1
|
Xiang J, Chen S, Hong T, He Y, Xu W, Wang Z, Tan S. Inhibitory effect of cyclodextrin on Maillard reaction and its mechanism. Int J Pharm 2023; 645:123371. [PMID: 37673279 DOI: 10.1016/j.ijpharm.2023.123371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/26/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Maillard reaction in pharmaceutical preparations refers to a complex chemical reaction existing between reducing excipients and amino-containing drugs in preparations, which can cause a series of quality problems in preparations. Maillard reaction belongs to chemical incompatibility in preparations, and measures should be taken to reduce or avoid it. In this study, the effect of cyclodextrins (commonly used pharmaceutical excipients) on the Maillard reaction and its mechanism in the lysine hydrochloride-lactose solid preparation model were explored for the first time. Our research results show that the embedding of lysine in cyclodextrin can inhibit the Maillard reaction of lysine to some extent, and the embedding of lysine in cyclodextrin with different structures has differences in the inhibitory effects on Maillard reaction.Among the five cyclodextrins we studied, α-CD and HP-β-CD embedded lysine can reduce Maillard reaction to a greater extent. We suspect that this may be related to the stability of the embedded substance, which needs further study and verification. And our research shows that the inclusion complex between lysine and cyclodextrin may be the result of hydrogen bond, electrostatic attraction, hydrophobic interaction and van der Waals force. Cyclodextrin is expected to solve the problem of Maillard reaction in pharmaceutical industry to some extent.
Collapse
Affiliation(s)
- Jia Xiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China; Jiangsu Daoning Pharmaceutical Co. Ltd., Changzhou, Jiangsu, China
| | - Shipeng Chen
- Cancer Research Institute, Central South University, Changsha, Hunan 410013, China
| | - Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yongju He
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Weicheng Xu
- Zibo Qianhui Biotechnology Co., Ltd., Zibo, Shandong, China
| | - Zhe Wang
- Zibo Qianhui Biotechnology Co., Ltd., Zibo, Shandong, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
2
|
Wearable and implantable devices for drug delivery: Applications and challenges. Biomaterials 2022; 283:121435. [DOI: 10.1016/j.biomaterials.2022.121435] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022]
|
3
|
Herbal medicine for ocular diseases: An age old therapy and its future perspective. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Costa R, Costa Lima SA, Gameiro P, Reis S. On the Development of a Cutaneous Flavonoid Delivery System: Advances and Limitations. Antioxidants (Basel) 2021; 10:1376. [PMID: 34573007 PMCID: PMC8472229 DOI: 10.3390/antiox10091376] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
Flavonoids are one of the vital classes of natural polyphenolic compounds abundantly found in plants. Due to their wide range of therapeutic properties, which include antioxidant, anti-inflammatory, photoprotective, and depigmentation effects, flavonoids have been demonstrated to be promising agents in the treatment of several skin disorders. However, their lipophilic nature and poor water solubility invariably lead to limited oral bioavailability. In addition, they are rapidly degraded and metabolized in the human body, hindering their potential contribution to the prevention and treatment of many disorders. Thus, to overcome these challenges, several cutaneous delivery systems have been extensively studied. Topical drug delivery besides offering an alternative administration route also ensures a sustained release of the active compound at the desired site of action. Incorporation into lipid or polymer-based nanoparticles appears to be a highly effective approach for cutaneous delivery of flavonoids with good encapsulation potential and reduced toxicity. This review focuses on currently available formulations used to administer either topically or systemically different classes of flavonoids in the skin, highlighting their potential application as therapeutic and preventive agents.
Collapse
Affiliation(s)
- Raquel Costa
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (R.C.); (S.A.C.L.)
