1
|
Asamoah S, Pravda M, Matonohová J, Bártová T, Šnejdrová E, Spiegel S, Chan A, Pernet V, Velebný V. Iron(II)-catalysed tyrosinase crosslinked hyaluronic acid hydrogel for the controlled release of human antibodies. J Mater Chem B 2025. [PMID: 40395034 DOI: 10.1039/d4tb02606c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Tyrosinase is a common crosslinker used in the formation of in situ hydrogels, often resulting in significantly longer gelation times. The rate-determining step for the interconversion between the four discrete states of the enzyme is characterized by a lag phase, which contributes to its slow gelation kinetics. In this study, we report, for the first time, the use of a catalytic amount of iron(II) to produce fast in situ-gellable tyramine-conjugated hyaluronic acid hydrogels (HATA), which are prospectively applicable for nasal drug delivery. We observed gelation times ranging from 886 to 538 seconds, depending on the polymer and enzyme concentrations, irrespective of the pH level tested. The presence of iron(II) significantly reduced the gelation time by an order of magnitude, ranging from 86 seconds to 25.46 seconds, depending on the polymer concentration, pH, and enzyme activity. Based on our findings, we propose a double crosslinking mechanism involving catechol-catechol coupling and catechol-iron(II) complex formation, as evidenced by improvements in the rheological properties of the hydrogels. These novel hydrogels can encapsulate antibodies and provide prolonged release for up to two weeks. Additionally, we confirmed that the crosslinking chemistry did not affect the bioactivity of the antibodies. Given their improved mucoadhesive properties, we envision these hydrogels as promising candidates for the formulation of bioadhesive drug delivery systems.
Collapse
Affiliation(s)
- Seth Asamoah
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203/8, 500 03 Hradec Králové 3, Czech Republic
- Contipro a.s., Dolní Dobrouč 401, 56102, Dolní Dobrouč, Czech Republic
| | - Martin Pravda
- Contipro a.s., Dolní Dobrouč 401, 56102, Dolní Dobrouč, Czech Republic
| | - Jana Matonohová
- Contipro a.s., Dolní Dobrouč 401, 56102, Dolní Dobrouč, Czech Republic
| | - Tereza Bártová
- Contipro a.s., Dolní Dobrouč 401, 56102, Dolní Dobrouč, Czech Republic
| | - Eva Šnejdrová
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203/8, 500 03 Hradec Králové 3, Czech Republic
| | - Sebastian Spiegel
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Experimental Neurology Center (ZEN), Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3010 Bern, Switzerland
| | - Andrew Chan
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Experimental Neurology Center (ZEN), Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Vincent Pernet
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Experimental Neurology Center (ZEN), Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, Qc, Canada
- Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Québec, Québec City, Canada
| | - Vladimír Velebný
- Contipro a.s., Dolní Dobrouč 401, 56102, Dolní Dobrouč, Czech Republic
| |
Collapse
|
2
|
Narayana S, Gowda BHJ, Hani U, Ahmed MG, Asiri ZA, Paul K. Smart Poly(N-isopropylacrylamide)-Based Hydrogels: A Tour D'horizon of Biomedical Applications. Gels 2025; 11:207. [PMID: 40136912 PMCID: PMC11942434 DOI: 10.3390/gels11030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Hydrogels are innovative materials characterized by a water-swollen, crosslinked polymeric network capable of retaining substantial amounts of water while maintaining structural integrity. Their unique ability to swell or contract in response to environmental stimuli makes them integral to biomedical applications, including drug delivery, tissue engineering, and wound healing. Among these, "smart" hydrogels, sensitive to stimuli such as pH, temperature, and light, showcase reversible transitions between liquid and semi-solid states. Thermoresponsive hydrogels, exemplified by poly(N-isopropylacrylamide) (PNIPAM), are particularly notable for their sensitivity to temperature changes, transitioning near their lower critical solution temperature (LCST) of approximately 32 °C in water. Structurally, PNIPAM-based hydrogels (PNIPAM-HYDs) are chemically versatile, allowing for modifications that enhance biocompatibility and functional adaptability. These properties enable their application in diverse therapeutic areas such as cancer therapy, phototherapy, wound healing, and tissue engineering. In this review, the unique properties and behavior of smart PNIPAM are explored, with an emphasis on diverse synthesis methods and a brief note on biocompatibility. Furthermore, the structural and functional modifications of PNIPAM-HYDs are detailed, along with their biomedical applications in cancer therapy, phototherapy, wound healing, tissue engineering, skin conditions, ocular diseases, etc. Various delivery routes and patents highlighting therapeutic advancements are also examined. Finally, the future prospects of PNIPAM-HYDs remain promising, with ongoing research focused on enhancing their stability, responsiveness, and clinical applicability. Their continued development is expected to revolutionize biomedical technologies, paving the way for more efficient and targeted therapeutic solutions.
Collapse
Affiliation(s)
- Soumya Narayana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - B. H. Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (U.H.); (Z.A.A.)
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - Zahrah Ali Asiri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (U.H.); (Z.A.A.)
| | - Karthika Paul
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India;
| |
Collapse
|
3
|
Inoda S, Takahashi H, Takahashi R, Hashimoto Y, Yoshida H, Takahashi H, Fujino Y, Aizawa K, Kawashima H, Yanagi Y. Effect of Combination Use of Aqueous Humor Secretion Inhibitor Eye Drops on Aflibercept Level: A Preliminary Analysis. Transl Vis Sci Technol 2025; 14:21. [PMID: 39976962 PMCID: PMC11844225 DOI: 10.1167/tvst.14.2.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/03/2025] [Indexed: 02/23/2025] Open
Abstract
Purpose To investigate the association between aqueous humor (AH) suppressant eye drops and the concentration of aflibercept at 1 month after intravitreal injection. Methods This retrospective study included 17 eyes of 17 patients with neovascular age-related macular degeneration (nAMD) who used eye drops for their glaucoma and received their first intravitreal aflibercept (IVA) at two centers between July 2013 and November 2020. As controls, we enrolled 40 age-, sex-, and axial length-matched eyes of 40 patients with nAMD who were not using any medication that would affect AH circulation. AH was collected 1 month after the first IVA. Aflibercept levels were measured by enzyme-linked immunosorbent assay and were compared between controls and cases using the Kruskal-Wallis test and Dunn's test. The drugs were categorized into two groups based on their mechanism of action on the AH: outflow drugs (e.g., prostaglandin analog) and inflow drugs (e.g., carbonic anhydrase inhibitor, beta-blockers, and alpha-2 agonists). Results Mean (interquartile range) aflibercept levels in the AH in controls and in cases who used outflow and inflow drugs were 6.83 µg/mL (1.94-10.34), 9.93 µg/mL (2.58-17.44), and 15.95 µg/mL (7.20-22.57), respectively. A Kruskal-Wallis test showed a significant difference among the control, inflow, and outflow drugs (P = 0.0075). Dunn's test showed that aflibercept levels in the aqueous humor were significantly higher in cases using inflow drugs compared to both controls and cases using outflow drugs (P = 0.0085 and P = 0.044, respectively). Conclusions Aflibercept levels in the AH 1 month after the first IVA were higher in cases using eye drops that reduce AH secretion than in controls. Translational Relevance Our results, together with previous studies in animals, suggest that combined use of these eye drops might extend the half-life of intravitreally injected drugs.
