1
|
Sukocheva OA, Liu J, Neganova ME, Beeraka NM, Aleksandrova YR, Manogaran P, Grigorevskikh EM, Chubarev VN, Fan R. Perspectives of using microRNA-loaded nanocarriers for epigenetic reprogramming of drug resistant colorectal cancers. Semin Cancer Biol 2022; 86:358-375. [PMID: 35623562 DOI: 10.1016/j.semcancer.2022.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023]
Abstract
Epigenetic regulation by microRNAs (miRs) demonstrated a promising therapeutic potential of these molecules to regulate genetic activity in different cancers, including colorectal cancers (CRCs). The RNA-based therapy does not change genetic codes in tumor cells but can silence oncogenes and/or reactivate inhibited tumor suppressor genes. In many cancers, specific miRs were shown to promote or stop tumor progression. Among confirmed and powerful epigenetic regulators of colon carcinogenesis and development of resistance are onco-miRs, which include let-7, miR-21, miR-22, miR-23a, miR-27a, miR-34, miR-92, miR-96, miR-125b, miR-135b, miR-182, miR-200c, miR-203, miR-221, miR-421, miR-451, and others. Moreover, various tumor-suppressor miRs (miR-15b-5b, miR-18a, miR-20b, miR-22, miR-96, miR-139-5p, miR-145, miR-149, miR-197, miR-199b, miR-203, miR-214, miR-218, miR-320, miR-375-3p, miR-409-3p, miR-450b-5p, miR-494, miR-577, miR-874, and others) were found silenced in drug-resistant CRCs. Re-expression of tumor suppressor miR is complicated by the chemical nature of miRs that are not long-lasting compounds and require protection from the enzymatic degradation. Several recent studies explored application of miRs using nanocarrier complexes. This study critically describes the most successfully tested nanoparticle complexes used for intracellular delivery of nuclear acids and miRs, including micelles, liposomes, inorganic and polymeric NPs, dendrimers, and aptamers. Nanocarriers shield incorporated miRs and improve the agent stability in circulation. Attachment of antibodies and/or specific peptide or ligands facilitates cell-targeted miR delivery. Addressing in vivo challenges, a broad spectrum of non-toxic materials has been tested and indicated reliable advantages of lipid-based (lipoplexes) and polymer-based liposomes. Recent cutting-edge developments indicated that lipid-based complexes with multiple cargo, including several miRs, are the most effective approach to eradicate drug-resistant tumors. Focusing on CRC-specific miRs, this review provides a guidance and insights towards the most promising direction to achieve dramatic reduction in tumor growth and metastasis using miR-nanocarrier complexes.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Cancer Center and Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou 450052, China; The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Queensland, Australia; Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, SA 5042, Australia.
| | - Junqi Liu
- Cancer Center and Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou 450052, China
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka 142432, Russia
| | - Narasimha M Beeraka
- Cancer Center and Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou 450052, China; Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow 119991, Russia; Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), JSS Medical College, Mysuru, Karnataka, India
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka 142432, Russia
| | - Prasath Manogaran
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Ekaterina M Grigorevskikh
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow 119991, Russia
| | - Vladimir N Chubarev
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow 119991, Russia
| | - Ruitai Fan
- Cancer Center and Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou 450052, China.
| |
Collapse
|
2
|
Zhuang Y, Zhao Y, Wang B, Wang Q, Cai T, Cai Y. Strategies for Preparing Different Types of Lipid Polymer Hybrid Nanoparticles in Targeted Tumor Therapy. Curr Pharm Des 2021; 27:2274-2288. [PMID: 33222665 DOI: 10.2174/1381612826666201120155558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/27/2020] [Indexed: 11/22/2022]
Abstract
At present, cancer is one of the most common diseases in the world, causing a large number of deaths and seriously affecting people's health. The traditional treatment of cancer is mainly surgery, radiotherapy or chemotherapy. Conventional chemotherapy is still an important treatment, but it has some shortcomings, such as poor cell selectivity, serious side effects, drug resistance and so on. Nanoparticle administration can improve drug stability, reduce toxicity, prolong drug release time, prolong system half-life, and bring broad prospects for tumor therapy. Lipid polymer hybrid nanoparticles (LPNs), which combine the advantages of polymer core and phospholipid shell to form a single platform, have become multi-functional drug delivery platforms. This review introduces the basic characteristics, structure and preparation methods of LPNs, and discusses targeting strategies of LPNs in tumor therapy in order to overcome the defects of traditional drug therapy.
