1
|
De Soricellis C, Amante C, Russo P, Aquino RP, Del Gaudio P. Prilling as an Effective Tool for Manufacturing Submicrometric and Nanometric PLGA Particles for Controlled Drug Delivery to Wounds: Stability and Curcumin Release. Pharmaceutics 2025; 17:129. [PMID: 39861775 PMCID: PMC11768656 DOI: 10.3390/pharmaceutics17010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES This study investigates for the first time the use of the prilling technique in combination with solvent evaporation to produce nano- and submicrometric PLGA particles to deliver properly an active pharmaceutical ingredient. Curcumin (CCM), a hydrophobic compound classified under BCS (Biopharmaceutics Classification System) class IV, was selected as the model drug. METHODS Key process parameters, including polymer concentration, solvent type, nozzle size, and surfactant levels, were optimized to obtain stable particles with a narrow size distribution determined by DLS analysis. RESULTS Particles mean diameter (d50) 316 and 452 nm, depending on drug-loaded cargo as Curcumin-loaded PLGA nanoparticles demonstrated high encapsulation efficiency, assessed via HPLC analysis, stability, and controlled release profiles. In vitro studies revealed a faster release for lower drug loadings (90% release in 6 h) compared to sustained release over 7 days for higher-loaded nanoparticles, attributed to polymer degradation and drug-polymer interactions on the surface of the particles, as confirmed by FTIR analyses. CONCLUSIONS These findings underline the potential of this scalable technique for biomedical applications, offering a versatile platform for designing drug delivery systems with tailored release characteristics.
Collapse
Affiliation(s)
| | | | | | | | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
2
|
Beltrame G, Damerau A, Ahonen E, Mustonen SA, Adami R, Sellitto MR, Del Gaudio P, Linderborg KM. Production and simulated digestion of high-load beads containing Schizochytrium oil encapsulated utilizing prilling technique. Food Chem 2024; 460:140694. [PMID: 39126940 DOI: 10.1016/j.foodchem.2024.140694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/01/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
The oil from the heterotroph Schizochytrium is a rich source of n-3 PUFA, particularly DHA, and therefore highly susceptible to oxidation. The present work reports the first application of coaxial prilling for the protection of this oil through microencapsulation. After process optimization, core-shell microparticles were produced with calcium or zinc alginate at different concentrations. Encapsulates were analyzed in their tocopherol and PUFA content. Prilling lowered the earlier but had little effect on the latter. Microcapsules coated with calcium alginate (1 % and 1.75 %) had higher oil load and encapsulation efficiency and were therefore submitted to in vitro digestion together with a simulated meal. Digesta were also analyzed with HPLC-qTOF and 1H NMR and compared to undigested encapsulates. While 1 % calcium shell granted lower oil release and protection from oxidation in the simulated gastrointestinal tract, chromatographic and spectroscopic data of digesta showed higher presence of lipid digestion products.
Collapse
Affiliation(s)
- Gabriele Beltrame
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Annelie Damerau
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Eija Ahonen
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Sari A Mustonen
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Renata Adami
- Department of Physics, University of Salerno, IT-84084 Fisciano, Italy
| | | | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, IT-84084 Fisciano, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, IT-84084 Fisciano, Italy.
| | - Kaisa M Linderborg
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
3
|
Ta LP, Corrigan S, Tselepis C, Iqbal TH, Ludwig C, Horniblow RD. Gastrointestinal-inert prebiotic micro-composites improve the growth and community diversity of mucosal-associated bacteria. J Control Release 2024; 375:495-512. [PMID: 39284524 DOI: 10.1016/j.jconrel.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024]
Abstract
The process of microencapsulation and the development of microparticle-based drug formulations have gained increased pharmaceutical interest, particularly for drug delivery and bacterial-encapsulation purposes for probiotic delivery. Existing studies have examined microcomposite (MC) responses to gastrointestinal (GI) conditions with the aim of controlling disintegration, and thus release, across the small and large bowel. However, the delivery of MCs which remain intact, without degrading, could act as bacterial growth scaffolds or materials providing a prebiotic support, conferring potentially beneficial GI health properties. This present study employs prilling as a method to produce a portfolio of MCs using a variety of biopolymers (alginate, chitosan, pectin and gellan gum) with a range of MC diameters and density compositions. Fluorescent probes are co-encapsulated within each MC to enable flow-cytometry directed release profile assessments following exposure to chemical simulated gastric and intestinal digestion conditions. We observe that MC size, gel-strength, density, and biopolymer material all influence response to gastric and intestinal conditions. Gellan gum (GG) MCs demonstrated complete resistance to disintegration throughout GI-simulation in the stomach and small intestine. Considering these MCs could reach the colon intact, we then examined how such MCs, doped with prebiotic growth supporting carboxymethyl cellulose (CMC) polymers, could impact microbial communities using a bioreactor model of the colonic microbiome. Following supplementation with GGCMC MCs, mucosal bacterial diversity (using 16 s rRNA sequencing and Shannon entropy and observed feature diversity metrics) and taxonomic composition changes were observed. Concentrations of short chain fatty acid (SCFA) metabolites were also found to be altered. This is the first study to comprehensivelyexamine how MC physicochemistry can be manipulated to tailor MCs to have the desired GI release performance and subsequently, how GI-resistant MCs could have influential microbial altering properties and be adopted in novel prebiotic strategies.