Collapse
Affiliation(s)
- Satoru Inoda
- Department of Ophthalmology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Hidenori Takahashi
- Department of Ophthalmology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Ryota Takahashi
- Department of Ophthalmology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Yuto Hashimoto
- Department of Ophthalmology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Hana Yoshida
- Department of Ophthalmology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Hironori Takahashi
- Department of Ophthalmology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Yujiro Fujino
- Department of Ophthalmology, Japan Community Healthcare Organization Tokyo Shinjuku Medical Center, Tokyo, Japan
| | - Kenichi Aizawa
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi, Japan
- Clinical Pharmacology Center, Jichi Medical University Hospital, Tochigi, Japan
| | - Hidetoshi Kawashima
- Department of Ophthalmology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Yasuo Yanagi
- Department of Ophthalmology and Micro-Technology, Yokohama City University, Yokohama, Japan
- Retina Research Group, Singapore Eye Research Institute, Singapore Eye-ACP, Duke-NUS Medical School, National University of Singapore, Singapore
| |
Collapse
|
4
|
Kim M, Jung MY, Lee DY, Ahn SM, Lee GM, Park CY. How to Fabricate Hyaluronic Acid for Ocular Drug Delivery. Pharmaceutics 2024; 16:1604. [PMID: 39771582 PMCID: PMC11680071 DOI: 10.3390/pharmaceutics16121604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
This review aims to examine existing research on the development of ocular drug delivery devices utilizing hyaluronic acid (HA). Renowned for its exceptional biocompatibility, viscoelastic properties, and ability to enhance drug bioavailability, HA is a naturally occurring biopolymer. The review discussed specific mechanisms by which HA enhances drug delivery, including prolonging drug residence time on ocular surfaces, facilitating controlled drug release, and improving drug penetration through ocular tissues. By focusing on these unique functionalities, this review highlights the potential of HA-based systems to revolutionize ocular treatment. Various fabrication techniques for HA-based ocular drug delivery systems, including hydrogels, nanoparticles, and microneedles, are discussed, highlighting their respective advantages and limitations. Additionally, this review explores the clinical applications of HA-based devices in treating a range of ocular diseases, such as dry eye syndrome, glaucoma, retinal disorders, and ocular infections. By comparing the efficacy and safety profiles of these devices with traditional ocular drug delivery methods, this review aims to provide a comprehensive understanding of the potential benefits and challenges associated with HA-based systems. Moreover, this review discusses current limitations and future directions in the field, such as the need for standardized fabrication protocols, long-term biocompatibility studies, and large-scale clinical trials. The insights and advancements presented in this review aim to guide future research and development efforts, ultimately enhancing the effectiveness of ocular drug delivery and improving patient outcomes.
Collapse
Affiliation(s)
- Martha Kim
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea; (M.K.); (M.-Y.J.); (D.-Y.L.); (S.M.A.); (G.M.L.)
| | - Mi-Young Jung
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea; (M.K.); (M.-Y.J.); (D.-Y.L.); (S.M.A.); (G.M.L.)
| | - Do-Yeon Lee
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea; (M.K.); (M.-Y.J.); (D.-Y.L.); (S.M.A.); (G.M.L.)
| | - So Min Ahn
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea; (M.K.); (M.-Y.J.); (D.-Y.L.); (S.M.A.); (G.M.L.)
| | - Gyeong Min Lee
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea; (M.K.); (M.-Y.J.); (D.-Y.L.); (S.M.A.); (G.M.L.)
| | - Choul Yong Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| |
Collapse
|
5
|
Wu KY, Khan S, Liao Z, Marchand M, Tran SD. Biopolymeric Innovations in Ophthalmic Surgery: Enhancing Devices and Drug Delivery Systems. Polymers (Basel) 2024; 16:1717. [PMID: 38932068 PMCID: PMC11207407 DOI: 10.3390/polym16121717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The interface between material science and ophthalmic medicine is witnessing significant advances with the introduction of biopolymers in medical device fabrication. This review discusses the impact of biopolymers on the development of ophthalmic devices, such as intraocular lenses, stents, and various prosthetics. Biopolymers are emerging as superior alternatives due to their biocompatibility, mechanical robustness, and biodegradability, presenting an advance over traditional materials with respect to patient comfort and environmental considerations. We explore the spectrum of biopolymers used in ophthalmic devices and evaluate their physical properties, compatibility with biological tissues, and clinical performances. Specific applications in oculoplastic and orbital surgeries, hydrogel applications in ocular therapeutics, and polymeric drug delivery systems for a range of ophthalmic conditions were reviewed. We also anticipate future directions and identify challenges in the field, advocating for a collaborative approach between material science and ophthalmic practice to foster innovative, patient-focused treatments. This synthesis aims to reinforce the potential of biopolymers to improve ophthalmic device technology and enhance clinical outcomes.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrook, QC J1G 2E8, Canada; (K.Y.W.); (M.M.)
| | - Sameer Khan
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Zhuoying Liao
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael Marchand
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrook, QC J1G 2E8, Canada; (K.Y.W.); (M.M.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
6
|
Steplewski A, Fertala J, Cheng L, Wang ML, Rivlin M, Beredjiklian P, Fertala A. Evaluating the Efficacy of a Thermoresponsive Hydrogel for Delivering Anti-Collagen Antibodies to Reduce Posttraumatic Scarring in Orthopedic Tissues. Gels 2023; 9:971. [PMID: 38131957 PMCID: PMC10742524 DOI: 10.3390/gels9120971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Excessive posttraumatic scarring in orthopedic tissues, such as joint capsules, ligaments, tendons, muscles, and peripheral nerves, presents a significant medical problem, resulting in pain, restricted joint mobility, and impaired musculoskeletal function. Current treatments for excessive scarring are often ineffective and require the surgical removal of fibrotic tissue, which can aggravate the problem. The primary component of orthopedic scars is collagen I-rich fibrils. Our research team has developed a monoclonal anti-collagen antibody (ACA) that alleviates posttraumatic scarring by inhibiting collagen fibril formation. We previously established the safety and efficacy of ACA in a rabbit-based arthrofibrosis model. In this study, we evaluate the utility of a well-characterized thermoresponsive hydrogel (THG) as a delivery vehicle for ACA to injury sites. Crucial components of the hydrogel included N-isopropylacrylamide, poly(ethylene glycol) diacrylate, and hyaluronic acid. Our investigation focused on in vitro ACA release kinetics, stability, and activity. Additionally, we examined the antigen-binding characteristics of ACA post-release from the THG in an in vivo context. Our preliminary findings suggest that the THG construct exhibits promise as a delivery platform for antibody-based therapeutics to reduce excessive scarring in orthopedic tissues.
