1
|
Bedulho das Lages Y, Milanino N, Verin J, Willart JF, Danede F, Vincent C, Bawuah P, Zeitler JA, Siepmann F, Siepmann J. EVA implants for controlled drug delivery to the inner ear. Int J Pharm X 2024; 8:100271. [PMID: 39252691 PMCID: PMC11381462 DOI: 10.1016/j.ijpx.2024.100271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 09/11/2024] Open
Abstract
This study evaluated the potential of poly(ethylene vinyl acetate) (EVA) copolymers as matrix formers in miniaturised implants, allowing to achieve controlled drug delivery into the inner ear. Due to the blood-cochlea barrier, it is impossible to reliably deliver a drug to this tiny and highly sensitive organ in clinical practice. To overcome this bottleneck, different EVA implants were prepared by hot melt extrusion, altering the vinyl acetate content and implant diameter. Dexamethasone was incorporated as a drug with anti-inflammatory and anti-fibrotic activity. Its release was measured into artificial perilymph, and the systems were thoroughly characterised before and after exposure to the medium by optical and scanning electron microscopy, SEM-EDX analysis, DSC, X-ray powder diffraction, X-ray microtomography and texture analysis. Notably, the resulting drug release rates were much higher than from silicone-based implants of similar size. Furthermore, varying the vinyl acetate content allowed for adjusting the desired release patterns effectively: With decreasing vinyl acetate content, the crystallinity of the copolymer increased, and the release rate decreased. Interestingly, the drug was homogeneously distributed as tiny crystals throughout the polymeric matrices. Upon contact with aqueous fluids, water penetrates the implants and dissolves the drug, which subsequently diffuses out of the device. Importantly, no noteworthy system swelling or shrinking was observed for up to 10 months upon exposure to the release medium, irrespective of the EVA grade. Also, the mechanical properties of the implants can be expected to allow for administration into the inner ear of a patient, being neither too flexible nor too rigid.
Collapse
Affiliation(s)
| | - N Milanino
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J Verin
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J F Willart
- Univ. Lille, UMR CNRS 8207, UMET, F-59000 Lille, France
| | - F Danede
- Univ. Lille, UMR CNRS 8207, UMET, F-59000 Lille, France
| | - C Vincent
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - P Bawuah
- Univ. Cambridge, Department of Chemical Engineering and Biotechnology, Cambridge CB3 0AS, UK
| | - J A Zeitler
- Univ. Cambridge, Department of Chemical Engineering and Biotechnology, Cambridge CB3 0AS, UK
| | - F Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| |
Collapse
|
2
|
Shen M, Liao X, Xianyu Y, Liu D, Ding T. Polydimethylsiloxane Membranes Incorporating Metal-Organic Frameworks for the Sustained Release of Antibacterial Agents. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12662-12673. [PMID: 35239326 DOI: 10.1021/acsami.1c24921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cyclodextrin metal-organic frameworks (CD-MOFs) possess great potential in environmental applications due to their high specific surface area and good biocompatibility properties. However, the hydrophilicity of the CD-MOF hinders its ability to maintain a sustained release in water as a carrier. In this study, we prepared a CD-MOF that has codelivery ability for both phytochemicals [caffeic acid (CA)] and silver nanoparticles (Ag NPs) and further incorporated this material (CA@Ag@CD-MOF) into the polydimethylsiloxane (PDMS) matrix to construct a hybrid membrane. This hybrid membrane could effectively maintain the release capacity of the CD-MOF in water, while endowing PDMS with swelling ability in water. The hybrid membrane can achieve a sustained release for up to 48 h in water. In addition, the elastic modulus of the hybrid membrane increases by nearly 100%, and the swelling degree of the hybrid membrane in water increases by 42% compared with that of the pure PDMS membrane, indicating better mechanical properties. The hybrid membrane exhibits excellent antibacterial effects on Escherichia coli O157:H7 (E. coli O157:H7) and Staphylococcus aureus (S. aureus). We expect that this work will be beneficial to the delivery research of the CD-MOF in more environmental scenarios, especially in water treatment.