Collapse
Affiliation(s)
- Linh P Ta
- Department of Biomedical Sciences, School of Infection, Inflammation, & Immunology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sarah Corrigan
- Department of Biomedical Sciences, School of Infection, Inflammation, & Immunology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Chris Tselepis
- Department of Biomedical Sciences, School of Infection, Inflammation, & Immunology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tariq H Iqbal
- The Microbiome Treatment Centre, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Richard D Horniblow
- Department of Biomedical Sciences, School of Infection, Inflammation, & Immunology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
4
|
Attia L, Chen L, Doyle PS. Orthogonal Gelations to Synthesize Core-Shell Hydrogels Loaded with Nanoemulsion-Templated Drug Nanoparticles for Versatile Oral Drug Delivery. Adv Healthc Mater 2023; 12:e2301667. [PMID: 37507108 PMCID: PMC11469203 DOI: 10.1002/adhm.202301667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Hydrophobic active pharmaceutical ingredients (APIs) are ubiquitous in the drug development pipeline, but their poor bioavailability often prevents their translation into drug products. Industrial processes to formulate hydrophobic APIs are expensive, difficult to optimize, and not flexible enough to incorporate customizable drug release profiles into drug products. Here, a novel, dual-responsive gelation process that exploits orthogonal thermo-responsive and ion-responsive gelations is introduced. This one-step "dual gelation" synthesizes core-shell (methylcellulose-alginate) hydrogel particles and encapsulates drug-laden nanoemulsions in the hydrogel matrices. In situ crystallization templates drug nanocrystals inside the polymeric core, while a kinetically stable amorphous solid dispersion is templated in the shell. Drug release is explored as a function of particle geometry, and programmable release is demonstrated for various therapeutic applications including delayed pulsatile release and sequential release of a model fixed-dose combination drug product of ibuprofen and fenofibrate. Independent control over drug loading between the shell and the core is demonstrated. This formulation approach is shown to be a flexible process to develop drug products with biocompatible materials, facile synthesis, and precise drug release performance. This work suggests and applies a novel method to leverage orthogonal gel chemistries to generate functional core-shell hydrogel particles.
Collapse
Affiliation(s)
- Lucas Attia
- Department of Chemical EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Liang‐Hsun Chen
- Department of Chemical EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Patrick S. Doyle
- Department of Chemical EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
- Campus for Research Excellence and Technological EnterpriseSingapore138602Singapore
| |
Collapse
|
5
|
Alfatama M, Lim LY, Wong TW. Chitosan oleate-tripolyphosphate complex-coated calcium alginate bead: Physicochemical aspects of concurrent core-coat formation. Carbohydr Polym 2021; 273:118487. [PMID: 34560934 DOI: 10.1016/j.carbpol.2021.118487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/25/2021] [Accepted: 07/22/2021] [Indexed: 01/17/2023]
Abstract
This study designed chitosan species-coated calcium alginate beads through concurrent core-coat formation. Chitosan oleate was synthesized by carbodiimide chemistry and characterized by 1H NMR and FTIR techniques. Chitosan or chitosan oleate was coated onto the forming alginate or alginate/tripolyphosphate core using vibratory nozzle extrusion-microencapsulation approach, followed by calcium crosslinking. Chlorpheniramine maleate served as a model water-soluble drug. The molecular characteristics, size, shape, morphology, swelling, erosion, water uptake, drug content and drug release profiles of beads were evaluated. Discrete spherical coated beads were obtained through minimizing successive bead adhesion through an interplay of nozzle vibrational frequency and polymeric solution flow rate. The tripolyphosphate ions in the core possessed higher diffusional kinetics than alginate and were better able to attract chitosan species onto bead surfaces to facilitate alginate-chitosan coacervation. Amphiphilic chitosan oleate formed smaller aggregates than chitosan. It interacted with greater ease with core alginate and tripolyphosphate. The gain in alginate/tripolyphosphate interaction with chitosan oleate at the core-coat interface enhanced bead robustness against swelling and water uptake with drug release consequently dependent on the loss of alginate-drug interaction.