Collapse
Affiliation(s)
- Yong Zhuang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yiye Zhao
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Bingyue Wang
- Guangzhou Jiayuan Medical and Pharmaceutical Technology Co., Ltd., Guangzhou 510663, China
| | - Qi Wang
- Guangzhou Jiayuan Medical and Pharmaceutical Technology Co., Ltd., Guangzhou 510663, China
| | - Tiange Cai
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Rajpoot K. Lipid-based Nanoplatforms in Cancer Therapy: Recent Advances and Applications. Curr Cancer Drug Targets 2020; 20:271-287. [PMID: 31951180 DOI: 10.2174/1568009620666200115160805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/20/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022]
Abstract
Though modern available cancer therapies are effective, they possess major adverse effects, causing non-compliance to patients. Furthermore, the majority of the polymeric-based medication platforms are certainly not universally acceptable, due to their several restrictions. With this juxtaposition, lipid-based medication delivery systems have appeared as promising drug nanocarriers to replace the majority of the polymer-based products because they are in a position to reverse polymer as well as, drug-associated restrictions. Furthermore, the amalgamation of the basic principle of nanotechnology in designing lipid nanocarriers, which are the latest form of lipid carriers, has tremendous chemotherapeutic possibilities as tumor-targeted drug-delivery pertaining to tumor therapy. Apart from this, it is reported that nearly 40% of the modern medication entities are lipophilic. Moreover, research continues to be efficient in attaining a significant understanding of the absorption and bioavailability of the developed lipids systems.
Collapse
Affiliation(s)
- Kuldeep Rajpoot
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh- 495009, India
| |
Collapse
|
4
|
Rahman M, Alharbi KS, Alruwaili NK, Anfinan N, Almalki WH, Padhy I, Sambamoorthy U, Swain S, Beg S. Nucleic acid-loaded lipid-polymer nanohybrids as novel nanotherapeutics in anticancer therapy. Expert Opin Drug Deliv 2020; 17:805-816. [DOI: 10.1080/17425247.2020.1757645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Khalid S. Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Nisrin Anfinan
- Department of Obstetrics and Gynecology, Gynecology Oncology Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed H. Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ipsa Padhy
- Department of Pharmaceutical Analysis and Quality Assurance, School of Pharmaceutical Education and Research, Berhampur University, Berhampur, Odisha, India
| | - Unnam Sambamoorthy
- Department of Pharmaceutics, NRI College of Pharmacy, NRI Group of Institutions, Krishna District, India
| | - Suryakanta Swain
- Southern Institute of Medical Sciences, College of Pharmacy, Department of Pharmaceutics, SIMS Group of Institutions, Guntur, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
5
|
Chen X, Mangala LS, Rodriguez-Aguayo C, Kong X, Lopez-Berestein G, Sood AK. RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev 2019; 37:107-124. [PMID: 29243000 DOI: 10.1007/s10555-017-9717-6] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RNA interference (RNAi) is considered a highly specific approach for gene silencing and holds tremendous potential for treatment of various pathologic conditions such as cardiovascular diseases, viral infections, and cancer. Although gene silencing approaches such as RNAi are widely used in preclinical models, the clinical application of RNAi is challenging primarily because of the difficulty in achieving successful systemic delivery. Effective delivery systems are essential to enable the full therapeutic potential of RNAi. An ideal nanocarrier not only addresses the challenges of delivering naked siRNA/miRNA, including its chemically unstable features, extracellular and intracellular barriers, and innate immune stimulation, but also offers "smart" targeted delivery. Over the past decade, great efforts have been undertaken to develop RNAi delivery systems that overcome these obstacles. This review presents an update on current progress in the therapeutic application of RNAi with a focus on cancer therapy and strategies for optimizing delivery systems, such as lipid-based nanoparticles.