Collapse
Affiliation(s)
- Mofei Shen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinyu Liao
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yunlei Xianyu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Donghong Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tian Ding
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
3
|
Toulemonde P, Risoud M, Lemesre PE, Beck C, Wattelet J, Tardivel M, Siepmann J, Vincent C. Evaluation of the Efficacy of Dexamethasone-Eluting Electrode Array on the Post-Implant Cochlear Fibrotic Reaction by Three-Dimensional Immunofluorescence Analysis in Mongolian Gerbil Cochlea. J Clin Med 2021; 10:jcm10153315. [PMID: 34362099 PMCID: PMC8347204 DOI: 10.3390/jcm10153315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Cochlear implant is the method of choice for the rehabilitation of severe to profound sensorineural hearing loss. The study of the tissue response to cochlear implantation and the prevention of post-cochlear-implant damages are areas of interest in hearing protection research. The objective was to assess the efficacy of dexamethasone-eluting electrode array on endo canal fibrosis formation by three-dimensional immunofluorescence analysis in implanted Mongolian gerbil cochlea. Two trials were conducted after surgery using Mongolian gerbil implanted with dexamethasone-eluting or non-eluting intracochlear electrode arrays. The animals were then euthanised 10 weeks after implantation. The cochleae were prepared (electrode array in place) according to a 29-day protocol with immunofluorescent labelling and tissue clearing. The acquisition was carried out using light-sheet microscopy. Imaris software was then used for three-dimensional analysis of the cochleae and quantification of the fibrotic volume. The analysis of 12 cochleae showed a significantly different mean volume of fibrosis (2.16 × 108 μm3 ± 0.15 in the dexamethasone eluting group versus 3.17 × 108 μm3 ± 0.54 in the non-eluting group) (p = 0.004). The cochlear implant used as a corticosteroid delivery system appears to be an encouraging device for the protection of the inner ear against fibrosis induced by implantation. Three-dimensional analysis of the cochlea by light-sheet microscopy was suitable for studying post-implantation tissue damage.
Collapse
Affiliation(s)
- Philippine Toulemonde
- Department of Otology and Neurotology, CHU Lille, University of Lille 2 Henri Warembourg, F-59000 Lille, France; (M.R.); (P.E.L.); (C.B.); (J.W.); (J.S.); (C.V.)
- INSERM U1008—Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
- Correspondence: ; Tel.: +33-6851-91052
| | - Michaël Risoud
- Department of Otology and Neurotology, CHU Lille, University of Lille 2 Henri Warembourg, F-59000 Lille, France; (M.R.); (P.E.L.); (C.B.); (J.W.); (J.S.); (C.V.)
- INSERM U1008—Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Pierre Emmanuel Lemesre
- Department of Otology and Neurotology, CHU Lille, University of Lille 2 Henri Warembourg, F-59000 Lille, France; (M.R.); (P.E.L.); (C.B.); (J.W.); (J.S.); (C.V.)
- INSERM U1008—Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Cyril Beck
- Department of Otology and Neurotology, CHU Lille, University of Lille 2 Henri Warembourg, F-59000 Lille, France; (M.R.); (P.E.L.); (C.B.); (J.W.); (J.S.); (C.V.)
- INSERM U1008—Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Jean Wattelet
- Department of Otology and Neurotology, CHU Lille, University of Lille 2 Henri Warembourg, F-59000 Lille, France; (M.R.); (P.E.L.); (C.B.); (J.W.); (J.S.); (C.V.)
- INSERM U1008—Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Meryem Tardivel
- BioImaging Center Lille-Nord de France (BICeL), University of Lille 2 Henri Warembourg, F-59000 Lille, France;
| | - Juergen Siepmann
- Department of Otology and Neurotology, CHU Lille, University of Lille 2 Henri Warembourg, F-59000 Lille, France; (M.R.); (P.E.L.); (C.B.); (J.W.); (J.S.); (C.V.)
- INSERM U1008—Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Christophe Vincent
- Department of Otology and Neurotology, CHU Lille, University of Lille 2 Henri Warembourg, F-59000 Lille, France; (M.R.); (P.E.L.); (C.B.); (J.W.); (J.S.); (C.V.)
