1
|
Jiaying Y, Bo S, Xiaolu W, Yanyan Z, Hongjie W, Nan S, Bo G, Linna W, Yan Z, Wenya G, Keke L, Shan J, Chuan L, Yu Z, Qinghe Z, Haiyu Z. Arenobufagin-loaded PEG-PLA nanoparticles for reducing toxicity and enhancing cancer therapy. Drug Deliv 2023; 30:2177362. [PMID: 36772846 PMCID: PMC9930844 DOI: 10.1080/10717544.2023.2177362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Arenobufagin (ArBu) is a natural anticancer drug with good anti-tumor effects, but its clinical applications and drug development potential are limited due to its toxicity. The purpose of this study is to reduce the toxic side effects of ArBu and improve the efficacy of tumor treatment by incorporating it into poly(ethylene glycol)-b-poly (lactide) co-polymer (PEG-PLA). ArBu@PEG-PLA micelles were prepared by a thin film hydration method. The optimized micelles were characterized by size, stability, drug loading, encapsulation rate, and drug release. The tumor-inhibition efficacy of the micelles was evaluated on A549 cells and tumor-bearing mice. The ArBu@PEG-PLA micelles have good drug-loading capacity, release performance, and stability. They can accumulate at the tumor site through the EPR effect. The micelles induce apoptosis through a mitochondrial apoptosis pathway. Compared with the free ArBu, the ArBu@PEG-PLA micelles had lower toxicity and higher safety in the acute toxicity evaluation experiment. The in vivo anti-tumor experiment with tumor-bearing mice showed that the tumor-inhibition rate of ArBu@PEG-PLA micelles was 72.9%, which was 1.28-fold higher than that of free ArBu (57.1%), thus showing a good tumor treatment effect. This study indicates that ArBu@PEG-PLA polymeric micelles can significantly improve the toxicity and therapeutic efficacy of ArBu. These can lead to a new therapeutic strategy to reduce the toxicity of ArBu and enhance tumor treatment.
Collapse
Affiliation(s)
- Yang Jiaying
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Sun Bo
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Wei Xiaolu
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Zhou Yanyan
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Wang Hongjie
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Si Nan
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Gao Bo
- China Resources Sanjiu Modern Traditional Chinese Medicine Pharmaceutical Co., Ltd, Shenzhen, China
| | - Wang Linna
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Zhang Yan
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Gao Wenya
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Luo Keke
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Jiang Shan
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Luo Chuan
- Anhui Huarun Jinchan Pharmaceutical Co., Ltd, Anhui, China
| | - Zhao Yu
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China,CONTACT Zhao Yu
| | - Zhao Qinghe
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China,Zhao Qinghe
| | - Zhao Haiyu
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China,Zhao Haiyu China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| |
Collapse
|
2
|
Wu L, Wang Y, Zhao X, Mao H, Gu Z. Investigating the Biodegradation Mechanism of Poly(trimethylene carbonate): Macrophage-Mediated Erosion by Secreting Lipase. Biomacromolecules 2023; 24:921-928. [PMID: 36644840 DOI: 10.1021/acs.biomac.2c01350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Poly(trimethylene carbonate) (PTMC), as one of the representatives of biodegradable aliphatic polycarbonates, has been found to degrade in vivo via surface erosion. This unique degradation behavior and the resulting nonacidic products make it more competitive with aliphatic polyesters (e.g., polylactide) in clinical practice. However, this surface degradation mechanism is complicated and not fully understood to date despite the findings that several reactive oxygen species and enzymes can specifically degrade PTMC in vitro. Herein, the biodegradation mechanism of PTMC was investigated by using possible degradation factors, distinct cell lines, and the inhibitors of these factors. The results demonstrate that PTMC undergoes a specific macrophage-mediated erosion. Macrophages tend to fuse into giant cells and elicit a typical inflammatory response by releasing proinflammatory cytokines. In addition, macrophages are suggested to primarily secrete enzymes (lipase specifically) to erode the PTMC bulk extracellularly as inhibiting their activity effectively prevented this eroding process. The clarification of the biodegradation mechanism in this work suggests that the degradation of PTMC highly depends on the foreign body response. Thus, it reminds the researchers to consider the effect of the microenvironment on the degradation and drug release of PTMC-based implantation devices and localized drug delivery systems.