Collapse
Affiliation(s)
- Xiuhui Chen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristian Rodriguez-Aguayo
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xianchao Kong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Khramtsov YV, Ulasov AV, Rosenkranz AA, Georgiev GP, Sobolev AS. Study of Biodistribution of the Modular Nanotransporters after Systemic Administration in Murine Cloudman S91 Melanoma Model. DOKL BIOCHEM BIOPHYS 2018. [DOI: 10.1134/s1607672918010131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Water-Soluble Polymer Assists N-Methyl-D-Aspartic Acid Receptor 2B siRNA Delivery to Relieve Chronic Inflammatory Pain In Vitro and In Vivo. Pain Res Manag 2018; 2018:7436060. [PMID: 29623145 PMCID: PMC5829431 DOI: 10.1155/2018/7436060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/03/2017] [Accepted: 10/16/2017] [Indexed: 11/24/2022]
Abstract
We constructed a water-soluble lipopolymer (WSLP) as a nonviral gene carrier to deliver siRNA targeting NR2B. The cytotoxicity and serum stability of WSLP loaded with siRNA were evaluated, and the knockdown efficiency of WSLP/NR2B-siRNA in PC12 cells was examined. The results showed that WSLP could protect the loading siRNAs from enzymatic degradation in serum and exhibit low cytotoxicity to cells. After transfection, WSLP/NR2B-siRNA complexes reduced the NR2B transcriptional level by 50% and protein level by 55% compared to control siRNA. Moreover, 3 days after intrathecal injection of WSLP/NR2B-siRNA complexes into rats, the NR2B protein expression decreased significantly to 58%, compared to control treatment (p < 0.01). Injection of WSLP with scrambled siRNA or of polyethylenimine (PEI) with NR2B-siRNA did not show this inhibitory effect. Additionally, injection of WSLP/NR2B-siRNA complexes significantly relieved inflammatory pain in rats at 3, 4, and 5 days with reduced MWT and decreased TWL scores, while injection of WSLP with scrambled siRNA or of PEI with NR2B-siRNA did not. These results demonstrated that WSLP can efficiently deliver siRNA targeting NR2B to PC12 cells and relieve pain in rats with chronic inflammatory pain.
Collapse
|
8
|
Zhang J, Wang T, Mu S, Olerile LD, Yu X, Zhang N. Biomacromolecule/lipid hybrid nanoparticles for controlled delivery of sorafenib in targeting hepatocellular carcinoma therapy. Nanomedicine (Lond) 2017; 12:911-925. [DOI: 10.2217/nnm-2016-0402] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aim: Hybrids composed of various materials are highly versatile for drug delivery in tumor therapy including hepatocellular carcinoma. Herein, a sorafenib (SF)-loaded biomacromolecule hyaluronic acid (HA)/lipid hybrid nanoparticles (HA/SF-cLNS) were developed for targeting drug delivery. Materials & methods: In vitro assays determined HA/SF-cLNS release behavior, enzymatic degradation, uptake and cytotoxicity. H22-bearing liver cancer xenograft murine models were used to evaluate the biodistribution and therapeutic efficacy in vivo. Results: HA/SF-cLNS could be disassembled and drug was released in response to hyaluronidase. In vivo imaging results demonstrated HA/cLNS could enhance drug accumulation at tumor site. Meanwhile, HA/SF-cLNS exhibited improved antitumor efficacy in vitro and in vivo. Conclusion: HA/SF-cLNS demonstrated the potential to enhance antitumor efficacy of SF.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Tianqi Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Shengjun Mu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Livesey D Olerile
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Xiaoyue Yu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Na Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| |
Collapse
|