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal;
| | - Sofia A. Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (R.C.); (S.A.C.L.)
| | - Paula Gameiro
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal;
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (R.C.); (S.A.C.L.)
| |
Collapse
|
5
|
Nashed N, Lam M, Nokhodchi A. A comprehensive overview of extended release oral dosage forms manufactured through hot melt extrusion and its combination with 3D printing. Int J Pharm 2021; 596:120237. [DOI: 10.1016/j.ijpharm.2021.120237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022]
|
6
|
Salehi B, Cruz-Martins N, Butnariu M, Sarac I, Bagiu IC, Ezzat SM, Wang J, Koay A, Sheridan H, Adetunji CO, Semwal P, Schoebitz M, Martorell M, Sharifi-Rad J. Hesperetin's health potential: moving from preclinical to clinical evidence and bioavailability issues, to upcoming strategies to overcome current limitations. Crit Rev Food Sci Nutr 2021; 62:4449-4464. [PMID: 33491467 DOI: 10.1080/10408398.2021.1875979] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Flavonoids are common in the plant kingdom and many of them have shown a wide spectrum of bioactive properties. Hesperetin (Hst), the aglycone form of hesperidin, is a great example, and is the most abundant flavonoid found in Citrus plants. This review aims to provide an overview on the in vitro, in vivo and clinical studies reporting the Hst pharmacological effects and to discuss the bioavailability-related issues. Preclinical studies have shown promising effects on cancer, cardiovascular diseases, carbohydrate dysregulation, bone health, and other pathologies. Clinical studies have supported the Hst promissory effects as cardioprotective and neuroprotective agent. However, further well-designed clinical trials are needed to address the other Hst effects observed in preclinical trials, as well as to a more in-depth understanding of its safety profile.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Portugal
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Timisoara, Romania
| | - Ioan Sarac
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Timisoara, Romania
| | - Iulia-Cristina Bagiu
- Timisoara, Discipline of Microbiology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Jinfan Wang
- Trinity College Dublin. NatPro (Natural Products Research Centre), School of Pharmacy and Pharmaceutical Science, Dublin, Ireland
| | - Aaron Koay
- Trinity College Dublin. NatPro (Natural Products Research Centre), School of Pharmacy and Pharmaceutical Science, Dublin, Ireland
| | - Helen Sheridan
- Trinity College Dublin. NatPro (Natural Products Research Centre), School of Pharmacy and Pharmaceutical Science, Dublin, Ireland
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University Iyamho, Auchi, Edo State, Nigeria
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand, India
- Uttarakhand State Council for Science and Technology, Dehradun, Uttarakhand, India
| | - Mauricio Schoebitz
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Universidad de Concepción, Concepción, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| |
Collapse
|
7
|
Krstić L, González-García MJ, Diebold Y. Ocular Delivery of Polyphenols: Meeting the Unmet Needs. Molecules 2021; 26:molecules26020370. [PMID: 33445725 PMCID: PMC7828190 DOI: 10.3390/molecules26020370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Nature has become one of the main sources of exploration for researchers that search for new potential molecules to be used in therapy. Polyphenols are emerging as a class of compounds that have attracted the attention of pharmaceutical and biomedical scientists. Thanks to their structural peculiarities, polyphenolic compounds are characterized as good scavengers of free radical species. This, among other medicinal effects, permits them to interfere with different molecular pathways that are involved in the inflammatory process. Unfortunately, many compounds of this class possess low solubility in aqueous solvents and low stability. Ocular pathologies are spread worldwide. It is estimated that every individual at least once in their lifetime experiences some kind of eye disorder. Oxidative stress or inflammatory processes are the basic etiological mechanisms of many ocular pathologies. A variety of polyphenolic compounds have been proved to be efficient in suppressing some of the indicators of these pathologies in in vitro and in vivo models. Further application of polyphenolic compounds in ocular therapy lacks an adequate formulation approach. Therefore, more emphasis should be put in advanced delivery strategies that will overcome the limits of the delivery site as well as the ones related to the polyphenols in use. This review analyzes different drug delivery strategies that are employed for the formulation of polyphenolic compounds when used to treat ocular pathologies related to oxidative stress and inflammation.
Collapse
Affiliation(s)
- Luna Krstić
- Insituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain; (L.K.); (M.J.G.-G.)
| | - María J. González-García
- Insituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain; (L.K.); (M.J.G.-G.)
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Yolanda Diebold
- Insituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain; (L.K.); (M.J.G.-G.)