Collapse
Affiliation(s)
- Lihuang Wu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Yuqi Wang
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Xinyue Zhao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China.,NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing 210000, China
| | - Zhongwei Gu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China.,NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing 210000, China
| |
Collapse
|
3
|
Chen J, Ning E, Wang Z, Jing Z, Wei G, Wang X, Ma P. Docetaxel loaded mPEG-PLA nanoparticles for sarcoma therapy: preparation, characterization, pharmacokinetics, and anti-tumor efficacy. Drug Deliv 2021; 28:1389-1396. [PMID: 34180752 PMCID: PMC8245084 DOI: 10.1080/10717544.2021.1945167] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Sarcoma represents one of the most common malignant tumors with poor treatment outcomes and prognosis. Docetaxel (DTX) is acknowledged as one of the most important chemotherapy agents. The aim of this study was to improve the efficacy of docetaxel by incorporation into the mPEG-PLA nanoparticle (DTX NP) for the treatment of sarcoma. The DTX NP was prepared by emulsion solvent diffusion method and the prescription and preparation process were optimized through a single factor experiment. The optimized DTX NP was characterized by drug loading, encapsulation efficiency, drug release, etc. Then, the pharmacokinetics was conducted on rats and tumor-bearing ICR mice. Finally, the anti-tumor efficacy of DTX NP with different dosages was evaluated on tumor-bearing ICR mice. The optimized DTX NP was characterized by around 100 nm sphere nanoparticles, sustained in vitro drug release with no obvious burst drug release. Compared with DTX injection, the AUC of DTX NP increased by 94.7- and 35.1-fold on the rats and tumor-bearing ICR mice models, respectively. Moreover, the intra-tumoral drug concentration increased by 5.40-fold. The tumor inhibition rate of DTX NP reached 94.66%, which was 1.24 times that of DTX injection (76.11%) at the same dosage, and the bodyweight increase rate was also higher than the DTX injection. The study provided a DTX NP, which could significantly improve the bioavailability and therapeutic efficacy of DTX as well as reduced its toxicity. It possessed a certain prospect of application for sarcoma treatment.
Collapse
Affiliation(s)
- Jianhua Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | | | - Zhijun Wang
- Division of interventional radiology, Department of Geriatric Medicine &National Clinical Research Center of Geriatric Disease, The 2nd Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of interventional radiology, The 1st & 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ziqi Jing
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guijie Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Pengkai Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Amsden B. In Vivo Degradation Mechanisms of Aliphatic Polycarbonates and Functionalized Aliphatic Polycarbonates. Macromol Biosci 2021; 21:e2100085. [PMID: 33893715 DOI: 10.1002/mabi.202100085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/29/2021] [Indexed: 11/06/2022]
Abstract
Aliphatic polycarbonates (APCs) have been studied for decades but have not been as utilized as aliphatic polyesters in biomaterial applications such as drug delivery and tissue engineering. With the recognition that functionalized aliphatic polymers can be readily synthesized, increased attention is being paid to these materials. A frequently provided reason for utilizing these polymers is that they degrade to form diols and carbon dioxide. However, depending on the structure and molecular weight of the APC, degradation may not occur. In this review, the mechanisms by which APCs and functionalized APCs have been found to degrade in vivo are examined with the objective of providing guidance in the continued development of these polymers as biomaterials.