Collapse
Affiliation(s)
- Andrzej Steplewski
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jolanta Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lan Cheng
- Department of Neurosciences, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mark L. Wang
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Michael Rivlin
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Pedro Beredjiklian
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
7
|
Rodriguez-Fernandez J, Garcia-Legler E, Villanueva-Badenas E, Donato MT, Gomez-Ribelles JL, Salmeron-Sanchez M, Gallego-Ferrer G, Tolosa L. Primary human hepatocytes-laden scaffolds for the treatment of acute liver failure. BIOMATERIALS ADVANCES 2023; 153:213576. [PMID: 37566937 DOI: 10.1016/j.bioadv.2023.213576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
Cell-based liver therapies based on retrieving and steadying failed metabolic function(s) for acute and chronic diseases could be a valuable substitute for liver transplants, even though they are limited by the low engraftment capability and reduced functional quality of primary human hepatocytes (PHH). In this paper we propose the use of gelatin-hyaluronic acid (Gel-HA) scaffolds seeded with PHH for the treatment of liver failure. We first optimized the composition using Gel-HA hydrogels, looking for the mechanical properties closer to the human liver and determining HepG2 cells functionality. Gel-HA scaffolds with interconnected porosity (pore size 102 μm) were prepared and used for PHH culture and evaluation of key hepatic functions. PHH cultured in Gel-HA scaffolds exhibited increased albumin and urea secretion and metabolic capacity (CYP and UGT activity levels) compared to standard monolayer cultures. The transplant of the scaffold containing PHH led to an improvement in liver function (transaminase levels, necrosis) and ameliorated damage in a mouse model of acetaminophen (APAP)-induced liver failure. The study provided a mechanistic understanding of APAP-induced liver injury and the impact of transplantation by analyzing cytokine production and oxidative stress induction to find suitable biomarkers of cell therapy effectiveness.
Collapse
Affiliation(s)
- Julio Rodriguez-Fernandez
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain
| | - Emma Garcia-Legler
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain
| | - Estela Villanueva-Badenas
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia 46026, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia 46010, Spain
| | - M Teresa Donato
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia 46026, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia 46010, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - José Luis Gomez-Ribelles
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| | - Manuel Salmeron-Sanchez
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain; Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, University of Glasgow, G12 8LT Glasgow, United Kingdom
| | - Gloria Gallego-Ferrer
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain.
| | - Laia Tolosa
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia 46026, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain.
| |
Collapse
|
8
|
Wang W, Shi D, Zhang Y, Li W, Li F, Feng H, Ma L, Yang C, Peng Z, Song G, Zeng H, Xie L. An injectable hydrogel based on hyaluronic acid prepared by Schiff base for long-term controlled drug release. Int J Biol Macromol 2023:125341. [PMID: 37327929 DOI: 10.1016/j.ijbiomac.2023.125341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/28/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
Drug-loaded injectable hydrogels have been studied widely in biomedical technology while the stable long-term controlled drug release and cytotoxicity are challenges. In this work, an injectable hydrogel with good swelling resistance was in situ synthetized using aminated hyaluronic acid (NHA) and aldehyde β-cyclodextrin (ACD) via Schiff-base reaction. The composition, morphology and mechanical property were characterized with FTIR, 13C NMR, SEM and rheology test, respectively. Voriconazole (VCZ) and Endophthalmitis was selected as a model drug and disease, respectively. The drug release, cytotoxicity and antifungal properties were detected in vitro. The results showed a long-term (> 60 days) drug release was realized, the NHA/ACD2/VCZ presented a zero-order release in the later stage. The cytotoxicity of NHA/ACD was detected by live/dead staining assay and Cell Counting Kit-8 (CCK-8). The survival rate of adult retina pigment epithelial cell line-19 (ARPE-19) was over 100 % after 3 d, it indicated a good cytocompatibility. The antifungal experiment presented samples had antifungal property. Biocompatibility in vivo proved NHA/ACD2 had no adverse effects on ocular tissues. Consequently, the injectable hydrogel based on hyaluronic acid prepared by Schiff base reaction provides a new option for long-term controlled drug release in the course of disease treatment from a material perspective.
Collapse
Affiliation(s)
- Wenqian Wang
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Depeng Shi
- Medical College of Qingdao University, Qingdao University, Qingdao, Shandong 266071, China; Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong 266071, China
| | - Yongfei Zhang
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Wenhui Li
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Feng Li
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Hui Feng
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Lichun Ma
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Chao Yang
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China.
| | - Zhi Peng
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Guojun Song
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Lixin Xie
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong 266071, China.
| |
Collapse
|
9
|
Erfani A, Schieferstein JM, Reichert P, Narasimhan CN, Pastuskovas C, Parab V, Simmons D, Yang X, Shanker A, Hammond P, Doyle PS. Crystalline Antibody-Laden Alginate Particles: A Platform for Enabling High Concentration Subcutaneous Delivery of Antibodies. Adv Healthc Mater 2023; 12:e2202370. [PMID: 36745878 PMCID: PMC11469019 DOI: 10.1002/adhm.202202370] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/30/2023] [Indexed: 02/08/2023]
Abstract
Subcutaneous (SC) administration is a desired route for monoclonal antibodies (mAbs). However, formulating mAbs for small injection volumes at high concentrations with suitable stability and injectability is a significant challenge. Here, this work presents a platform technology that combines the stability of crystalline antibodies with injectability and tunability of soft hydrogel particles. Composite alginate hydrogel particles are generated via a gentle centrifugal encapsulation process which avoids use of chemical reactions or an external organic phase. Crystalline suspension of anti-programmed cell death protein 1 (PD-1) antibody (pembrolizumab) is utilized as a model therapeutic antibody. Crystalline forms of the mAb encapsuled in the hydrogel particles lead to stable, high concentration, and injectable formulations. Formulation concentrations as high as 315 mg mL-1 antibody are achieved with encapsulation efficiencies in the range of 89-97%, with no perceivable increase in the number of antibody aggregates. Bioanalytical studies confirm superior maintained quality of the antibody in comparison with formulation approaches involving organic phases and chemical reactions. This work illustrates tuning the alginate particles' disintegration by using partially oxide alginates. Crystalline mAb-laden particles are evaluated for their biocompatibility using cell-based in vitro assays. Furthermore, the pharmacokinetics (PK) of the subcutaneously delivered human anti-PD-1 mAb in crystalline antibody-laden alginate hydrogel particles in Wistar rats is evaluated.
Collapse
Affiliation(s)
- Amir Erfani
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02142USA
| | | | | | | | | | | | | | - Xiaoyu Yang
- Merck Research LaboratoriesKenilworthNJ07033USA
| | - Apoorv Shanker
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02142USA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Paula Hammond
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02142USA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Patrick S. Doyle
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02142USA
- Harvard Medical School Initiative for RNA MedicineBostonMA02215USA
| |
Collapse
|
10
|
Simińska-Stanny J, Hachemi F, Dodi G, Cojocaru FD, Gardikiotis I, Podstawczyk D, Delporte C, Jiang G, Nie L, Shavandi A. Optimizing phenol-modified hyaluronic acid for designing shape-maintaining biofabricated hydrogel scaffolds in soft tissue engineering. Int J Biol Macromol 2023:125201. [PMID: 37270140 DOI: 10.1016/j.ijbiomac.2023.125201] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
In this study, we developed a well-printable biomaterial ink for 3D printing of shape-maintaining hydrogel scaffolds. The hydrogel base comprised tyramine-modified hyaluronic acid (HA-Tyr) and gelatin methacrylate (GelMA) and was dually cross-linked. Using the Box-Behnken design, we explored how varying the ink composition affected fiber formation and shape preservation. By adjusting the polymer ratios, we produced a stable hydrogel with varying responses, from a viscous liquid to a thick gel, and optimized 3D scaffolds that were structurally stable both during and after printing, offering precision and flexibility. Our ink exhibited shear-thinning behavior and high swelling capacity, as well as ECM-like characteristics and biocompatibility, making it an ideal candidate for soft tissues matrices with storage modulus of around 300 Pa. Animal trials and CAM assays confirmed its biocompatibility and integration with host tissue.
