentionally skip injections. The development of oral formulations has the potential to address some issues associated with non-adherence including the interference with daily activities, embarrassment, and injection pain. Oral delivery can also help to eliminate the adverse effects and scar tissue buildup associated with repeated injections. However, there are several major challenges associated with oral delivery of proteins and peptides, such as the instability in the gastrointestinal (GI) tract, low permeability, and a narrow absorption window in the intestine. This review provides a detailed overview of the oral delivery route and associated challenges. Recent advances in formulation and drug delivery technologies to enhance bioavailability are discussed, including the co-administration of compounds to alter conditions in the GI tract, the modification of the macromolecule physicochemical properties, and the use of improved targeted and controlled release carriers.
Collapse
Affiliation(s)
- Angela M. Wagner
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
| | - Margaret P. Gran
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nicholas A. Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
- Corresponding author at: McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA. Tel.: +1 512 471 6644; fax: +1 512 471 8227.
| |
Collapse
|
14
|
Visaveliya N, Knauer A, Köhler JM. Application of Polyionic Macromolecules in Micro Flow Syntheses of Nanoparticles. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nikunjkumar Visaveliya
- Department of Physical Chemistry and Microreaction Technology; Institute for Micro- and Nanotechnologies/Institute for Chemistry and Microreaction Technology; Technische Universität Ilmenau; 98693 Ilmenau Germany
| | - Andrea Knauer
- Department of Physical Chemistry and Microreaction Technology; Institute for Micro- and Nanotechnologies/Institute for Chemistry and Microreaction Technology; Technische Universität Ilmenau; 98693 Ilmenau Germany
| | - Johann Michael Köhler
- Department of Physical Chemistry and Microreaction Technology; Institute for Micro- and Nanotechnologies/Institute for Chemistry and Microreaction Technology; Technische Universität Ilmenau; 98693 Ilmenau Germany
| |
Collapse
|
15
|
Knipe JM, Strong LE, Peppas NA. Enzyme- and pH-Responsive Microencapsulated Nanogels for Oral Delivery of siRNA to Induce TNF-α Knockdown in the Intestine. Biomacromolecules 2016; 17:788-97. [PMID: 26813877 DOI: 10.1021/acs.biomac.5b01518] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammatory bowel diseases (IBD) manifest from excessive intestinal inflammation. Local delivery of siRNA that targets these inflammatory cytokines would provide a novel treatment approach. Microencapsulated nanogels are designed and validated as platforms for oral delivery of siRNA targeting TNF-α, a common clinical target of IBD treatments. The preferred platform was designed to (i) protect siRNA-loaded nanogels from the harsh acidic environment of the upper GI tract and (ii) enzymatically degrade and release the nanogels once the carrier has reached the intestinal region. This platform consists of microgels composed of poly(methacrylic acid-co-N-vinyl-2-pyrrolidone) (P[MAA-co-NVP]) cross-linked with a trypsin-degradable peptide linker. The P(MAA-co-NVP) backbone is designed to collapse around and protect encapsulated nanogel from degradation at the low pH levels seen in the stomach (pH 2-4). At pH levels of 6-7.5, as typically observed in the intestine, the P(MAA-co-NVP) matrix swells, potentially facilitating diffusion of intestinal fluid and degradation of the matrix by intestinal enzymes such as trypsin, thus "freeing" the therapeutic nanogels for delivery and cellular uptake within the intestine. TNF-α siRNA-loaded nanogels released from this platform were capable of inducing potent knockdown of secreted TNF-α levels in murine macrophages, further validating the potential for this approach to be used for the treatment of IBD.