- INSERM U1008—Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| |
Collapse
|
4
|
Controlled Drug Release by the Pore Structure in Polydimethylsiloxane Transdermal Patches. Polymers (Basel) 2020; 12:polym12071520. [PMID: 32650625 PMCID: PMC7407597 DOI: 10.3390/polym12071520] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 11/16/2022] Open
Abstract
The use of polydimethylsiloxanes (PDMS) as a drug carrier in transdermal adhesive patches is limited and there is insufficient data on the polymer structure and diffusivity, especially when additives modify the matrix. PDMS films with liquid additives (10% w/w): silicone oil (SO), polyoxyethylene glycol (PEG) or propylene glycol (PG) were prepared and indomethacin (IND; 5% w/w) was incorporated as a model active substance. The microstructure of the PDMS matrix and its permeability to water was investigated and correlated to the kinetics of the in-vitro IND release from the film. Three microscopic techniques were used to characterize in detail the microstructure of PDMS films: scanning electron microscopy, fluorescent microscopy and atomic force microscopy. PDMS films with hydrophilic PEG or PG showed different two-phase structures. A two-fold increase in steady-state flux of IND and increased water transport in the presence of PEG was attributed to the pore-like channels created by this polar solvent in the PDMS matrix. This effect was not observed in the films with PG, where only discontinuous droplet-like structures were visible. All additives significantly changed the tensile parameters of the films but the effects were not very pronounced.
Collapse
|
5
|
Poly-Lactic Acid-Based Biopolymer Formulations Are Safe for Sustained Intratympanic Dexamethasone Delivery. Otol Neurotol 2020; 40:e739-e746. [PMID: 31295207 DOI: 10.1097/mao.0000000000002305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS AND BACKGROUND The clinical treatment of sudden sensorineural hearing loss currently relies on the administration of steroids, either systemically or via intratympanic injections. Intratympanic injections bypass the hemato-cochlear barrier, reducing its systemic side effects. The efficacy of the injections is limited through rapid drug clearance via the Eustachian tube, and through nonoptimal properties of slow-release drug carriers. A new slow-release drug delivery vehicle based on hexyl-substituted-poly-lactic-acid (HexPLA), with the highest possible safety profile and complete bio-degradability, has been evaluated for safety and efficacy in a standardized guinea pig model of intratympanic injection. METHODS A total of 83 animals received through retrobullar injection either empty Nile-red-colored HexPLA vehicle, 5%-dexamethasone-HexPLA, 5%-dexamethasone suspension, or a sham operation. Long-term residence time of vehicle, biocompatibility, click- and pure-tone hearing thresholds, and dexamethasone levels in the perilymph were prospectively assessed. RESULTS At 1 week after injection, HexPLA vehicle was morphologically present in the middle ear and perilymph levels in the 5%-dexamethasone-HexPLA were on average 2 to 3 μg/ml and one order of magnitude higher compared with those of the 5%-dexamethasone suspension group. No significant postoperative morphological or functional changes were observed up to 3 months postdelivery. CONCLUSIONS HexPLA is safe, fully biocompatible, and efficient for sustained high-dose, intratympanic delivery of dexamethasone at least for 1 week and therefore of high interest for the treatment of sudden sensorineural hearing loss and other acute inner ear diseases. Due to the favorable chemical properties, a wide range of other drugs can be loaded into the vehicle further increasing its potential value for otological applications.
