1
|
Datta S, Huntošová V, Jutková A, Seliga R, Kronek J, Tomkova A, Lenkavská L, Máčajová M, Bilčík B, Kundeková B, Čavarga I, Pavlova E, Šlouf M, Miškovský P, Jancura D. Influence of Hydrophobic Side-Chain Length in Amphiphilic Gradient Copoly(2-oxazoline)s on the Therapeutics Loading, Stability, Cellular Uptake and Pharmacokinetics of Nano-Formulation with Curcumin. Pharmaceutics 2022; 14:pharmaceutics14122576. [PMID: 36559069 PMCID: PMC9781838 DOI: 10.3390/pharmaceutics14122576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Due to the simple one-step preparation method and a promising application in biomedical research, amphiphilic gradient copoly(2-oxazoline)s are gaining more and more interest compared to their analogous block copolymers. In this work, the curcumin solubilization ability was tested for a series of amphiphilic gradient copoly(2-oxazoline)s with different lengths of hydrophobic side-chains, consisting of 2-ethyl-2-oxazoline as a hydrophilic monomer and 2-(4-alkyloxyphenyl)-2-oxazoline as a hydrophobic monomer. It is shown that the length of the hydrophobic side-chain in the copolymers plays a crucial role in the loading of curcumin onto the self-assembled nanoparticles. The kinetic stability of self-assembled nanoparticles studied using FRET shows a link between their integrity and cellular uptake in human glioblastoma cells. The present study demonstrates how minor changes in the molecular structure of gradient copoly(2-oxazoline)s can lead to significant differences in the loading, stability, cytotoxicity, cellular uptake, and pharmacokinetics of nano-formulations containing curcumin. The obtained results on the behavior of the complex of gradient copoly(2-oxazoline)s and curcumin may contribute to the development of effective next-generation polymeric nanostructures for biomedical applications.
Collapse
Affiliation(s)
- Shubhashis Datta
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Safarik University in Košice, Jesenna 5, 04154 Košice, Slovakia
- Correspondence: (S.D.); (V.H.)
| | - Veronika Huntošová
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Safarik University in Košice, Jesenna 5, 04154 Košice, Slovakia
- Correspondence: (S.D.); (V.H.)
| | - Annamária Jutková
- Department of Biophysics, Faculty of Science, P. J. Safarik University in Košice, Jesenna 5, 04154 Košice, Slovakia
- SAFTRA Photonics s.r.o., Moldavska Cesta 51, 04011 Košice, Slovakia
| | - Róbert Seliga
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Safarik University in Košice, Jesenna 5, 04154 Košice, Slovakia
| | - Juraj Kronek
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 41 Bratislava, Slovakia
| | - Adriána Tomkova
- Department of Biophysics, Faculty of Science, P. J. Safarik University in Košice, Jesenna 5, 04154 Košice, Slovakia
| | - Lenka Lenkavská
- Department of Biophysics, Faculty of Science, P. J. Safarik University in Košice, Jesenna 5, 04154 Košice, Slovakia
| | - Mariana Máčajová
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia
| | - Boris Bilčík
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia
| | - Barbora Kundeková
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia
| | - Ivan Čavarga
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho Nam. 2, 162 06 Prague, Czech Republic
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho Nam. 2, 162 06 Prague, Czech Republic
| | - Pavol Miškovský
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Safarik University in Košice, Jesenna 5, 04154 Košice, Slovakia
- SAFTRA Photonics s.r.o., Moldavska Cesta 51, 04011 Košice, Slovakia
- Cassovia New Industry Cluster, Tr. SNP 1, 04001 Košice, Slovakia
| | - Daniel Jancura
- Department of Biophysics, Faculty of Science, P. J. Safarik University in Košice, Jesenna 5, 04154 Košice, Slovakia
| |
Collapse
|
2
|
Quispe C, Herrera-Bravo J, Khan K, Javed Z, Semwal P, Painuli S, Kamiloglu S, Martorell M, Calina D, Sharifi-Rad J. Therapeutic applications of curcumin nanomedicine formulations in cystic fibrosis. Prog Biomater 2022; 11:321-329. [PMID: 35904711 DOI: 10.1007/s40204-022-00198-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/17/2022] [Indexed: 12/12/2022] Open
Abstract
Medicinal applications of turmeric-derived curcumin have been known to mankind for long ages. Its potential in managing "cystic fibrosis" has also been evaluated. This autosomal recessive genetic disease is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) which involves an impaired secretion of chloride ions and leads to hypersecretion of thick and sticky mucus and serious complications including airway obstruction, chronic lung infection, and inflammatory reactions. This narrative review aims to highlight the available evidence for the efficacy of curcumin nanoformulations in its potential treatment of cystic fibrosis. Recent research has shown that curcumin acts on the localized mutant CFTR ion channel at the plasma membrane. Preclinical studies have also shown that curcumin nanoformulations have promising effects in the treatment of cystic fibrosis. In this context, the purpose of this narrative review is to highlight the general bioactivity of curcumin, the types of formulations and related studies, thus opening new therapeutic perspectives for CF.