Collapse
Affiliation(s)
- Jennifer M Knipe
- Department of Chemical Engineering, C0400, The University of Texas at Austin , Austin, Texas 78712, United States.,Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Laura E Strong
- Department of Biomedical Engineering, C0800, The University of Texas at Austin , Austin, Texas 78712, United States.,Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Nicholas A Peppas
- Department of Chemical Engineering, C0400, The University of Texas at Austin , Austin, Texas 78712, United States.,Department of Biomedical Engineering, C0800, The University of Texas at Austin , Austin, Texas 78712, United States.,Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin , Austin, Texas 78712, United States.,College of Pharmacy, A1900, The University of Texas at Austin , Austin, Texas 78712, United States.,Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
16
|
Kurochkin SA, Grachev VP. Reversible deactivation radical polymerization of polyfunctional monomers. POLYMER SCIENCE SERIES C 2015. [DOI: 10.1134/s1811238215010063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Koetting MC, Peters JT, Steichen SD, Peppas NA. Stimulus-responsive hydrogels: Theory, modern advances, and applications. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2015; 93:1-49. [PMID: 27134415 PMCID: PMC4847551 DOI: 10.1016/j.mser.2015.04.001] [Citation(s) in RCA: 609] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Over the past century, hydrogels have emerged as effective materials for an immense variety of applications. The unique network structure of hydrogels enables very high levels of hydrophilicity and biocompatibility, while at the same time exhibiting the soft physical properties associated with living tissue, making them ideal biomaterials. Stimulus-responsive hydrogels have been especially impactful, allowing for unprecedented levels of control over material properties in response to external cues. This enhanced control has enabled groundbreaking advances in healthcare, allowing for more effective treatment of a vast array of diseases and improved approaches for tissue engineering and wound healing. In this extensive review, we identify and discuss the multitude of response modalities that have been developed, including temperature, pH, chemical, light, electro, and shear-sensitive hydrogels. We discuss the theoretical analysis of hydrogel properties and the mechanisms used to create these responses, highlighting both the pioneering and most recent work in all of these fields. Finally, we review the many current and proposed applications of these hydrogels in medicine and industry.
Collapse
Affiliation(s)
- Michael C. Koetting
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| | - Jonathan T. Peters
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| | - Stephanie D. Steichen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| | - Nicholas A. Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
18
|
Abstract
Treatment of cancer using nanoparticle-based approaches relies on the rational design of carriers with respect to size, charge, and surface properties. Polymer-based nanomaterials, inorganic materials such as gold, iron oxide, and silica as well as carbon based materials such as carbon nanotubes and graphene are being explored extensively for cancer therapy. The challenges associated with the delivery of these nanoparticles depend greatly on the type of cancer and stage of development. This review highlights design considerations to develop nanoparticle-based approaches for overcoming physiological hurdles in cancer treatment, as well as emerging research in engineering advanced delivery systems for the treatment of primary, metastatic, and multidrug resistant cancers. A growing understanding of cancer biology will continue to foster development of intelligent nanoparticle-based therapeutics that take into account diverse physiological contexts of changing disease states to improve treatment outcomes.
Collapse
|
19
|
Lau HK, Kiick KL. Opportunities for multicomponent hybrid hydrogels in biomedical applications. Biomacromolecules 2015; 16:28-42. [PMID: 25426888 PMCID: PMC4294583 DOI: 10.1021/bm501361c] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/14/2014] [Indexed: 02/08/2023]
Abstract
Hydrogels provide mechanical support and a hydrated environment that offer good cytocompatibility and controlled release of molecules, and myriad hydrogels thus have been studied for biomedical applications. In the past few decades, research in these areas has shifted increasingly to multicomponent hydrogels that better capture the multifunctional nature of native biological environments and that offer opportunities to selectively tailor materials properties. This review summarizes recent approaches aimed at producing multicomponent hydrogels, with descriptions of contemporary chemical and physical approaches for forming networks, and of the use of both synthetic and biologically derived molecules to impart desired properties. Specific multicomponent materials with enhanced mechanical properties are presented, as well as materials in which multiple biological functions are imparted for applications in tissue engineering, cancer treatment, and gene therapies. The progress in the field suggests significant promise for these approaches in the development of biomedically relevant materials.