Collapse
|
6
|
Tsoka M, Oikonomou P, Papadokostaki KG, Sanopoulou M. Properties of Polydimethylsiloxane Modified by Blending with Polyvinylpyrrolidone and a Poly(ethylene oxide)-Poly(propylene oxide) Triblock Copolymer. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maria Tsoka
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, 15310 Ag. Paraskevi, Athens, Greece
| | - Petros Oikonomou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, 15310 Ag. Paraskevi, Athens, Greece
| | - Kyriaki G. Papadokostaki
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, 15310 Ag. Paraskevi, Athens, Greece
| | - Merope Sanopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, 15310 Ag. Paraskevi, Athens, Greece
| |
Collapse
|
7
|
A cochlear implant loaded with dexamethasone and coated with hyaluronic acid to inhibit fibroblast adhesion and proliferation. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Gehrke M, Verin J, Gnansia D, Tourrel G, Risoud M, Vincent C, Siepmann F, Siepmann J. Hybrid Ear Cubes for local controlled dexamethasone delivery to the inner ear. Eur J Pharm Sci 2018; 126:23-32. [PMID: 29723597 DOI: 10.1016/j.ejps.2018.04.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/18/2018] [Accepted: 04/29/2018] [Indexed: 01/13/2023]
Abstract
A new type of miniaturized implants for local controlled drug delivery to the inner ear is proposed: Hybrid Ear Cubes. They are composed of two main parts: (i) a cylinder, which is placed into a tiny hole (<0.4 mm) drilled into (or close to) the oval (or round) window, and (ii) a cuboid, which is placed into the middle ear. The drug is released at a pre-programmed rate into the perilymph: (i) via the cylindrical part of the implant, which is in direct contact with this liquid, and (ii) via diffusion from the cuboid through the oval/round window. Importantly, the cylindrical part assures a reliable fixation of the drug delivery system at the site of administration. Furthermore, the cuboid provides a relatively "large" drug reservoir, without expulsing perilymph from the cochlea. The required surgery is minimized compared to the placement of an intracochlear implant. In contrast to previously proposed Ear Cubes, which are mono-block systems, Hybrid Ear Cubes consist of two halves, which can: (i) be loaded with different drugs, (ii) be loaded with the same drug at different concentrations, and/or (iii) be based on two different matrix formers. This offers a substantially increased formulation flexibility. Different types of silicone-based Hybrid Ear Cubes were prepared, loaded with 10% dexamethasone in one half and 0-60% dexamethasone in the other half. Importantly, tiny drug crystals were homogeneously distributed throughout the respective implant halves. The observed drug release rates were very low (e.g., <0.5% after 2 months), which can be attributed to the type of drug and silicone as well as to the very small surface area exposed to the release medium. Importantly, no noteworthy implant swelling was observed.
Collapse
Affiliation(s)
- M Gehrke
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J Verin
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - D Gnansia
- Oticon Medical/Neurelec, R&D, 2720 Chemin Saint-Bernard, F-06224 Vallauris, France
| | - G Tourrel
- Oticon Medical/Neurelec, R&D, 2720 Chemin Saint-Bernard, F-06224 Vallauris, France
| | - M Risoud
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - C Vincent
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - F Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France.
| |
Collapse
|
9
|
Panou AI, Mantes N, Papadokostaki KG, Sanopoulou M. Solute permeability of elastomeric films containing dispersed swellable hydrophilic particles: A composite material approach. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.06.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Abstract
Implants for controlled drug delivery can be very helpful to improve the therapeutic efficacy of a medical treatment, and at the same time reduce the risk of toxic side effects. In this article, four different strategies are exemplarily presented: hybrid bone substitutes combining hydroxyapatite and chitosan hydrogels; vascular stents coated with a bio-inspired polymer; cochlear implants for local dexamethasone delivery; and in-situ forming implants for periodontitis treatment. But this is only a restricted selection, and numerous other approaches and applications based on implants releasing a drug (or a combination of drugs) exist. Compared to conventional implants or pharmaceutical dosage forms, they might offer decisive advantages.
Collapse
Affiliation(s)
- Nicolas Blanchemain
- Université de Lille, Inserm, U1008, CHU de Lille, Controlled Drug Delivery Systems and Biomaterials, Faculté des Sciences Pharmaceutiques et Biologiques de Lille, F-59000 Lille, France
| | - Florence Siepmann
- Université de Lille, Inserm, U1008, CHU de Lille, Controlled Drug Delivery Systems and Biomaterials, Faculté des Sciences Pharmaceutiques et Biologiques de Lille, F-59000 Lille, France
| | - Juergen Siepmann
- Université de Lille, Inserm, U1008, CHU de Lille, Controlled Drug Delivery Systems and Biomaterials, Faculté des Sciences Pharmaceutiques et Biologiques de Lille, F-59000 Lille, France
| |
Collapse
|
11
|
Gehrke M, Sircoglou J, Gnansia D, Tourrel G, Willart JF, Danede F, Lacante E, Vincent C, Siepmann F, Siepmann J. Ear Cubes for local controlled drug delivery to the inner ear. Int J Pharm 2016; 509:85-94. [DOI: 10.1016/j.ijpharm.2016.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 02/06/2023]
|