Collapse
Affiliation(s)
- Brian Amsden
- Department of Chemical Engineering, Queen's University, Kingston, K7L 3N6, Canada
| |
Collapse
|
5
|
Nun N, Cruz M, Jain T, Tseng YM, Menefee J, Jatana S, Patil PS, Leipzig ND, McDonald C, Maytin E, Joy A. Thread Size and Polymer Composition of 3D Printed and Electrospun Wound Dressings Affect Wound Healing Outcomes in an Excisional Wound Rat Model. Biomacromolecules 2020; 21:4030-4042. [PMID: 32902971 DOI: 10.1021/acs.biomac.0c00801] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Thread size and polymer composition are critical properties to consider for achieving a positive healing outcome with a wound dressing. Three-dimensional (3D) printed scaffolds and electrospun mats both offer distinct advantages as replaceable wound dressings. This research aims to determine if the thread size and polymer compositions of the scaffolds affect skin wound healing outcomes, an aspect that has not been adequately explored. Using a modular polymer platform, four polyester direct-write 3D printed scaffolds and electrospun mats were fabricated into wound dressings. The dressings were applied to splinted, full thickness skin wounds in an excisional wound rat model and evaluated against control wounds to which no dressing was applied. Wound closure rates and reduction of the wound bed width were not affected by the thread size or polymer composition. However, epidermal thickness was larger in wounds treated with electrospun dressings and was slightly affected by the polymer composition. Two of the four tested polymer compositions lead to delayed reorganization of granulation tissues. Moreover, enhanced angiogenesis was seen in wounds treated with 3D printed dressings compared to those treated with electrospun dressings. The results from this study can be used to inform the choice of dressing architecture and polymer compositions to achieve positive wound healing outcomes.
Collapse
Affiliation(s)
- Nicholas Nun
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Megan Cruz
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Tanmay Jain
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Yen-Ming Tseng
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Josh Menefee
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Samreen Jatana
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, United States
| | - Pritam S Patil
- Department of Chemical, Biomolecular and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Nic D Leipzig
- Department of Chemical, Biomolecular and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Christine McDonald
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, United States
| | - Edward Maytin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland Ohio 44106, United States.,Department of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, Ohio 44106, United States
| | - Abraham Joy
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
6
|
Antioxidant-mediated control of degradation and drug release from surface-eroding poly(ethylene carbonate). Acta Biomater 2020; 113:210-216. [PMID: 32623099 DOI: 10.1016/j.actbio.2020.06.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 11/22/2022]
Abstract
Surface-eroding polymers are of significant interest for various applications in the field of controlled drug delivery. Poly(ethylene carbonate), as an example, offers little control over the rate of degradation and, thus, drug release, which usually conflicts with the requirements for long-acting medications. Here, we challenged an option to decelerate the degradation of poly(ethylene carbonate) in vitro and in vivo. When polymer films loaded with distinct antioxidants (vitamins) along with the model drugs leuprorelin and risperidone were incubated in superoxide radical solution and phagocyte culture, the mass loss and drug release from the delivery vehicle was a function of the type and dose of the utilized antioxidant. Once the polymer surface was "attacked" by reactive oxygen species, the antioxidants were released on demand quenching the polymer-degrading radicals. Accordingly, specific combinations of polymer and radical scavengers resulted in controlled release medications with an extended "life-time" of one month or longer, which is difficult to achieve for poly(ethylene carbonate) in the absence of antioxidants. A comparable degradation and drug release behavior was observed when antioxidant-loaded poly(ethylene carbonate) films were implanted in rats. Furthermore, linear correlations were obtained between the mass loss of the polymer films and the released fraction of drug (with slopes close to 1), a clear indication for the surface erosion of poly(ethylene carbonate) in vitro and in vivo. Overall, an addition of antioxidants to poly(ethylene carbonate)-based controlled drug delivery vehicles represents a reasonable approach to modify the performance of long-acting medications, especially when a "life time" of weeks to months needs to be achieved. STATEMENT OF SIGNIFICANCE: Surface-eroding poly(ethylene carbonate) (PEC) is of significant interest for long-acting injectable formulations. However, PEC offers only little control over the rate of degradation and, thus, drug release kinetics. We describe an option to decelerate the degradation rate of PEC in vitro and in vivo. When polymer films loaded with distinct antioxidants along with model drugs were incubated in superoxide radical solution, phagocyte culture and implanted in rats, their mass loss and drug release was a function of the type and dose of the utilized antioxidant. Accordingly, specific combinations of polymer and radical scavengers resulted in controlled release medications with an extended "life-time" of one month or longer, which is difficult to achieve for PEC in the absence of antioxidants.
Collapse
|
7
|
Beck-Broichsitter M. Comparative in vitro degradation of surface-eroding poly(alkylene carbonate)s. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Ramlee N, Tominaga Y. Structural and physicochemical properties of melt-quenched poly(ethylene carbonate)/poly(lactic acid) blends. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
|
10
|
In vitro study and characterization of cotton fabric PLA composite as a slow antibiotic delivery device for biomedical applications. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|