Collapse
Affiliation(s)
- Mulham Alfatama
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, 22200, Malaysia
| | - Lee Yong Lim
- Pharmacy, School of Allied Health, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Medical College, Yangzhou University, 136, Jiangyang Middle Road, Yangzhou, Jiangsu Province, China.
| |
Collapse
|
6
|
Amante C, Esposito T, Del Gaudio P, Di Sarno V, Porta A, Tosco A, Russo P, Nicolais L, Aquino RP. A Novel Three-Polysaccharide Blend In Situ Gelling Powder for Wound Healing Applications. Pharmaceutics 2021; 13:pharmaceutics13101680. [PMID: 34683973 PMCID: PMC8541204 DOI: 10.3390/pharmaceutics13101680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022] Open
Abstract
In this paper, alginate/pectin and alginate/pectin/chitosan blend particles, in the form of an in situ forming hydrogel, intended for wound repair applications, have been successfully developed. Particles have been used to encapsulate doxycycline in order to control the delivery of the drug, enhance its antimicrobial properties, and the ability to inhibit host matrix metalloproteinases. The presence of chitosan in the particles strongly influenced their size, morphology, and fluid uptake properties, as well as drug encapsulation efficiency and release, due to both chemical interactions between the polymers in the blend and interactions with the drug demonstrated by FTIR studies. In vitro antimicrobial studies highlighted an increase in antibacterial activity related to the chitosan amount in the powders. Moreover, in situ gelling powders are able to induce a higher release of IL-8 from the human keratinocytes that could stimulate the wound healing process in difficult-healing. Interestingly, doxycycline-loaded particles are able to increase drug activity against MMPs, with good activity against MMP-9 even at 0.5 μg/mL over 72 h. Such results suggest that such powders rich in chitosan could be a promising dressing for exudating wounds.
Collapse
Affiliation(s)
- Chiara Amante
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy; (C.A.); (T.E.); (V.D.S.); (A.P.); (A.T.); (P.R.); (R.P.A.)
| | - Tiziana Esposito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy; (C.A.); (T.E.); (V.D.S.); (A.P.); (A.T.); (P.R.); (R.P.A.)
| | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy; (C.A.); (T.E.); (V.D.S.); (A.P.); (A.T.); (P.R.); (R.P.A.)
- Correspondence: ; Tel.: +39-089-969-247; Fax: +39-089-969-602
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy; (C.A.); (T.E.); (V.D.S.); (A.P.); (A.T.); (P.R.); (R.P.A.)
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy; (C.A.); (T.E.); (V.D.S.); (A.P.); (A.T.); (P.R.); (R.P.A.)
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy; (C.A.); (T.E.); (V.D.S.); (A.P.); (A.T.); (P.R.); (R.P.A.)
| | - Paola Russo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy; (C.A.); (T.E.); (V.D.S.); (A.P.); (A.T.); (P.R.); (R.P.A.)
| | - Luigi Nicolais
- Materias s.r.l., University of Naples, “Federico II” Campus San Giovanni a Teduccio, I-80146 Naples, Italy;
| | - Rita P. Aquino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy; (C.A.); (T.E.); (V.D.S.); (A.P.); (A.T.); (P.R.); (R.P.A.)
| |
Collapse
|
7
|
Yazdian Kashani S, Afzalian A, Shirinichi F, Keshavarz Moraveji M. Microfluidics for core-shell drug carrier particles - a review. RSC Adv 2020; 11:229-249. [PMID: 35423057 PMCID: PMC8691093 DOI: 10.1039/d0ra08607j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/07/2020] [Indexed: 01/07/2023] Open
Abstract
Core-shell drug-carrier particles are known for their unique features. Due to the combination of superior properties not exhibited by the individual components, core-shell particles have gained a lot of interest. The structures could integrate core and shell characteristics and properties. These particles were designed for controlled drug release in the desired location. Therefore, the side effects would be minimized. So, these particles' advantages have led to the introduction of new methods and ideas for their fabrication. In the past few years, the generation of drug carrier core-shell particles in microfluidic chips has attracted much attention. This method makes it possible to produce particles at nanometer and micrometer levels of the same shape and size; it usually costs less than other methods. The other advantages of using microfluidic techniques compared to conventional bulk methods are integration capability, reproducibility, and higher efficiency. These advantages have created a positive outlook on this approach. This review gives an overview of the various fluidic concepts that are used to generate microparticles or nanoparticles. Also, an overview of traditional and more recent microfluidic devices and their design and structure for the generation of core-shell particles is given. The unique benefits of the microfluidic technique for core-shell drug carrier particle generation are demonstrated.