Collapse
Affiliation(s)
- Julia Simińska-Stanny
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium; Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland
| | - Feza Hachemi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium; Université Paris Saclay, Polytech Paris Saclay, Rue Louis de Broglie, 91400 Orsay, France
| | - Gianina Dodi
- Faculty of Medical Bioengineering, Grigore T. Popa, University of Medicine and Pharmacy of Iasi, Romania
| | - Florina D Cojocaru
- Faculty of Medical Bioengineering, Grigore T. Popa, University of Medicine and Pharmacy of Iasi, Romania
| | - Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa, University of Medicine and Pharmacy of Iasi, Romania
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland
| | - Christine Delporte
- Université libre de Bruxelles (ULB), Faculté de Médecine, Campus Erasme - CP 611, Laboratory of Pathophysiological and Nutritional Biochemistry, Route de Lennik, 808, 1070 Bruxelles, Belgium
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lei Nie
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium; College of Life Science, Xinyang Normal University, Xinyang, China
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
11
|
Awwad S, Ibeanu N, Liu T, Velentza-Almpani A, Chouhan N, Vlatakis S, Khaw PT, Brocchini S, Bouremel Y. Real-Time Monitoring Platform for Ocular Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15051444. [PMID: 37242686 DOI: 10.3390/pharmaceutics15051444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Real-time measurement is important in modern dissolution testing to aid in parallel drug characterisation and quality control (QC). The development of a real-time monitoring platform (microfluidic system, a novel eye movement platform with temperature sensors and accelerometers and a concentration probe setup) in conjunction with an in vitro model of the human eye (PK-Eye™) is reported. The importance of surface membrane permeability when modelling the PK-Eye™ was determined with a "pursing model" (a simplified setup of the hyaloid membrane). Parallel microfluidic control of PK-Eye™ models from a single source of pressure was performed with a ratio of 1:6 (pressure source:models) demonstrating scalability and reproducibility of pressure-flow data. Pore size and exposed surface area helped obtain a physiological range of intraocular pressure (IOP) within the models, demonstrating the need to reproduce in vitro dimensions as closely as possible to the real eye. Variation of aqueous humour flow rate throughout the day was demonstrated with a developed circadian rhythm program. Capabilities of different eye movements were programmed and achieved with an in-house eye movement platform. A concentration probe recorded the real-time concentration monitoring of injected albumin-conjugated Alexa Fluor 488 (Alexa albumin), which displayed constant release profiles. These results demonstrate the possibility of real-time monitoring of a pharmaceutical model for preclinical testing of ocular formulations.
Collapse
Affiliation(s)
- Sahar Awwad
- Optceutics Ltd., 28a Menelik Road, London NW2 3RP, UK
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Nkiruka Ibeanu
- Optceutics Ltd., 28a Menelik Road, London NW2 3RP, UK
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Tianyang Liu
- Optceutics Ltd., 28a Menelik Road, London NW2 3RP, UK
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Angeliki Velentza-Almpani
- Optceutics Ltd., 28a Menelik Road, London NW2 3RP, UK
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Nerisha Chouhan
- Optceutics Ltd., 28a Menelik Road, London NW2 3RP, UK
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Stavros Vlatakis
- Optceutics Ltd., 28a Menelik Road, London NW2 3RP, UK
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Peng Tee Khaw
- Optceutics Ltd., 28a Menelik Road, London NW2 3RP, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Steve Brocchini
- Optceutics Ltd., 28a Menelik Road, London NW2 3RP, UK
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Yann Bouremel
- Optceutics Ltd., 28a Menelik Road, London NW2 3RP, UK
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK
| |
Collapse
|
12
|
Ghaffari-Bohlouli P, Simińska-Stanny J, Jafari H, Mirzaei M, Nie L, Delporte C, Shavandi A. Printable hyaluronic acid hydrogel functionalized with yeast-derived peptide for skin wound healing. Int J Biol Macromol 2023; 232:123348. [PMID: 36682658 DOI: 10.1016/j.ijbiomac.2023.123348] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/02/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Targeted delivery of bioactive agents, growth factors, and drugs to skin wounds is a growing trend in biomaterials development for wound healing. This study presents a printable hyaluronic acid (HA) based hydrogel to deliver yeast-derived ACE-inhibitory peptide of VLSTSFPPW (VW-9) to the wound site. We first conjugated tyramine (Ty) on the carboxyl groups of the HA to form a phenol-functionalized HA (HA-Ty); then, the carboxylic acid groups of HA-Ty were aminated with ethylenediamine (HA-Ty-NH2). The primary amine groups of the HA-Ty-NH2 could then react with the carboxylic acids of the peptide. The hydrogel was then 3D printed and crosslinked with visible light. The modification of HA was confirmed by 1H NMR and FTIR. The swelling capacity of the conjugated hydrogels was 1.5-fold higher compared to the HA-Ty-NH2 hydrogel. The conjugated peptide did not affect on rheological properties and morphology of the hydrogels. The 3T3-L1 fibroblast cells seeded on the peptide-modified hydrogels exhibited higher viability than the hydrogels without the peptide, indicating that the peptide-enriched hydrogels may have the potential for wound healing applications.
Collapse
Affiliation(s)
- Pejman Ghaffari-Bohlouli
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium
| | - Julia Simińska-Stanny
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium
| | - Hafez Jafari
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium
| | - Mahta Mirzaei
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium; Centre for Food Chemistry and Technology, Ghent University Global Campus, Incheon, South Korea; Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, geb. A, B-9000 Ghent, Belgium
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China.
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Medical School, Université Libre de Bruxelles, Route de Lennik, 808, CP611, Brussels 1070, Belgium
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
13
|
Srivastava V, Chary PS, Rajana N, Pardhi ER, Singh V, Khatri D, Singh SB, Mehra NK. Complex ophthalmic formulation technologies: Advancement and future perspectives. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
14
|
Yadav I, Purohit SD, Singh H, Das NS, Ghosh C, Roy P, Mishra NC. Meropenem loaded 4-arm-polyethylene-succinimidyl-carboxymethyl ester and hyaluronic acid based bacterial resistant hydrogel. Int J Biol Macromol 2023; 235:123842. [PMID: 36854369 DOI: 10.1016/j.ijbiomac.2023.123842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 02/28/2023]
Abstract
Developing an ideal vitreous substitute/implant is a current challenge. Moreover, implants (e.g., heart valves and vitreous substitutes), are associated with a high risk of bacterial infection when it comes in contact with cells at implant site. Due to infection, many implants fail, and the patient requires immediate surgery and suffers from post-operative problems. To overcome these problems in vitreous implants, we developed a bacterial resistant vitreous implant, where meropenem (Mer), an antibiotic, has been incorporated in a hydrogel prepared by crosslinking HA (deacetylated sodium hyaluronate) with 4-arm-polyethylene-succinimidyl-carboxymethyl-ester (PESCE). The HA-PESCE hydrogel may serve as a suitable artificial vitreous substitute (AVS). The pre-gel solutions of HA-PESCE without drug and with the drug are injectable through a 22 G needle, and the gel formation occurred in approx. 3 min: it indicates its suitability for in-situ gelation through vitrectomy surgery. The HA-PESCE hydrogel depicted desired biocompatibility, transparency (>90 %), water content (96 %) and sufficient viscoelasticity (G' >100 Pa) calculated after 1 month in-vitro, which are suitable for vitreous substitute. The HA-Mer-PESCE hydrogel showed improved biocompatibility, suitable transparency (>90 %), high water content (96 %), and suitable viscoelasticity (G' >100 Pa) calculated after 1 month in-vitro, which are suitable for vitreous substitute. Further, hydrogel strongly inhibits the growth of bacteria E.coli and S.aureus. The drug loaded hydrogel showed sustained in-vitro drug release by the Fickian diffusion-mediated process (by Korsmeyer-Peppas and Peppas Sahlin model). Thus, the developed hydrogel may be used as a potential bacterial resistant AVS.