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-883423274
| |
Collapse
|
8
|
Zhang F, Chen H, Lan J, Song K, Wu X. Preparation and in vitro/in vivo evaluations of novel ocular micelle formulations of hesperetin with glycyrrhizin as a nanocarrier. Exp Eye Res 2020; 202:108313. [PMID: 33080302 DOI: 10.1016/j.exer.2020.108313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to explore the potential of formulating hesperetin into an ophthalmic solution with dipotassium glycyrrhizinate (DG) as a micelle nanocarrier. A DG-based micelle ophthalmic solution encapsulating hesperetin (DG-Hes) was developed and its in vitro/in vivo characterizations were evaluated. The optimal formulation featured a DG/hesperetin (Hes) weight ratio of 12:1 and an encapsulation efficiency of 90.4 ± 1.7%; The optimized DG-Hes was characterized as small uniform spheres with an average micelle size of 70.93 ± 3.41 nm, a polydispersity index of 0.11 ± 0.02, and an electrically negative surface (-36.12 ± 2.79 mV). The DG-Hes ophthalmic solution had good tolerance in rabbit eyes. DG-Hes significantly improved the in vitro passive permeation, ex vivo corneal permeation, and in vivo ocular bioavailability of Hes. DG-Hes showed markedly increases in in vitro antioxidant activity. In vitro antibacterial activity tests revealed a lower minimum inhibitory concentration and lower minimum bactericidal concentration for DG-Hes ophthalmic solution were lower than for free Hes. DG-Hes ophthalmic solution also significantly reduced symptoms of eye infection in the rabbit bacterial keratitis model when compared to a Hes suspension. These results suggest that DG-Hes eye drops may be useful as a new ophthalmic preparation for the treatment of ocular diseases, especially bacterial ophthalmopathy.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Huabo Chen
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Jie Lan
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Kaichao Song
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xianggen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|
9
|
Melt-Cast Films Significantly Enhance Triamcinolone Acetonide Delivery to the Deeper Ocular Tissues. Pharmaceutics 2019; 11:pharmaceutics11040158. [PMID: 30987011 PMCID: PMC6523835 DOI: 10.3390/pharmaceutics11040158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/19/2019] [Accepted: 03/29/2019] [Indexed: 01/08/2023] Open
Abstract
Delivering an effective drug load to the posterior section of the ocular tissues, while using a non-invasive technique, has always been a challenge. In this regard, the goal of the present study was to develop sustained release triamcinolone acetonide (TA) loaded polymeric matrix films for ocular delivery. The TA-films were prepared in two different polymer matrices, with drug loadings of 10% and 20% w/w, and they were evaluated for ocular distribution in vivo in a conscious rabbit model. A 4% w/v TA suspension (TA-C) was used as a control for in vitro and in vivo studies. The TA-films, prepared with melt-cast technology, used polyethylene oxide (PEO) and Soluplus® as the polymer matrix. The films were evaluated with respect to assay, content uniformity, excipient interaction, and permeability across isolated rabbit sclera. The distribution of TA in the ocular tissues, post topical administration, was determined in New Zealand male albino rabbits as a function of dose, and was compared against TA-C. The assay of the 10% and 20% w/w film was in the range from 70–79% and 92–94% for the Soluplus® and PEO films, respectively, and content uniformity was in the range of 95–103% for both the films. The assay of the TA from Soluplus® films was less compared with the PEO films and showed an interaction with TA, as revealed by Differential Scanning Calorimetry (DSC). Hence, Soluplus® films were not selected for further studies. No interaction was observed between the drug and PEO polymer matrix. The enhancement of trans-scleral flux and permeability of TA was about 1.16 and 1.33-folds, respectively, from the 10% w/w PEO and 3.5 and 2.12-folds, respectively, from the 20% w/w PEO films, as compared with TA-C formulations. The in vivo studies demonstrate that significantly higher TA levels were observed in the anterior and posterior segments of the eye at the end of 6h with the PEO films. Therefore, the PEO based polymeric films were able to deliver TA into the back of the eye efficiently and for prolonged periods.