Collapse
Affiliation(s)
- Sepideh Yazdian Kashani
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) 1591634311 Tehran Iran +98 21 64543182
| | - Amir Afzalian
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) 1591634311 Tehran Iran +98 21 64543182
| | - Farbod Shirinichi
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) 1591634311 Tehran Iran +98 21 64543182
| | - Mostafa Keshavarz Moraveji
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) 1591634311 Tehran Iran +98 21 64543182
| |
Collapse
|
8
|
Auriemma G, Russo P, Del Gaudio P, García-González CA, Landín M, Aquino RP. Technologies and Formulation Design of Polysaccharide-Based Hydrogels for Drug Delivery. Molecules 2020; 25:E3156. [PMID: 32664256 PMCID: PMC7397281 DOI: 10.3390/molecules25143156] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 01/31/2023] Open
Abstract
Polysaccharide-based hydrogel particles (PbHPs) are very promising carriers aiming to control and target the release of drugs with different physico-chemical properties. Such delivery systems can offer benefits through the proper encapsulation of many drugs (non-steroidal and steroidal anti-inflammatory drugs, antibiotics, etc) ensuring their proper release and targeting. This review discusses the different phases involved in the production of PbHPs in pharmaceutical technology, such as droplet formation (SOL phase), sol-gel transition of the droplets (GEL phase) and drying, as well as the different methods available for droplet production with a special focus on prilling technique. In addition, an overview of the various droplet gelation methods with particular emphasis on ionic cross-linking of several polysaccharides enabling the formation of particles with inner highly porous network or nanofibrillar structure is given. Moreover, a detailed survey of the different inner texture, in xerogels, cryogels or aerogels, each with specific arrangement and properties, which can be obtained with different drying methods, is presented. Various case studies are reported to highlight the most appropriate application of such systems in pharmaceutical field. We also describe the challenges to be faced for the breakthrough towards clinic studies and, finally, the market, focusing on the useful approach of safety-by-design (SbD).
Collapse
Affiliation(s)
- Giulia Auriemma
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I—84084 Fisciano (SA), Italy; (G.A.); (P.R.); (P.D.G.)
| | - Paola Russo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I—84084 Fisciano (SA), Italy; (G.A.); (P.R.); (P.D.G.)
| | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I—84084 Fisciano (SA), Italy; (G.A.); (P.R.); (P.D.G.)
| | - Carlos A. García-González
- Department of Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (C.A.G.-G.); (M.L.)
| | - Mariana Landín
- Department of Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (C.A.G.-G.); (M.L.)
| | - Rita Patrizia Aquino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I—84084 Fisciano (SA), Italy; (G.A.); (P.R.); (P.D.G.)
| |
Collapse
|
9
|
Mahdavi Z, Rezvani H, Keshavarz Moraveji M. Core-shell nanoparticles used in drug delivery-microfluidics: a review. RSC Adv 2020; 10:18280-18295. [PMID: 35517190 PMCID: PMC9053716 DOI: 10.1039/d0ra01032d] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/19/2020] [Indexed: 11/26/2022] Open
Abstract
Developments in the fields of lab-on-a-chip and microfluidic technology have benefited nanomaterial production processes due to fluid miniaturization. The ability to acquire, manage, create, and modify structures on a nanoscale is of great interest in scientific and technological fields. Recently, more attention has been paid to the production of core-shell nanomaterials because of their use in various fields, such as drug delivery. Heterostructured nanomaterials have more reliable performance than the individual core or shell materials. Nanoparticle synthesis is a complex process; therefore, various techniques exist for the production of different types of nanoparticles. Among these techniques, microfluidic methods are unique and reliable routes, which can be used to produce nanoparticles for drug delivery applications.
Collapse
Affiliation(s)
- Zahra Mahdavi
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Hamed Rezvani
- Department of Petroleum Engineering, Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | | |
Collapse
|
10
|
Nguyen-Pham TQ, Benyahia L, Bastiat G, Riou J, Venier-Julienne MC. Behavior of poly(d,l-lactic-co-glycolic acid) (PLGA)-based droplets falling into a complex extraction medium simulating the prilling process. J Colloid Interface Sci 2020; 561:838-848. [PMID: 31813576 DOI: 10.1016/j.jcis.2019.11.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 10/25/2022]
Abstract
HYPOTHESIS Prilling process is one of advanced techniques for manufacturing microspheres of controlled and uniform size. In this process, homogenous polymer droplets fall into an extraction medium. The aim of this study was to identify the key parameters influencing the behavior of PLGA polymer-based droplets falling into a complex extraction medium, to select appropriate conditions for prilling. EXPERIMENTS Polymer solutions and extraction media were characterized by determining their viscosity, density and surface tension. A simple model simulating the prilling process was developed to study droplet behavior. Particle shape and velocity at the air-liquid interface and during sedimentation in the container were analyzed step by step. The correlations between the variables studied were visualized by principal component analysis (PCA). FINDINGS Droplet deformation at the interface greatly affected the recovery and final particle shape. It depended on the viscosity ratio of polymer solution/extraction medium. The particle shape recovery depended on the viscosity and density of extraction media and polymer solutions. The solidification speed is also an important parameter. In media which the solvent diffused slowly, particles were able to relax and recover their shape, however, they can also deform during sedimentation and collision with the bottom of the cuvette.