Collapse
Affiliation(s)
- Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939, Iquique, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Bogotá, Chile.,Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Zeeshan Javed
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, India.,Uttarakhand State Council for Science and Technology, Dehradun, India
| | - Sakshi Painuli
- Department of Biotechnology, Graphic Era University, Dehradun, India
| | - Senem Kamiloglu
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, 16059, Gorukle, Bursa, Turkey
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386, Concepción, Chile.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|
3
|
Le Bellec P, Midoux P, Cheradame H, Bennevault V, Guégan P. Tuneable thermal properties of PTHF-based copolymers by incorporation of epoxide units. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Hanikoglu A, Kucuksayan E, Hanikoglu F, Ozben T, Menounou G, Sansone A, Chatgilialoglu C, Di Bella G, Ferreri C. Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes. Can J Physiol Pharmacol 2019; 98:131-138. [PMID: 31545905 DOI: 10.1139/cjpp-2019-0352] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Breast cancer is a worldwide commonly found malignancy in women and effective treatment is regarded as a huge clinical challenge even in the presence of several treatment options. Extensive literature is available demonstrating polyphenols as phytopharmaceutical anticancer agents. Among the polyphenols, quercetin and curcumin have been reported to have a strong potential against breast cancer. However, so far, no comprehensive study has been performed to demonstrate the anticarcinogenic effects of curcumin, quercetin, and their combinations with somatostatin on the fatty acid profile of breast cancer cell membranes. We used MCF-7 and MDA-MB231 breast cancer cells incubated with curcumin and quercetin for 24 h, in the absence and presence of somatostatin, at their EC50 concentrations to evaluate membrane fatty acid based functional lipidomics together with the followup of EGFR and MAPK signaling pathways. The two cell lines gave different membrane free fatty acid reorganization. In MCF-7 cells, the following changes were observed: an increase of ω6 linoleic acid in the cells incubated with somatostatin + quercetin and quercetin and a decrease of ω3 acids in the cells incubated with somatostatin + curcumin compared to somatostatin and significant increases of monounsaturated fatty acid (MUFA), mono-trans arachidonic acid levels and docosapentaenoic acid for the cells incubated with somatostatin + quercetin compared to the control cells. In MDA-MB231 cells, incubations with curcumin, quercetin, and somatostatin + quercetin induced the most significant membrane remodeling with the increase of stearic acid, diminution of ω6 linoleic, arachidonic acids, and ω3 (docosapentaenoic and docosahexaenoic acids). Distinct signaling pathway changes were found for these cell lines. In MCF-7 cells, separate or combined incubations with somatostatin and quercetin, significantly decreased EGFR and incubation with curcumin decreased MAPK signaling. In MDA-MB231 cells, incubation with curcumin decreased AKT1 and p-AKT1 (Thr308) levels. Incubation with curcumin and quercetin decreased the EGFR levels. Our results showed that cytostatic and antioxidant treatments can be combined to induce membrane fatty acid changes, including lipid isomerization as specific free radical driven process, and to influence signaling pathways. This study aimed to contribute to the literature on these antioxidants in the treatment of breast cancer to clarify the effects and mechanisms in combination with somatostatin.