Collapse
|
10
|
Nagula RL, Wairkar S. Recent advances in topical delivery of flavonoids: A review. J Control Release 2019; 296:190-201. [PMID: 30682442 DOI: 10.1016/j.jconrel.2019.01.029] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 02/07/2023]
Abstract
Flavonoids are one of the vital classes of bioactive chemicals, abundantly found in plants. These are natural polyphenolic compounds derived from plant metabolites. Their lipophilic nature and poor solubility lead to variable and limited oral bioavailability. The substantial pharmacological properties of flavonoids include antioxidant, anti-inflammatory, antiproliferative, photoprotective, depigmentation, anti-aging which are very promising in the treatment of several skin disorders. Thus, various topical delivery systems of flavonoids have been extensively studied. Mostly, colloidal carriers of flavonoids were reported which are very efficient for topical route with good encapsulation potential, reduced toxicity, and overcome the limitations of conventional dosage forms. This review focuses on various formulations aspects, in vitro characterization and in vivo studies of different classes of flavonoids administered by topical route. Although flavonoids offer tremendous potential in healing the skin conditions categorically, its clinical translation needs in depth safety and efficacy data, meeting established regulatory standards.
Collapse
Affiliation(s)
- Ruchika L Nagula
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India.
| |
Collapse
|
11
|
Nayak K, Misra M. A review on recent drug delivery systems for posterior segment of eye. Biomed Pharmacother 2018; 107:1564-1582. [DOI: 10.1016/j.biopha.2018.08.138] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022] Open
|
12
|
Popielec A, Agnes M, Yannakopoulou K, Fenyvesi É, Loftsson T. Effect of β- and γ-cyclodextrins and their methylated derivatives on the degradation rate of benzylpenicillin. J INCL PHENOM MACRO 2018. [DOI: 10.1007/s10847-018-0816-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Popielec A, Agnes M, Yannakopoulou K, Fenyvesi É, Loftsson T. Self-assembled cyclodextrin-based nanoparticles for meropenem stabilization. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Balguri SP, Adelli GR, Tatke A, Janga KY, Bhagav P, Majumdar S. Melt-Cast Noninvasive Ocular Inserts for Posterior Segment Drug Delivery. J Pharm Sci 2017; 106:3515-3523. [PMID: 28778424 DOI: 10.1016/j.xphs.2017.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/30/2022]
Abstract
The objective of the present study was to evaluate the utility of melt-cast, topical, ocular inserts for delivery of drugs with different physicochemical properties. The model drugs tested include indomethacin (IN), ciprofloxacin hydrochloride, and prednisolone sodium phosphate. Melt-cast method was used to fabricate ophthalmic inserts. Polyethylene oxide N10, a semicrystalline thermoplastic polymer (polyethylene oxide N10; Mol. wt: 100 kDa) was used as the matrix-forming material. Polymeric insert units (4 × 2 × 0.2 mm) with a 10% w/w drug load were tested for in vitro release, transmembrane permeability, and in vivo ocular tissue distribution. Marketed ophthalmic solutions were used as control solutions. Drug content in all the formulations ranged between 93% and 102% of the theoretical value. Transmembrane flux of IN, prednisolone sodium phosphate, and ciprofloxacin hydrochloride was enhanced by ∼3.5-folds, ∼3.6-folds, and ∼2.9-folds, respectively, from the polymeric inserts compared with the control formulations, after 3 h. Moreover, ocular inserts generated significantly higher drug levels in all the ocular tissues, including the retina-choroid, compared with their control formulations. The melt-cast ophthalmic inserts show promise as an effective noninvasive ocular drug delivery platform, which will be highly beneficial in the intervention and treatment of a wide variety of ocular complications.
Collapse
Affiliation(s)
- Sai Prachetan Balguri
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi 38677
| | - Goutham R Adelli
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi 38677
| | - Akshaya Tatke
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi 38677
| | - Karthik Yadav Janga
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi 38677
| | - Prakash Bhagav
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi 38677
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi 38677; Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677.