Collapse
Affiliation(s)
- Thao-Quyen Nguyen-Pham
- Micro et Nanomedecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France
| | - Lazhar Benyahia
- Institut des Molécules et des Matériaux du Mans, IMMM, UNIV Le Mans, UMR CNRS 6283, Le Mans, France
| | - Guillaume Bastiat
- Micro et Nanomedecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France
| | - Jérémie Riou
- Micro et Nanomedecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France
| | | |
Collapse
|
11
|
Auriemma G, Cerciello A, Aquino RP, Del Gaudio P, Fusco BM, Russo P. Pectin and Zinc Alginate: The Right Inner/Outer Polymer Combination for Core-Shell Drug Delivery Systems. Pharmaceutics 2020; 12:pharmaceutics12020087. [PMID: 31972993 PMCID: PMC7076462 DOI: 10.3390/pharmaceutics12020087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022] Open
Abstract
Core-shell beads loaded with betamethasone were developed using co-axial prilling as production technique and pectin plus alginate as polymeric carriers. During this study, many operative conditions were intensively investigated to find the best ones necessary to produce uniform core-shell particle systems in a reproducible way. Particularly, feed solutions' composition, polymers mass ratios and the effect of the main process parameters on particles production, micromeritics, inner structure, drug loading and drug-release/swelling profiles in simulated biological fluids were studied. The optimized core-shell formulation F5 produced with a pectin core concentration of 4.0% w/v and an alginate shell concentration of 2.0% w/v (2:1 core:shell ratio) acted as a sustained drug delivery system. It was able to reduce the early release of the drug in the upper part of the gastro-intestinal tract for the presence of the zinc-alginate gastro-resistant outer layer and to specifically deliver it in the colon, thanks to the selectivity of amidated low methoxy pectin core for this district. Therefore, these particles may be proposed as colon targeted drug delivery systems useful for inflammatory bowel disease (IBD) therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Paola Russo
- Correspondence: ; Tel.: +39-089969256; Fax: +39-089969602
| |
Collapse
|
12
|
Del Gaudio P, Amante C, Civale R, Bizzarro V, Petrella A, Pepe G, Campiglia P, Russo P, Aquino RP. In situ gelling alginate-pectin blend particles loaded with Ac2-26: A new weapon to improve wound care armamentarium. Carbohydr Polym 2020; 227:115305. [DOI: 10.1016/j.carbpol.2019.115305] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022]
|
13
|
Prilling and characterization of hydrogels and derived porous spheres from chitosan solutions with various organic acids. Int J Biol Macromol 2019; 129:68-77. [DOI: 10.1016/j.ijbiomac.2019.01.216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/09/2019] [Accepted: 01/31/2019] [Indexed: 12/20/2022]
|
14
|
Rodríguez-Dorado R, López-Iglesias C, García-González CA, Auriemma G, Aquino RP, Del Gaudio P. Design of Aerogels, Cryogels and Xerogels of Alginate: Effect of Molecular Weight, Gelation Conditions and Drying Method on Particles' Micromeritics. Molecules 2019; 24:molecules24061049. [PMID: 30884869 PMCID: PMC6471992 DOI: 10.3390/molecules24061049] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 11/26/2022] Open
Abstract
Processing and shaping of dried gels are of interest in several fields like alginate aerogel beads used as highly porous and nanostructured particles in biomedical applications. The physicochemical properties of the alginate source, the solvent used in the gelation solution and the gel drying method are key parameters influencing the characteristics of the resulting dried gels. In this work, dried gel beads in the form of xerogels, cryogels or aerogels were prepared from alginates of different molecular weights (120 and 180 kDa) and concentrations (1.25, 1.50, 2.0 and 2.25% (w/v)) using different gelation conditions (aqueous and ethanolic CaCl2 solutions) and drying methods (supercritical drying, freeze-drying and oven drying) to obtain particles with a broad range of physicochemical and textural properties. The stability of physicochemical properties of alginate aerogels under storage conditions of 25 °C and 65% relative humidity (ICH-climatic zone II) during 1 and 3 months was studied. Results showed significant effects of the studied processing parameters on the resulting alginate dried gel properties. Stability studies showed small variations in aerogels weight and specific surface area after 3 months of storage, especially, in the case of aerogels produced with medium molecular weight alginate.
Collapse
Affiliation(s)
- Rosalía Rodríguez-Dorado
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy.