Collapse
Affiliation(s)
- Indu Yadav
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shiv Dutt Purohit
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Hemant Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Neeladri Singha Das
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Chandrachur Ghosh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Narayan Chandra Mishra
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India.
| |
Collapse
|
15
|
Zhou S, Yang D, Yang D, Guo Y, Hu R, Li Y, Zan X, Zhang X. Injectable, Self-Healing and Multiple Responsive Histamine Modified Hyaluronic Acid Hydrogels with Potentialities in Drug Delivery, Antibacterial and Tissue Engineering. Macromol Rapid Commun 2023; 44:e2200674. [PMID: 36205697 DOI: 10.1002/marc.202200674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/25/2022] [Indexed: 11/08/2022]
Abstract
Hydrogels are 3D network structures composed of physically or chemically crosslinked, hydrophilic molecules. Compared with conventional hydrogels with static and permanent network structures, injectable and responsive hydrogels generated from dynamic networks, have attracted increasing attention from various disciplines due to their wide-ranging applications in tissue engineering, drug delivery, soft robotics, etc. Herein, an injectable self-healing and multiple-responsive hyaluronic acid (HA)- histamine (His)/metal hydrogel is developed by modifying His onto HA and the subsequent, dynamic coordination between imidazole and metal ions. The pH-responsive and mechanical behaviors exhibited by the HA-His/metal hydrogels are tunable with the kinds and the concentrations of metal ions. The HA-His/Zr4+ hydrogels demonstrate a moldable capability at a neutral pH and a multi-stimulus-responsive capability when exposed to a weak alkaline environment and hyaluronidase, which inhibits bacterial growth and biofilm formation. Biocompatibilities and accelerated wound healing are demonstrated in vitro and in vivo and are thoroughly investigated and well characterized. The HA-His/Zr4+ hydrogel has great potential in various biomedical applications, such as pH- and hyaluronidase-responsive sustained release, antibacterial, and implantable materials for tissue engineering.
Collapse
Affiliation(s)
- Sijie Zhou
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, P. R. China.,Oujiang Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
| | - Dejun Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, P. R. China.,Oujiang Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
| | - Dong Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Yan Guo
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Hunan, 411201, P. R. China
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yuan Li
- Burn and Wound Healing Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, P. R. China.,Oujiang Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
| | - Xingxing Zhang
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P. R. China
| |
Collapse
|
16
|
Cong YY, Fan B, Zhang ZY, Li GY. Implantable sustained-release drug delivery systems: a revolution for ocular therapeutics. Int Ophthalmol 2023:10.1007/s10792-023-02637-x. [PMID: 36715956 DOI: 10.1007/s10792-023-02637-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023]
Abstract
PURPOSE Due to the inimitable anatomical structure of the eyeball and various physiological barriers, conventional ocular local administration is often complicated by apparent shortcomings, such as limited bioavailability and short drug retention. Thus, developing methods for sustainable, safe and efficient drug delivery to ocular target sites has long been an urgent need. This study briefly summarizes the barriers to ocular drug administration and various ocular drug delivery routes and highlights recent progress in ocular implantable sustained-release drug delivery systems (DDSs) to provide literature evidence for developing novel ocular implants for sustained drug delivery. METHODS We conducted a comprehensive search of studies on ocular implantable sustained-release DDSs in PubMed and Web of Science using the following keywords: ocular, implantable and drug delivery system. More than 400 papers were extracted. Publications focused on sustained and controlled drug release were primarily considered. Experimental articles involving DDSs that cannot be implanted into the eye through surgeries and cannot be inserted into ocular tissues in solid form were excluded. Approximately 143 publications were reviewed to summarize the most current information on the subject. RESULTS In recent years, numerous ocular sustained-release DDSs using lipids, nanoparticles and hydrogels as carriers have emerged. With unique properties and systematic design, ocular implantable sustained-release DDSs are able to continuously maintain drug release, effectively sustain the therapeutic concentration in target tissues, and substantially enhance the therapeutic efficacy. Nevertheless, few ocular implantable sustained-release DDSs have been available in clinical use. CONCLUSIONS Ocular implantable sustained-release DDSs have become a new focus in the field of ocular drug development through unique designs and improvements in the materials of drug carriers, administration methods and dosage forms. With more ocular implantable sustained-release DDSs being commercialized, ocular therapeutics may be revolutionized.
Collapse
Affiliation(s)
- Yun-Yi Cong
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Bin Fan
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Zi-Yuan Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Guang-Yu Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
17
|
Silica Hydrogels as Platform for Delivery of Hyaluronic Acid. Pharmaceutics 2022; 15:pharmaceutics15010077. [PMID: 36678706 PMCID: PMC9864809 DOI: 10.3390/pharmaceutics15010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Hyaluronic acid (HA) is chondroprotective and anti-inflammatory drug used clinically for treatment of inflammatory disorders (arthritis, skin diseases, bowel diseases, etc.). In addition, HA is a crucial ingredient in the cosmetic products used to eliminate the unpleasant consequences of inflammatory skin diseases. The main disadvantages that limit its use are its low mechanical properties and its rapid biodegradation. In this paper, silica hydrogels are considered as a promising matrix for HA to improve its properties. The hybrid HA-silica hydrogels were synthesized by the sol-gel method. Morphology of the hydrogels was investigated by optical microscopy and scanning electron microscopy methods. Taking into account their potential applications for topical and injectable delivery, much attention was paid to investigation of deformation properties of the hydrogels under shear, compression, and tension. Their resistance to enzymatic degradation in vitro was estimated. Kinetics and mechanisms of HA release from the hybrid hydrogels in vitro were also studied. It was found that the indicated properties can be controlled by synthesis conditions, HA molecular weight, and its loading in the hydrogels. Silica hydrogels are a prospective platform for the development of new soft formulations and cosmetic compositions of HA with improved pharmacological and consumer properties.