| |
Collapse
|
15
|
Adelli GR, Bhagav P, Taskar P, Hingorani T, Pettaway S, Gul W, ElSohly MA, Repka MA, Majumdar S. Development of a Δ9-Tetrahydrocannabinol Amino Acid-Dicarboxylate Prodrug With Improved Ocular Bioavailability. Invest Ophthalmol Vis Sci 2017; 58:2167-2179. [PMID: 28399267 PMCID: PMC5389743 DOI: 10.1167/iovs.16-20757] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose The aim of the present study was to evaluate the utility of the relatively hydrophilic Δ9-tetrahydrocannabinol (THC) prodrugs, mono and di-valine esters (THC-Val and THC-Val-Val) and the amino acid (valine)-dicarboxylic acid (hemisuccinate) ester (THC-Val-HS), with respect to ocular penetration and intraocular pressure (IOP) lowering activity. THC, timolol, and pilocarpine eye drops were used as controls. Methods THC-Val, THC-Val-Val, and THC-Val-HS were synthesized and chemically characterized. Aqueous solubility and in vitro transcorneal permeability of THC and the prodrugs, in the presence of various surfactants and cyclodextrins, were determined. Two formulations were evaluated for therapeutic activity in the α-chymotrypsin induced rabbit glaucoma model, and the results were compared against controls comprising of THC emulsion and marketed timolol maleate and pilocarpine eye drops. Results THC-Val-HS demonstrated markedly improved solubility (96-fold) and in vitro permeability compared to THC. Selected formulations containing THC-Val-HS effectively delivered THC to the anterior segment ocular tissues in the anesthetized rabbits: 62.1 ng/100 μL of aqueous humor (AH) and 51.4 ng/50 mg of iris ciliary bodies (IC) (total THC). The duration and extent of IOP lowering induced by THC-Val-HS was 1 hour longer and 10% greater, respectively, than that obtained with THC and was comparable with the pilocarpine eye drops. Timolol ophthalmic drops, however, exhibited a longer duration of activity. Both THC and THC-Val-HS were detected in the ocular tissues following multiple dosing of THC-Val-HS in conscious animals. The concentration of THC in the iris-ciliary bodies at the 60- and 120-minute time points (53 and 57.4 ng/50 mg) were significantly greater than that of THC-Val-HS (24.2 and 11.3 ng/50 mg). Moreover, at the two time points studied, the concentration of THC was observed to increase or stay relatively constant, whereas THC-Val-HS concentration decreased by at least 50%. A similar trend was observed in the retina-choroid tissues. Conclusions A combination of prodrug derivatization and formulation development approaches significantly improved the penetration of THC into the anterior segment of the eye following topical application. Enhanced ocular penetration resulted in significantly improved IOP-lowering activity.
Collapse
Affiliation(s)
- Goutham R Adelli
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, United States
| | - Prakash Bhagav
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, United States
| | - Pranjal Taskar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, United States
| | - Tushar Hingorani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, United States
| | - Sara Pettaway
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi, United States
| | - Waseem Gul
- ElSohly Laboratories, Inc., Oxford, Mississippi, United States
| | - Mahmoud A ElSohly
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, United States 3ElSohly Laboratories, Inc., Oxford, Mississippi, United States
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, United States 4Research Institute of Pharmaceutical Sciences, University of Mississippi, University, Mississippi, United States
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, United States
| |
Collapse
|
16
|
Balguri SP, Adelli GR, Janga KY, Bhagav P, Majumdar S. Ocular disposition of ciprofloxacin from topical, PEGylated nanostructured lipid carriers: Effect of molecular weight and density of poly (ethylene) glycol. Int J Pharm 2017. [PMID: 28634139 DOI: 10.1016/j.ijpharm.2017.06.042] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ciprofloxacin (CIP) is an antibacterial agent prescribed for the treatment of ocular infections. The objective of the present project is to investigate the effect of surface PEG functionalization of the Nano structured lipid carriers (NLCs) on formulation stability, ocular penetration and distribution. CIP NLCs were tested with different molecular weight (poly ethylene glycol) PEGs ranging from (2K to 20K) grafted onto the phospholipid and with different chain lengths (14-18 carbons) of phospholipids derivatized with PEG-2K. Drug load in the formulations was maintained at 0.3%w/v. Formulations prepared were evaluated with respect to in vitro release, transcorneal permeation, autoclavability, morphological characteristics and in vivo ocular tissue distribution. Scanning Transmission electron microscopy (STEM) studies revealed that the PEG-CIP-NLCs were spherical in shape. Transcorneal penetration of CIP was optimum with PEG molecular weight in between 2K-10K. Carbon chain length of the phospholipid, however, did not affect transcorneal penetration of CIP. In vivo ocular tissue CIP concentrations attained from the various formulations was consistent with the in vitro data obtained. The results suggest that surface functionalization of PEGs, within a specified range of molecular weight and surface packing density, significantly enhance trans-ocular penetration and impart sterilization-stabilization characteristics into the formulations.