- Drug Discovery and Development, University of Salerno, 84084 Fisciano, Italy.
| | - Clara López-Iglesias
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, R+D Pharma group (GI-1645), Faculty of Pharmacy and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Carlos A García-González
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, R+D Pharma group (GI-1645), Faculty of Pharmacy and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Giulia Auriemma
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy.
| | - Rita P Aquino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy.
| | | |
Collapse
|
15
|
Auriemma G, Cerciello A, Sansone F, Pinto A, Morello S, Aquino RP. Polysaccharides based gastroretentive system to sustain piroxicam release: Development and in vivo prolonged anti-inflammatory effect. Int J Biol Macromol 2018; 120:2303-2312. [DOI: 10.1016/j.ijbiomac.2018.08.140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/12/2018] [Accepted: 08/26/2018] [Indexed: 11/25/2022]
|
16
|
Guo T, Zhang N, Huang J, Pei Y, Wang F, Tang K. A facile fabrication of core–shell sodium alginate/gelatin beads for drug delivery systems. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2377-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Rodríguez-Dorado R, Landín M, Altai A, Russo P, Aquino RP, Del Gaudio P. A novel method for the production of core-shell microparticles by inverse gelation optimized with artificial intelligent tools. Int J Pharm 2018; 538:97-104. [DOI: 10.1016/j.ijpharm.2018.01.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 12/29/2022]
|
18
|
Clarithromycin and N -acetylcysteine co-spray-dried powders for pulmonary drug delivery: A focus on drug solubility. Int J Pharm 2017; 533:463-469. [DOI: 10.1016/j.ijpharm.2017.03.079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/20/2017] [Accepted: 03/28/2017] [Indexed: 01/05/2023]
|
19
|
Del Gaudio P, Russo P, Rodriguez Dorado R, Sansone F, Mencherini T, Gasparri F, Aquino RP. Submicrometric hypromellose acetate succinate particles as carrier for soy isoflavones extract with improved skin penetration performance. Carbohydr Polym 2017; 165:22-29. [PMID: 28363543 DOI: 10.1016/j.carbpol.2017.02.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 11/29/2022]
Abstract
In this study, hypromellose acetate succinate (HPMCAS) stable submicronic particles loaded with a soy isoflavones extract have been obtained by nano spray drying technology. HPMCAS has been used as excipient able to increase both stability and supersaturation levels of the active ingredients hence able to enhance skin penetration performance of genistein and daidzein. The influence of polymer/extract ratio as other process variables, on particle size, morphology and permeation performance, have been investigated. Particles in submicronic range (mean size around 550nm) and narrow size distribution with high encapsulation efficiency (up to 86%) were obtained. HPMCAS was able to improve amorphization of genistein during the atomization process and avoid recrystallization during storage, even in harsh environmental condition. Moreover, the enhanced affinity of the optimized formulations with aqueous media, strongly increased isoflavones penetration through membrane with diffusive properties well-correlated to human skin, up to 10-fold higher than pure soy isoflavones extract raw material.
Collapse
Affiliation(s)
- Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Paola Russo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Rosalia Rodriguez Dorado
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; PhD Program in Drug Discovery and Development, University of Salerno, via Giovanni Paolo II, 132, I-84084 Fisciano, SA, Italy
| | - Francesca Sansone
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Teresa Mencherini
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Franco Gasparri
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Rita Patrizia Aquino
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
20
|
Cerciello A, Del Gaudio P, Granata V, Sala M, Aquino RP, Russo P. Synergistic effect of divalent cations in improving technological properties of cross-linked alginate beads. Int J Biol Macromol 2017; 101:100-106. [PMID: 28322959 DOI: 10.1016/j.ijbiomac.2017.03.077] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/19/2017] [Accepted: 03/14/2017] [Indexed: 01/09/2023]
Abstract
Gelling solution parameters are some of the most important variables in ionotropic gelation and consequently influence the technological characteristics of the product. To date, only a few studies have focused on the simultaneous use of multiple cations as gelling agents. With the aim to deeply explore this possibility, in this research we investigated the effect of two divalent cations (Ca2+ and Zn2+) on alginate beads formation and properties. Alginate beads containing prednisolone (P) as model drug were prepared by prilling technique. The main critical variables of the ionotropic gelation process i.e. composition of the aqueous feed solutions (sodium alginate and prednisolone concentration) and cross-linking conditions (Ca2+, Zn2+ or Ca2++Zn2+), were studied. The obtained beads were characterized and their in vitro release performances were assessed in conditions simulating the gastrointestinal environment. Results evidenced a synergistic effect of the two cations, affecting positively both the encapsulation efficiency and the ability of the alginate polymeric matrix to control the drug release. A Ca2+/Zn2+ ratio of 4:1, in fact, exploited the Ca2+ ability of establish quicker electrostatic interactions with guluronic groups of alginate and the Zn2+ ability to establish covalent-like bonds with carboxylate groups of both guluronic and mannuronic moieties of alginate.