Collapse
Affiliation(s)
- Aysegul Hanikoglu
- Department of Biochemistry, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | - Ertan Kucuksayan
- Department of Biochemistry, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Ferhat Hanikoglu
- Department of Biochemistry, Faculty of Medicine, Biruni University, Istanbul, Turkey
| | - Tomris Ozben
- Department of Biochemistry, Faculty of Medicine, Akdeniz University, 07070 Antalya, Turkey
| | - Georgia Menounou
- Consiglio Nazionale delle Ricerche, ISOF, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Anna Sansone
- Consiglio Nazionale delle Ricerche, ISOF, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Chrys Chatgilialoglu
- Consiglio Nazionale delle Ricerche, ISOF, Via Piero Gobetti 101, 40129 Bologna, Italy
| | | | - Carla Ferreri
- Consiglio Nazionale delle Ricerche, ISOF, Via Piero Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
5
|
Lübtow MM, Nelke LC, Seifert J, Kühnemundt J, Sahay G, Dandekar G, Nietzer SL, Luxenhofer R. Drug induced micellization into ultra-high capacity and stable curcumin nanoformulations: Physico-chemical characterization and evaluation in 2D and 3D in vitro models. J Control Release 2019; 303:162-180. [DOI: 10.1016/j.jconrel.2019.04.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 01/02/2023]
|
6
|
Ahmed S, Khan H, Fratantonio D, Hasan MM, Sharifi S, Fathi N, Ullah H, Rastrelli L. Apoptosis induced by luteolin in breast cancer: Mechanistic and therapeutic perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152883. [PMID: 30986716 DOI: 10.1016/j.phymed.2019.152883] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Breast cancer is worldwide commonly found malignancy in women and effective treatment is regarded as a huge clinical challenge even in the presence of several options. Extensive literature is available that demonstrating polyphenols, the richly introduce phytopharmaceuticals as anticancer agents. Among these polyphenols, resveratrol, silibinin, quercetin, genistein, curcumin reported to have an awesome potential against breast cancer. However, till now no comprehensive survey found about the anticarcinogenic properties of luteolin against breast cancer. SCOPE AND APPROACH This review targeted the available literature on luteolin in the treatment of breast cancer, effects in combination with other anticancer drugs with possible mechanisms. KEY FINDINGS AND CONCLUSION An outstanding therapeutic potential of luteolin in the treatment of breast cancer has been recorded not just as a chemopreventive and chemotherapeutic agent yet complemented by its synergistic effects with other anticancer therapies such as cyclophosphamide, doxorubicin, and NSAID such as celecoxib, and possible underlying mechanisms. Ideally, this review will open new dimensions for luteolin as an effective and safe therapeutic agent in diminishing breast cancer.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali khan University Mardan 23200, Pakistan.
| | - Deborah Fratantonio
- "Bambino Gesù" Children's Hospital-IRCCS, Research Laboratories, V.le di San Paolo 15, 00146, Rome, Italy.
| | - Muhammad Mohtasheemul Hasan
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazanin Fathi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali khan University Mardan 23200, Pakistan
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, Italy
| |
Collapse
|
7
|
Zhang Y, Rauf Khan A, Fu M, Zhai Y, Ji J, Bobrovskaya L, Zhai G. Advances in curcumin-loaded nanopreparations: improving bioavailability and overcoming inherent drawbacks. J Drug Target 2019; 27:917-931. [DOI: 10.1080/1061186x.2019.1572158] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yanan Zhang
- College of Pharmacy, Shandong University, Jinan, China
| | | | - Manfei Fu
- College of Pharmacy, Shandong University, Jinan, China
| | - Yujia Zhai
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jianbo Ji
- College of Pharmacy, Shandong University, Jinan, China
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Science, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Guangxi Zhai
- College of Pharmacy, Shandong University, Jinan, China
| |
Collapse
|
8
|
Sahn M, Weber C, Schubert US. Poly(2-oxazoline)-Containing Triblock Copolymers: Synthesis and Applications. POLYM REV 2019. [DOI: 10.1080/15583724.2018.1496930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Martin Sahn
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
9
|
Lorson T, Lübtow MM, Wegener E, Haider MS, Borova S, Nahm D, Jordan R, Sokolski-Papkov M, Kabanov AV, Luxenhofer R. Poly(2-oxazoline)s based biomaterials: A comprehensive and critical update. Biomaterials 2018; 178:204-280. [DOI: 10.1016/j.biomaterials.2018.05.022] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
|