Collapse
|
18
|
Rathod S. Interpenetrating polymeric network (IPNs) in ophthalmic drug delivery: Breaking the barriers. Int Ophthalmol 2022; 43:1063-1074. [PMID: 36053474 DOI: 10.1007/s10792-022-02482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 08/20/2022] [Indexed: 10/14/2022]
Abstract
To maintain the therapeutic drug concentration for a prolonged period of time in aqueous and vitreous humor is primary challenge for ophthalmic drug delivery. Majority of the locally administered drug into the eye is lost as to natural reflexes like blinking and lacrimation resulting in the short span of drug residence. Consequently, less than 5% of the applied drug penetrate through the cornea and reaches the intraocular tissues. The major targets for optimal ophthalmic drug delivery are increasing drug residence time in cul-de-sac of the eye, prolonging intraocular exposure, modulating drug release from the delivery system, and minimizing pre-corneal drug loss. Development of in situ gel, contact lens, intraocular lens, inserts, artificial cornea, scaffold, etc., for ophthalmic drug delivery are few approaches to achieve these major targeted objectives for delivering the drug optimally. Interpenetrating polymeric network (IPN) or smart hydrogels or stimuli sensitive hydrogels are the class of polymers that can help to achieve the targets in ophthalmic drug delivery due to their versatility, biocompatibility and biodegradability. These novel ''smart" materials can alter their molecular configuration and result in volume phase transition in response to environmental stimuli, such as temperature, pH, ionic strength, electric and magnetic field. Hydrogel and tissue interaction, mechanical/tensile properties, pore size and surface chemistry of IPNs can also be modulated for tuning the drug release kinetics. Stimuli sensitive IPNs has been widely exploited to prepare in situ gelling formulations for ophthalmic drug delivery. Low refractive index hydrogel biomaterials with high water content, soft tissue-like physical properties, wettability, oxygen, glucose permeability and desired biocompatibility makes IPNs versatile candidate for contact lenses and corneal implants. This review article focuses on the exploration of these smart polymeric networks/IPNs for therapeutically improved ophthalmic drug delivery that has unfastened novel arenas in ophthalmic drug delivery.
Collapse
Affiliation(s)
- Sachin Rathod
- Maliba Pharmacy College, UKA Tarsadia University, Gopal-Vidyanagar Campus, Surat, 394350, India. .,Parul Institute of Pharmacy and Research, Parul University, Waghodia, Vadodara, 391760, India.
| |
Collapse
|
19
|
Casey-Power S, Ryan R, Behl G, McLoughlin P, Byrne ME, Fitzhenry L. Hyaluronic Acid: Its Versatile Use in Ocular Drug Delivery with a Specific Focus on Hyaluronic Acid-Based Polyelectrolyte Complexes. Pharmaceutics 2022; 14:pharmaceutics14071479. [PMID: 35890371 PMCID: PMC9323903 DOI: 10.3390/pharmaceutics14071479] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 12/12/2022] Open
Abstract
Extensive research is currently being conducted into novel ocular drug delivery systems (ODDS) that are capable of surpassing the limitations associated with conventional intraocular anterior and posterior segment treatments. Nanoformulations, including those synthesised from the natural, hydrophilic glycosaminoglycan, hyaluronic acid (HA), have gained significant traction due to their enhanced intraocular permeation, longer retention times, high physiological stability, inherent biocompatibility, and biodegradability. However, conventional nanoformulation preparation methods often require large volumes of organic solvent, chemical cross-linkers, and surfactants, which can pose significant toxicity risks. We present a comprehensive, critical review of the use of HA in the field of ophthalmology and ocular drug delivery, with a discussion of the physicochemical and biological properties of HA that render it a suitable excipient for drug delivery to both the anterior and posterior segments of the eye. The pivotal focus of this review is a discussion of the formation of HA-based nanoparticles via polyelectrolyte complexation, a mild method of preparation driven primarily by electrostatic interaction between opposing polyelectrolytes. To the best of our knowledge, despite the growing number of publications centred around the development of HA-based polyelectrolyte complexes (HA-PECs) for ocular drug delivery, no review articles have been published in this area. This review aims to bridge the identified gap in the literature by (1) reviewing recent advances in the area of HA-PECs for anterior and posterior ODD, (2) describing the mechanism and thermodynamics of polyelectrolyte complexation, and (3) critically evaluating the intrinsic and extrinsic formulation parameters that must be considered when designing HA-PECs for ocular application.
Collapse
Affiliation(s)
- Saoirse Casey-Power
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland; (R.R.); (G.B.); (P.M.); (L.F.)
- Correspondence:
| | - Richie Ryan
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland; (R.R.); (G.B.); (P.M.); (L.F.)
| | - Gautam Behl
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland; (R.R.); (G.B.); (P.M.); (L.F.)
| | - Peter McLoughlin
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland; (R.R.); (G.B.); (P.M.); (L.F.)
| | - Mark E. Byrne
- Biomimetic & Biohybrid Materials, Biomedical Devices & Drug Delivery Laboratories, Department of Biomedical Engineering, Henry M. Rowan College of Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA;
- Department of Chemical Engineering, Henry M. Rowan College of Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA
| | - Laurence Fitzhenry
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland; (R.R.); (G.B.); (P.M.); (L.F.)
| |
Collapse
|
20
|
The Use of Polymer Blends in the Treatment of Ocular Diseases. Pharmaceutics 2022; 14:pharmaceutics14071431. [PMID: 35890326 PMCID: PMC9322751 DOI: 10.3390/pharmaceutics14071431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022] Open
Abstract
The eye is an organ with limited drug access due to its anatomical and physiological barriers, and the usual forms of ocular administration are limited in terms of drug penetration, residence time, and bioavailability, as well as low patient compliance. Hence, therapeutic innovations in new drug delivery systems (DDS) have been widely explored since they show numerous advantages over conventional methods, besides delivering the content to the eye without interfering with its normal functioning. Polymers are usually used in DDS and many of them are applicable to ophthalmic use, especially biodegradable ones. Even so, it can be a hard task to find a singular polymer with all the desirable properties to deliver the best performance, and combining two or more polymers in a blend has proven to be more convenient, efficient, and cost-effective. This review was carried out to assess the use of polymer blends as DDS. The search conducted in the databases of Pubmed and Scopus for specific terms revealed that although the physical combination of polymers is largely applied, the term polymer blend still has low compliance.
Collapse
|
21
|
Ding YW, Wang ZY, Ren ZW, Zhang XW, Wei DX. Advances in modified hyaluronic acid-based hydrogels for skin wound healing. Biomater Sci 2022; 10:3393-3409. [PMID: 35575243 DOI: 10.1039/d2bm00397j] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Hyaluronic acid (HA) is a natural linear anionic polysaccharide with many unique characteristics such as excellent biocompatibility and biodegradability, native biofunctionality, hydrophilicity, and non-immunoreactivity. HA plays crucial roles in numerous biological processes, including the inflammatory response, cell adhesion, migration, proliferation, differentiation, angiogenesis, and tissue regeneration. All these properties and biological functions of HA make it an appealing material for the synthesis of biomedical hydrogels for skin wound healing. Since HA is not able to be gelate alone, it must be processed and functionalized through chemical modifications and crosslinking to generate versatile HA-based hydrogels. In recent years, different physical and chemical crosslinking strategies for HA-based hydrogels have been developed and designed, such as radical polymerization, Schiff-base crosslinking, enzymatic crosslinking, and dynamic covalent crosslinking, and they have broad and promising applications in skin wound healing and tissue engineering. In this review, we focus on chemical modification and crosslinking strategies for HA-based hydrogels, aiming to provide an overview of the latest advances in the development of HA-based hydrogels for skin wound healing. We summarize and propose feasible measures for the application of HA-based hydrogels for skin treatment, and discuss future application trends, which may ultimately promote HA-based hydrogels as a promising biomaterial for clinical applications.