Collapse
Affiliation(s)
- Andrea Cerciello
- Department of Pharmacy, University of Salerno, I-84084 Fisciano, SA, Italy; PhD Program in Drug Discovery and Development, University of Salerno, I-84084 Fisciano, SA, Italy
| | | | - Veronica Granata
- Department of Physics "E.R. Caianiello", University of Salerno, I-84084 Fisciano, SA, Italy
| | - Marina Sala
- Department of Pharmacy, University of Salerno, I-84084 Fisciano, SA, Italy
| | - Rita P Aquino
- Department of Pharmacy, University of Salerno, I-84084 Fisciano, SA, Italy
| | - Paola Russo
- Department of Pharmacy, University of Salerno, I-84084 Fisciano, SA, Italy.
| |
Collapse
|
21
|
Gadalla HH, El-Gibaly I, Soliman GM, Mohamed FA, El-Sayed AM. Amidated pectin/sodium carboxymethylcellulose microspheres as a new carrier for colonic drug targeting: Development and optimization by factorial design. Carbohydr Polym 2016; 153:526-534. [DOI: 10.1016/j.carbpol.2016.08.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022]
|
22
|
Cerciello A, Auriemma G, Morello S, Aquino RP, Del Gaudio P, Russo P. Prednisolone Delivery Platforms: Capsules and Beads Combination for a Right Timing Therapy. PLoS One 2016; 11:e0160266. [PMID: 27472446 PMCID: PMC4966952 DOI: 10.1371/journal.pone.0160266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022] Open
Abstract
In this work, a platform of alginate beads loaded with Prednisolone in hypromellose/gellan gum capsules (F6/Cps) able to delay steroidal anti-inflammatory drug (SAID) release as needed for chronotherapy of rheumatoid arthritis is proposed. Rheumatoid arthritis, showing a worsening in symptoms in the morning upon waking, is a pathology that can benefit from chronotherapy. With the aim to maximize prednisolone therapeutic action allowing the right timing of glucocorticoid therapy, different engineered microparticles (gel-beads) were manufactured using prilling (laminar jet break-up) as micro-encapsulation technique and Zn-alginate as gastroresistant carrier. Starting from various feed solutions and process parameters, the effect of the variables on particles size, morphology, solid state properties and drug release was studied. The optimization of operative and prilling/ionotropic gelation variables led to microspheres with almost spherical shape and a narrow dimensional range. The feed solution with the highest alginate (2.5% w/v) amount and drug/polymer ratio (1:5 w/w) gave rise to the highest encapsulation efficiency (78.5%) as in F6 formulation. As to drug release, F6 exhibited an interesting dissolution profile, releasing about 24% of the drug in simulated gastric fluid followed by a more sustained profile in simulated intestinal fluid. #F6, acting as a gastro-resistant and delayed release formulation, was selected for in vivo studies on male Wistar rats by means of a carrageenan-induced oedema model. Finally, this efficacious formulation was used as core material for the development of a final dosage form: F6/Cps allowed to significantly reduce prednisolone release in simulated gastric fluid (12.6%) and delayed drug release up to about 390 minutes.
Collapse
Affiliation(s)
- Andrea Cerciello
- Department of Pharmacy, University of Salerno, Fisciano, Italy
- PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, Italy
| | - Giulia Auriemma
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Rita P. Aquino
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | | - Paola Russo
- Department of Pharmacy, University of Salerno, Fisciano, Italy
- * E-mail:
| |
Collapse
|
23
|
Cerciello A, Auriemma G, Del Gaudio P, Cantarini M, Aquino RP. Natural polysaccharides platforms for oral controlled release of ketoprofen lysine salt. Drug Dev Ind Pharm 2016; 42:2063-2069. [DOI: 10.1080/03639045.2016.1195401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Andrea Cerciello
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
- PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, SA, Italy
| | - Giulia Auriemma
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | | | | | - Rita P. Aquino
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| |
Collapse
|
24
|
De Cicco F, Russo P, Reverchon E, García-González CA, Aquino RP, Del Gaudio P. Prilling and supercritical drying: A successful duo to produce core-shell polysaccharide aerogel beads for wound healing. Carbohydr Polym 2016; 147:482-489. [PMID: 27178955 DOI: 10.1016/j.carbpol.2016.04.031] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/11/2016] [Accepted: 04/07/2016] [Indexed: 01/15/2023]
Abstract
Bacterial infections often affect the wound, delaying healing and causing areas of necrosis. In this work, an aerogel in form of core-shell particles, able to prolong drug activity on wounds and to be easily removed was developed. Aerogel microcapsules consisted of a core made by amidated pectin hosting doxycycline, an antibiotic drug with a broad spectrum of action, and a shell consisting of high mannuronic content alginate. Particles were obtained by prilling using a coaxial nozzle for drop production and an ethanolic solution of CaCl2 as gelling promoter. The alcogels where dried using supercritical CO2. The influence of polysaccharides and drug concentrations on aerogel properties was evaluated. Spherical particles with high drug encapsulation efficiency (87%) correlated to alginate concentration in the processed liquid feeds were obtained. The release of the drug, mainly concentrated into the pectin core, was prolonged till 48h, and dependent on both drug/pectin ratio and alginate concentration.