Collapse
Affiliation(s)
- Sai Prachetan Balguri
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Goutham R Adelli
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Karthik Yadav Janga
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Prakash Bhagav
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS, 38677, United States; Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, MS, 38677, United States.
| |
Collapse
|
17
|
Adelli GR, Balguri SP, Bhagav P, Raman V, Majumdar S. Diclofenac sodium ion exchange resin complex loaded melt cast films for sustained release ocular delivery. Drug Deliv 2017; 24:370-379. [PMID: 28165833 PMCID: PMC8253122 DOI: 10.1080/10717544.2016.1256000] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Purpose: The goal of the present study is to develop polymeric matrix films loaded with a combination of free diclofenac sodium (DFSfree) and DFS:Ion exchange resin complexes (DFS:IR) for immediate and sustained release profiles, respectively. Methods: Effect of ratio of DFS and IR on the DFS:IR complexation efficiency was studied using batch processing. DFS:IR complex, DFSfree, or a combination of DFSfree + DFS:IR loaded matrix films were prepared by melt-cast technology. DFS content was 20% w/w in these matrix films. In vitro transcorneal permeability from the film formulations were compared against DFS solution, using a side-by-side diffusion apparatus, over a 6 h period. Ocular disposition of DFS from the solution, films and corresponding suspensions were evaluated in conscious New Zealand albino rabbits, 4 h and 8 h post-topical administration. All in vivo studies were carried out as per the University of Mississippi IACUC approved protocol. Results: Complexation efficiency of DFS:IR was found to be 99% with a 1:1 ratio of DFS:IR. DFS release from DFS:IR suspension and the film were best-fit to a Higuchi model. In vitro transcorneal flux with the DFSfree + DFS:IR(1:1)(1 + 1) was twice that of only DFS:IR(1:1) film. In vivo, DFS solution and DFS:IR(1:1) suspension formulations were not able to maintain therapeutic DFS levels in the aqueous humor (AH). Both DFSfree and DFSfree + DFS:IR(1:1)(3 + 1) loaded matrix films were able to achieve and maintain high DFS concentrations in the AH, but elimination of DFS from the ocular tissues was much faster with the DFSfree formulation. Conclusion: DFSfree + DFS:IR combination loaded matrix films were able to deliver and maintain therapeutic DFS concentrations in the anterior ocular chamber for up to 8 h. Thus, free drug/IR complex loaded matrix films could be a potential topical ocular delivery platform for achieving immediate and sustained release characteristics.
Collapse
Affiliation(s)
- Goutham R Adelli
- a Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University , MS , USA
| | - Sai Prachetan Balguri
- a Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University , MS , USA
| | - Prakash Bhagav
- a Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University , MS , USA
| | - Vijayasankar Raman
- b National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University , MS , USA , and
| | - Soumyajit Majumdar
- a Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University , MS , USA.,c Research Institute of Pharmaceutical Sciences, The University of Mississippi, University , MS , USA
| |
Collapse
|
18
|
Popielec A, Loftsson T. Effects of cyclodextrins on the chemical stability of drugs. Int J Pharm 2017; 531:532-542. [PMID: 28596139 DOI: 10.1016/j.ijpharm.2017.06.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/30/2017] [Accepted: 06/03/2017] [Indexed: 12/21/2022]
Abstract
Cyclodextrins (CDs) are enabling pharmaceutical excipients that can enhance both solubility and stability of wide variety of drugs in aqueous solutions through formation of drug/CD inclusion complexes where apolar moieties of the drug molecules are located inside the CD cavity. In properly designed pharmaceutical formulations CDs will improve physiochemical properties of lipophilic drugs without affecting their intrinsic ability to permeate biological membranes. Here the effect of CD complexes on the chemical stability of drugs is reviewed. Numerous studies shown that in aqueous solutions CD complexation can hamper hydrolysis, oxidation, photodegradation, isomerization and enzyme catalyzed degradation of dissolved drugs. However, some drugs, such as β-lactam antibiotics, can under certain conditions undergo CD catalyzed degradation in aqueous solutions. Also, some drugs that are stabilized by CDs in aqueous solutions are destabilized by the same CDs in solid dosage forms. Thus, the effects of CDs on drug stability have to be tested and verified in the final drug formulation and under the recommended storage conditions.