Collapse
Affiliation(s)
- Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Northwest University, Xi'an, China.
| | - Ze-Yu Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Northwest University, Xi'an, China.
| | - Zi-Wei Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Northwest University, Xi'an, China.
| | - Xu-Wei Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Northwest University, Xi'an, China.
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Northwest University, Xi'an, China.
| |
Collapse
|
22
|
Velentza-Almpani A, Ibeanu N, Liu T, Redhead C, Tee Khaw P, Brocchini S, Awwad S, Bouremel Y. Effects of Flow Hydrodynamics and Eye Movements on Intraocular Drug Clearance. Pharmaceutics 2022; 14:pharmaceutics14061267. [PMID: 35745839 PMCID: PMC9229170 DOI: 10.3390/pharmaceutics14061267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 02/06/2023] Open
Abstract
New in vitro prototypes (PK-Eye™) were tested with and without eye movement to understand diffusion and convection effects on intraocular clearance. Port placement in front ((i) ciliary inflow model) and behind the model lens ((ii) posterior inflow model) was used to study bevacizumab (1.25 mg/50 µL) and dexamethasone (0.1 mg/100 µL) in phosphate-buffered saline (PBS, pH 7.4) and simulated vitreal fluid (SVF). Dexamethasone was studied in a (iii) retinal-choroid-sclera (RCS) outflow model (with ciliary inflow and two outflow pathways). Ciliary vs. posterior inflow placement did not affect the half-life for dexamethasone at 2.0 µL/min using PBS (4.7 days vs. 4.8 days) and SVF (4.9 days with ciliary inflow), but it did decrease the half-life for bevacizumab in PBS (20.4 days vs. 2.4 days) and SVF (19.2 days vs. 10.8 days). Eye movement only affected the half-life of dexamethasone in both media. Dexamethasone in the RCS model showed approximately 20% and 75% clearance from the RCS and anterior outflows, respectively. The half-life of the protein was comparable to human data in the posterior inflow model. Shorter half-life values for a protein in a ciliary inflow model can be achieved with other eye movements. The RCS flow model with eye movement was comparable to human half-life data for dexamethasone.
Collapse
Affiliation(s)
- Angeliki Velentza-Almpani
- Optceutics Ltd., 28a Menelik Road, London NW2 3RP, UK; (A.V.-A.); (N.I.); (T.L.); (C.R.); (P.T.K.); (S.B.)
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Nkiruka Ibeanu
- Optceutics Ltd., 28a Menelik Road, London NW2 3RP, UK; (A.V.-A.); (N.I.); (T.L.); (C.R.); (P.T.K.); (S.B.)
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Tianyang Liu
- Optceutics Ltd., 28a Menelik Road, London NW2 3RP, UK; (A.V.-A.); (N.I.); (T.L.); (C.R.); (P.T.K.); (S.B.)
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Christopher Redhead
- Optceutics Ltd., 28a Menelik Road, London NW2 3RP, UK; (A.V.-A.); (N.I.); (T.L.); (C.R.); (P.T.K.); (S.B.)
| | - Peng Tee Khaw
- Optceutics Ltd., 28a Menelik Road, London NW2 3RP, UK; (A.V.-A.); (N.I.); (T.L.); (C.R.); (P.T.K.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Steve Brocchini
- Optceutics Ltd., 28a Menelik Road, London NW2 3RP, UK; (A.V.-A.); (N.I.); (T.L.); (C.R.); (P.T.K.); (S.B.)
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Sahar Awwad
- Optceutics Ltd., 28a Menelik Road, London NW2 3RP, UK; (A.V.-A.); (N.I.); (T.L.); (C.R.); (P.T.K.); (S.B.)
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Correspondence: (S.A.); (Y.B.); Tel.: +44-207-753-5802 (S.A.)
| | - Yann Bouremel
- Optceutics Ltd., 28a Menelik Road, London NW2 3RP, UK; (A.V.-A.); (N.I.); (T.L.); (C.R.); (P.T.K.); (S.B.)
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Correspondence: (S.A.); (Y.B.); Tel.: +44-207-753-5802 (S.A.)
| |
Collapse
|
23
|
Akulo KA, Adali T, Moyo MTG, Bodamyali T. Intravitreal Injectable Hydrogels for Sustained Drug Delivery in Glaucoma Treatment and Therapy. Polymers (Basel) 2022; 14:polym14122359. [PMID: 35745935 PMCID: PMC9230531 DOI: 10.3390/polym14122359] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/11/2022] Open
Abstract
Glaucoma is extensively treated with topical eye drops containing drugs. However, the retention time of the loaded drugs and the in vivo bioavailability of the drugs are highly influenced before reaching the targeted area sufficiently, due to physiological and anatomical barriers of the eye, such as rapid nasolacrimal drainage. Poor intraocular penetration and frequent administration may also cause ocular cytotoxicity. A novel approach to overcome these drawbacks is the use of injectable hydrogels administered intravitreously for sustained drug delivery to the target site. These injectable hydrogels are used as nanocarriers to intimately interact with specific diseased ocular tissues to increase the therapeutic efficacy and drug bioavailability of the anti-glaucomic drugs. The human eye is very delicate, and is sensitive to contact with any foreign body material. However, natural biopolymers are non-reactive, biocompatible, biodegradable, and lack immunogenic and inflammatory responses to the host whenever they are incorporated in drug delivery systems. These favorable biomaterial properties have made them widely applicable in biomedical applications, with minimal adversity. This review highlights the importance of using natural biopolymer-based intravitreal hydrogel drug delivery systems for glaucoma treatment over conventional methods.
Collapse
Affiliation(s)
- Kassahun Alula Akulo
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Mersin 10, Lefkoşa 99138, Turkey; (K.A.A.); (M.T.G.M.)
- Tissue Engineering and Biomaterials Research Center, Near East University, Mersin 10, Lefkoşa 99138, Turkey
| | - Terin Adali
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Mersin 10, Lefkoşa 99138, Turkey; (K.A.A.); (M.T.G.M.)
- Tissue Engineering and Biomaterials Research Center, Near East University, Mersin 10, Lefkoşa 99138, Turkey
- Nanotechnology Research Center, Sabanci University SUNUM, Istanbul 34956, Turkey
- Correspondence:
| | - Mthabisi Talent George Moyo
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Mersin 10, Lefkoşa 99138, Turkey; (K.A.A.); (M.T.G.M.)