Collapse
Affiliation(s)
- Felicetta De Cicco
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132 I-84084 Fisciano SA, Italy
| | - Paola Russo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132 I-84084 Fisciano SA, Italy
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132 I-84084 Fisciano SA, Italy
| | - Carlos A García-González
- Department of Pharmacy and Pharmaceutical Technology, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Rita Patrizia Aquino
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132 I-84084 Fisciano SA, Italy
| | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132 I-84084 Fisciano SA, Italy.
| |
Collapse
|
25
|
Cerciello A, Auriemma G, Del Gaudio P, Sansone F, Aquino RP, Russo P. A novel core–shell chronotherapeutic system for the oral administration of ketoprofen. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Fabien V, Minh-Quan L, Michelle S, Guillaume B, Van-Thanh T, Marie-Claire VJ. Development of prilling process for biodegradable microspheres through experimental designs. Int J Pharm 2016; 498:96-109. [PMID: 26656302 DOI: 10.1016/j.ijpharm.2015.11.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/27/2015] [Accepted: 11/28/2015] [Indexed: 01/29/2023]
Abstract
The prilling process proposes a microparticle formulation easily transferable to the pharmaceutical production, leading to monodispersed and highly controllable microspheres. PLGA microspheres were used for carrying an encapsulated protein and adhered stem cells on its surface, proposing a tool for regeneration therapy against injured tissue. This work focused on the development of the production of PLGA microspheres by the prilling process without toxic solvent. The required production quality needed a complete optimization of the process. Seventeen parameters were studied through experimental designs and led to an acceptable production. The key parameters and mechanisms of formation were highlighted.
Collapse
Affiliation(s)
- Violet Fabien
- LUNAM Université, Micro et Nanomédecines Biomimétiques (MINT), F-49933 Angers, France; INSERM U1066, F-49933 Angers, France
| | - Le Minh-Quan
- LUNAM Université, Micro et Nanomédecines Biomimétiques (MINT), F-49933 Angers, France; INSERM U1066, F-49933 Angers, France
| | - Sergent Michelle
- Aix Marseille Université, LISA, EA 4672, 13013 Marseille, France
| | - Bastiat Guillaume
- LUNAM Université, Micro et Nanomédecines Biomimétiques (MINT), F-49933 Angers, France; INSERM U1066, F-49933 Angers, France
| | - Tran Van-Thanh
- LUNAM Université, Micro et Nanomédecines Biomimétiques (MINT), F-49933 Angers, France; INSERM U1066, F-49933 Angers, France
| | - Venier-Julienne Marie-Claire
- LUNAM Université, Micro et Nanomédecines Biomimétiques (MINT), F-49933 Angers, France; INSERM U1066, F-49933 Angers, France.
| |
Collapse
|
27
|
Alginate beads as a carrier for omeprazole/SBA-15 inclusion compound: A step towards the development of personalized paediatric dosage forms. Carbohydr Polym 2015; 133:464-72. [DOI: 10.1016/j.carbpol.2015.07.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/17/2015] [Accepted: 07/19/2015] [Indexed: 02/02/2023]
|
28
|
Design and In Vivo Anti-Inflammatory Effect of Ketoprofen Delayed Delivery Systems. J Pharm Sci 2015; 104:3451-8. [DOI: 10.1002/jps.24554] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 05/29/2015] [Indexed: 11/07/2022]
|
29
|
Samanta D, Meiser JL, Zare RN. Polypyrrole nanoparticles for tunable, pH-sensitive and sustained drug release. NANOSCALE 2015; 7:9497-504. [PMID: 25931037 DOI: 10.1039/c5nr02196k] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We report the development of a generalized pH-sensitive drug delivery system that can release any charged drug preferentially at the pH range of interest. Our system is based on polypyrrole nanoparticles (PPy NPs), synthesized via a simple one-step microemulsion technique. These nanoparticles are highly monodisperse, stable in solution over the period of a month, and have good drug loading capacity (∼15 wt%). We show that PPy NPs can be tuned to release drugs at both acidic and basic pH by varying the pH, the charge of the drug, as well as by adding small amounts of charged amphiphiles. Moreover, these NPs may be delivered locally by immobilizing them in a hydrogel. Our studies show encapsulation within a calcium alginate hydrogel results in sustained release of the incorporated drug for more than 21 days. Such a nanoparticle-hydrogel composite drug delivery system is promising for treatment of long-lasting conditions such as cancer and chronic pain which require controlled, localized, and sustained drug release.
Collapse
Affiliation(s)
- Devleena Samanta
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
30
|
He D, Wang S, Lei L, Hou Z, Shang P, He X, Nie H. Core–shell particles for controllable release of drug. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2014.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|