Collapse
Affiliation(s)
- Agnieszka Popielec
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland.
| |
Collapse
|
19
|
Loftsson T, Stefánsson E. Cyclodextrins and topical drug delivery to the anterior and posterior segments of the eye. Int J Pharm 2017; 531:413-423. [PMID: 28391041 DOI: 10.1016/j.ijpharm.2017.04.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/31/2022]
Abstract
It is generally believed that it is virtually impossible to obtain therapeutic drug concentrations in the posterior segment of the eye after topical application of aqueous, low viscosity eye drops. Thus, intravitreal drug injections and drug implants are currently used to treat diseases in the posterior segment such as macular edema. Here it is described how, through proper analysis of the drug permeation barriers and application of well-known pharmaceutical excipients, aqueous eye drops are designed that can deliver lipophilic drugs to the posterior segment as well as how such eye drops can maintain high drug concentrations in the anterior segment. Through stepwise optimization, eye drops containing solid drug/cyclodextrin complex microparticles with a mean diameter of 2-4μm, dissolved drug/cyclodextrin complex nanoparticles and dissolved drug molecules in an aqueous eye drop media of low viscosity were designed. After administration of the eye drops the microparticles slowly dissolved and maintained close to saturated drug concentrations in the aqueous tear fluid for several hours. Studies in rabbits and clinical evaluations in humans, using dorzolamide and dexamethasone as sample drugs, show that the eye drops deliver significant amounts of drugs to both the posterior segment and anterior segment of the eye. Clinical studies indicate that the eye drops can replace intravitreal injections and implants that are currently used to treat ophthalmic diseases and decrease frequency of drug administration, both of which can improve patient compliance.
Collapse
Affiliation(s)
- Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland.
| | - Einar Stefánsson
- Department of Ophthalmology, Faculty of Medicine, National University Hospital, Eiríksgata 37, IS-101 Reykjavík, Iceland
| |
Collapse
|
20
|
Menezes PDP, Frank LA, Lima BDS, de Carvalho YMBG, Serafini MR, Quintans-Júnior LJ, Pohlmann AR, Guterres SS, Araújo AADS. Hesperetin-loaded lipid-core nanocapsules in polyamide: a new textile formulation for topical drug delivery. Int J Nanomedicine 2017; 12:2069-2079. [PMID: 28352176 PMCID: PMC5358993 DOI: 10.2147/ijn.s124564] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chronic venous insufficiency is characterized by chronic reflux disorder of blood from the peripheral to the central vein, with subsequent venous hypertension and resulting changes in the skin. Traditionally, nonsurgical treatments relied on the use of compression therapy, and more recently a variety of flavonoids have been shown to have positive effects. There have also been developments of more effective drug delivery systems using various textiles and nanotechnology to provide new therapeutic options. Our objective was to use nanotechnology to develop a new formulation containing hesperetin (Hst), a substance not previously used in the treatment of chronic venous insufficiency, impregnated into textile fibers as a possible alternative treatment of venous diseases. We prepared the nanocapsules using the interfacial deposition of preformed polymer method with an Hst concentration of 0.5 mg/mL and then characterized the size and distribution of particles. To quantify the Hst in the samples, we developed an analytical method using high-performance liquid chromatography. Studies of encapsulation efficiency (98.81%±0.28%), microscopy, drug release (free-Hst: 104.96%±12.83%; lipid-core nanocapsule-Hst: 69.90%±1.33%), penetration/permeation, drug content (0.46±0.01 mg/mL) and the effect of washing the textile after drug impregnation were performed as part of the study. The results showed that nanoparticles of a suitable size and distribution with controlled release of the drug and penetration/permeation into the skin layers were achieved. Furthermore, it was established that polyamide was able to hold more of the drug, with a 2.54 times higher content than the cotton fiber; after one wash and after five washes, this relation was 2.80 times higher. In conclusion, this is a promising therapeutic alternative to be further studied in clinical trials.
Collapse
Affiliation(s)
| | - Luiza Abrahão Frank
- College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruno Dos Santos Lima
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Mairim Russo Serafini
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Adriana Raffin Pohlmann
- Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | |
Collapse
|