Collapse
Affiliation(s)
- Hang Kuen Lau
- Department of Materials Science and Engineering and ‡Biomedical Engineering, University of Delaware , Newark Delaware 19716, United States
| | | |
Collapse
|
20
|
Durán-Lobato M, Carrillo-Conde B, Khairandish Y, Peppas NA. Surface-modified P(HEMA-co-MAA) nanogel carriers for oral vaccine delivery: design, characterization, and in vitro targeting evaluation. Biomacromolecules 2014; 15:2725-34. [PMID: 24955658 PMCID: PMC4504688 DOI: 10.1021/bm500588x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oral drug delivery is a route of choice for vaccine administration because of its noninvasive nature and thus efforts have focused on efficient delivery of vaccine antigens to mucosal sites. An effective oral vaccine delivery system must protect the antigen from degradation upon mucosal delivery, penetrate mucosal barriers, and control the release of the antigen and costimulatory and immunomodulatory agents to specific immune cells (i.e., APCs). In this paper, mannan-modified pH-responsive P(HEMA-co-MAA) nanogels were synthesized and assessed as carriers for oral vaccination. The nanogels showed pH-sensitive properties, entrapping and protecting the loaded cargo at low pH values, and triggered protein release after switching to intestinal pH values. Surface decoration with mannan as carbohydrate moieties resulted in enhanced internalization by macrophages as well as increasing the expression of relevant costimulatory molecules. These findings indicate that mannan-modified P(HEMA-co-MAA) nanogels are a promising approach to a more efficacious oral vaccination regimen.
Collapse
Affiliation(s)
- Matilde Durán-Lobato
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, C0800, Austin, Texas 78712-0238, United States
- Department of Chemical Engineering, University of Texas at Austin, 1 University Station, C0800, Austin, Texas 78712-0238, United States
| | - Brenda Carrillo-Conde
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, C0800, Austin, Texas 78712-0238, United States
| | - Yasmine Khairandish
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, C0800, Austin, Texas 78712-0238, United States
| | - Nicholas A. Peppas
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, C0800, Austin, Texas 78712-0238, United States
- Department of Chemical Engineering, University of Texas at Austin, 1 University Station, C0800, Austin, Texas 78712-0238, United States
- Division of Pharmaceutics, University of Texas at Austin, 1 University Station, C0800, Austin, Texas 78712-0238, United States
| |
Collapse
|
21
|
Forbes DC, Peppas NA. Polymeric Nanocarriers for siRNA Delivery to Murine Macrophages. Macromol Biosci 2014; 14:1096-105. [DOI: 10.1002/mabi.201400027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/11/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Diane C. Forbes
- Department of Chemical Engineering; The University of Texas at Austin; 200 E. Dean Keeton St. Stop C0400 Austin TX 78712 USA
| | - Nicholas A. Peppas
- Department of Chemical Engineering; The University of Texas at Austin; 200 E. Dean Keeton St. Stop C0400 Austin TX 78712 USA
- Department of Biomedical Engineering; The University of Texas at Austin; 1 University Station C0800 Austin TX 78712 USA
- College of Pharmacy; The University of Texas at Austin; 2409 University Ave. A1900 Austin TX 78712 USA
| |
Collapse
|
22
|
Forbes DC, Peppas NA. Polycationic nanoparticles for siRNA delivery: comparing ARGET ATRP and UV-initiated formulations. ACS NANO 2014; 8:2908-2917. [PMID: 24548237 DOI: 10.1021/nn500101c] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this work, we develop and evaluate polycationic nanoparticles for the delivery of small interfering RNA (siRNA). Delivery remains a major challenge for translating siRNA to the clinic, and overcoming the delivery challenge requires effective siRNA delivery vehicles that meet the demands of the specific delivery strategy. Cross-linked polycationic nanoparticle formulations were synthesized using ARGET ATRP or UV-initiated polymerization. The one-step, one-pot, surfactant-stabilized monomer-in-water synthesis technique may provide a simpler and faster alternative to complicated, multistep techniques and an alternative to methods that rely on toxic organic solvents. The polymer nanoparticles were synthesized using the cationic monomer 2-(diethylamino)ethyl methacrylate, the hydrophobic monomer tert-butyl methacrylate to tune pH responsiveness, the hydrophilic monomer poly(ethylene glycol) methyl ether methacrylate to improve biocompatibility, and cross-linking agent tetraethylene glycol dimethacrylate to enhance colloidal stability. Four formulations were evaluated for their suitability as siRNA delivery vehicles in vitro with the human embryonic kidney cell line HEK293T or the murine macrophage cell line RAW264.7. The polycationic nanoparticles demonstrated efficient and rapid loading of the anionic siRNA following complexation. Confocal microscopy as well as flow cytometry analysis of cells treated with polycationic nanoparticles loaded with fluorescently labeled siRNA demonstrated that the polycationic nanoparticles promoted cellular uptake of fluorescently labeled siRNA. Knockdown experiments using polycationic nanoparticles to deliver siRNA demonstrated evidence of knockdown, thus demonstrating potential as an alternative route to creating polycationic nanoparticles.
Collapse
Affiliation(s)
- Diane C Forbes
- Department of Chemical Engineering, ‡Department of Biomedical Engineering, and §College of Pharmacy, The University of Texas at Austin , Austin, Texas 78712, United States
| | | |
Collapse
|
23
|
Marchyk N, Maximilien J, Beyazit S, Haupt K, Tse Sum Bui B. One-pot synthesis of iniferter-bound polystyrene core nanoparticles for the controlled grafting of multilayer shells. NANOSCALE 2014; 6:2872-2878. [PMID: 24473190 DOI: 10.1039/c3nr05295h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A novel approach using one-pot synthesis for the production of uniform, iniferter-bound polystyrene core nanoparticles of size 30-40 nm is described. Conventional oil-in-water emulsion polymerisation of styrene and divinylbenzene, combining a hybrid initiation system (thermal and UV), triggered sequentially, was employed to form the surface-bound thiocarbamate iniferters in situ. The iniferter cores were then used as seeds for re-initiating further polymerisation by UV irradiation to produce water-compatible core-shell nanoparticles. Grafting of various shell-types is demonstrated: linear polymers of poly(N-isopropylacrylamide) brushes, crosslinked polymers bearing different surface charges and molecularly imprinted polymers. The shell thickness was readily tuned by varying the monomers' concentration and polymerisation time. Our method is straightforward and in addition, gives access to the preparation of fluorescent seeds and the possibility of grafting nanosized multiple shells. The core-shell nanoparticles were fully characterised by dynamic light scattering, transmission electron microscopy, Fourier transform infrared spectroscopy and microelemental analysis.
Collapse
Affiliation(s)
- Nataliya Marchyk
- Compiègne University of Technology, CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS 60319, 60203 Compiègne Cedex, France. ;
| | | | | | | | | |
Collapse
|
24
|
Renggli K, Nussbaumer MG, Urbani R, Pfohl T, Bruns N. Ein Chaperonin als Protein-Nanoreaktor für die radikalische Atomtransferpolymerisation. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Renggli K, Nussbaumer MG, Urbani R, Pfohl T, Bruns N. A chaperonin as protein nanoreactor for atom-transfer radical polymerization. Angew Chem Int Ed Engl 2013; 53:1443-7. [PMID: 24459061 DOI: 10.1002/anie.201306798] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/18/2013] [Indexed: 11/10/2022]
Abstract
The group II chaperonin thermosome (THS) from the archaea Thermoplasma acidophilum is reported as nanoreactor for atom-transfer radical polymerization (ATRP). A copper catalyst was entrapped into the THS to confine the polymerization into this protein cage. THS possesses pores that are wide enough to release polymers into solution. The nanoreactor favorably influenced the polymerization of N-isopropyl acrylamide and poly(ethylene glycol)methylether acrylate. Narrowly dispersed polymers with polydispersity indices (PDIs) down to 1.06 were obtained in the protein nanoreactor, while control reactions with a globular protein-catalyst conjugate only yielded polymers with PDIs above 1.84.
Collapse
Affiliation(s)
- Kasper Renggli
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland)
| | | | | | | | | |
Collapse
|
26
|
Differences in molecular structure in cross-linked polycationic nanoparticles synthesized using ARGET ATRP or UV-initiated polymerization. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.06.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|