- Tissue Engineering and Biomaterials Research Center, Near East University, Mersin 10, Lefkoşa 99138, Turkey
| | - Tulin Bodamyali
- Department of Pathology, Faculty of Medicine, Girne American University, Mersin 10, Girne 99428, Turkey;
| |
Collapse
|
24
|
Ow V, Loh XJ. Recent developments of temperature‐responsive polymers for ophthalmic applications. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Valerie Ow
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) Singapore Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) Singapore Singapore
| |
Collapse
|
25
|
Design, Synthesis, Characterization, and In Vitro Evaluation of a New Cross-Linked Hyaluronic Acid for Pharmaceutical and Cosmetic Applications. Pharmaceutics 2021; 13:pharmaceutics13101672. [PMID: 34683965 PMCID: PMC8540713 DOI: 10.3390/pharmaceutics13101672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
Hyaluronic acid (HA), an excellent biomaterial with unique bio properties, is currently one of the most interesting polymers for many biomedical and cosmetic applications. However, several of its potential benefits are limited as it is rapidly degraded by hyaluronidase enzymes. To improve the half-life and consequently increase performance, native HA has been modified through cross-linking reactions with a natural and biocompatible amino acid, Ornithine, to overcome the potential toxicity commonly associated with traditional linkers. 2-chloro-dimethoxy-1,3,5-triazine/4-methylmorpholine (CDMT/NMM) was used as an activating agent. The new product (HA–Orn) was extensively characterized to confirm the chemical modification, and rheological analysis showed a gel-like profile. In vitro degradation experiments showed an improved resistance profile against enzymatic digestions. Furthermore, in vitro cytotoxicity studies were performed on lung cell lines (Calu-3 and H441), which showed no cytotoxicity.
Collapse
|
26
|
Rial-Hermida MI, Rey-Rico A, Blanco-Fernandez B, Carballo-Pedrares N, Byrne EM, Mano JF. Recent Progress on Polysaccharide-Based Hydrogels for Controlled Delivery of Therapeutic Biomolecules. ACS Biomater Sci Eng 2021; 7:4102-4127. [PMID: 34137581 PMCID: PMC8919265 DOI: 10.1021/acsbiomaterials.0c01784] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
A plethora of applications using polysaccharides have been developed in recent years due to their availability as well as their frequent nontoxicity and biodegradability. These polymers are usually obtained from renewable sources or are byproducts of industrial processes, thus, their use is collaborative in waste management and shows promise for an enhanced sustainable circular economy. Regarding the development of novel delivery systems for biotherapeutics, the potential of polysaccharides is attractive for the previously mentioned properties and also for the possibility of chemical modification of their structures, their ability to form matrixes of diverse architectures and mechanical properties, as well as for their ability to maintain bioactivity following incorporation of the biomolecules into the matrix. Biotherapeutics, such as proteins, growth factors, gene vectors, enzymes, hormones, DNA/RNA, and antibodies are currently in use as major therapeutics in a wide range of pathologies. In the present review, we summarize recent progress in the development of polysaccharide-based hydrogels of diverse nature, alone or in combination with other polymers or drug delivery systems, which have been implemented in the delivery of biotherapeutics in the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- M. Isabel Rial-Hermida
- Department
of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro, Portugal
| | - Ana Rey-Rico
- Cell
Therapy and Regenerative Medicine
Unit, Centro de Investigacións Científicas Avanzadas
(CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Barbara Blanco-Fernandez
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology, 08028 Barcelona, Spain
- CIBER
en Bioingeniería, Biomateriales y
Nanomedicina, CIBER-BBN, 28029 Madrid, Spain
| | - Natalia Carballo-Pedrares
- Cell
Therapy and Regenerative Medicine
Unit, Centro de Investigacións Científicas Avanzadas
(CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Eimear M. Byrne
- Wellcome-Wolfson
Institute For Experimental Medicine, Queen’s
University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - João F. Mano
- Department
of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro, Portugal
| |
Collapse
|
27
|
Self-sealing hyaluronic acid-coated 30-gauge intravitreal injection needles for preventing vitreous and drug reflux through needle passage. Sci Rep 2021; 11:16996. [PMID: 34417529 PMCID: PMC8379207 DOI: 10.1038/s41598-021-96561-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/05/2021] [Indexed: 11/24/2022] Open
Abstract
Self-sealing hyaluronic acid (HA)-coated self-sealing 30-gauge needles exhibiting instant leakage prevention of intravitreal humor and injected drug were developed in this study. Ninety New Zealand rabbits were used in this study. We assessed dye regurgitation in intravitreal ICG dye injections using HA-coated needles (HA needle group) and conventional needles (control group). Vitreous humor levels of anti-vascular endothelial growth factor (VEGF) were compared between groups one, three, and seven days after intravitreal bevacizumab (0.016 mL) injections. Expression levels of inflammatory cytokines in the aqueous humor and vitreous humor, including prostaglandin E2 (PGE2), interferon-γ, tumor necrosis factor-α, interleukin (IL)-1β, IL-4, IL-6, IL-17, and IL-8, were compared between HA needle, control, and normal (in which intravitreal injection was not performed) groups following 12 intravitreal injections over a period of one week. In the HA needle group, HA remained at the injection site and blocked the hole after intravitreal injection. Dye regurgitation occurred significantly less frequently in the HA needle group (16.7%) than the control group (55.6%) after intravitreal ICG dye injection. Meanwhile, vitreous anti-VEGF levels were markedly higher in the HA needle group than the control group one and three days after intravitreal bevacizumab injections. After 12 intravitreal injections, expression levels of aqueous and vitreous IL-8 significantly increased in the control group compared to the HA needle and normal groups. Conversely, there were no significant differences in the expression of the other seven cytokines among the three groups. Intravitreal injections using HA-coated self-sealing 30-gauge needles can block the outflow of vitreous humor and drugs through the needle passage.
Collapse
|
28
|
Hyaluronic acid in ocular drug delivery. Carbohydr Polym 2021; 264:118006. [DOI: 10.1016/j.carbpol.2021.118006] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
|
29
|
Sustained Release Systems for Delivery of Therapeutic Peptide/Protein. Biomacromolecules 2021; 22:2299-2324. [PMID: 33957752 DOI: 10.1021/acs.biomac.1c00160] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peptide/protein therapeutics have been significantly applied in the clinical treatment of various diseases such as cancer, diabetes, etc. owing to their high biocompatibility, specificity, and therapeutic efficacy. However, due to their immunogenicity, instability stemming from its complex tertiary and quaternary structure, vulnerability to enzyme degradation, and rapid renal clearance, the clinical application of protein/peptide therapeutics is significantly confined. Though nanotechnology has been demonstrated to prevent enzyme degradation of the protein therapeutics and thus enhance the half-life, issues such as initial burst release and uncontrollable release kinetics are still unsolved. Moreover, the traditional administration method results in poor patient compliance, limiting the clinical application of protein/peptide therapeutics. Exploiting the sustained-release formulations for more controllable delivery of protein/peptide therapeutics to decrease the frequency of injection and enhance patient compliance is thus greatly meaningful. In this review, we comprehensively summarize the substantial advancements of protein/peptide sustained-release systems in the past decades. In addition, the advantages and disadvantages of all these sustained-release systems in clinical application together with their future challenges are also discussed in this review.
Collapse
|
30
|
Chang WH, Liu PY, Lin MH, Lu CJ, Chou HY, Nian CY, Jiang YT, Hsu YHH. Applications of Hyaluronic Acid in Ophthalmology and Contact Lenses. Molecules 2021; 26:molecules26092485. [PMID: 33923222 PMCID: PMC8123179 DOI: 10.3390/molecules26092485] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Hyaluronic acid (HA) is a glycosaminoglycan that was first isolated and identified from the vitreous body of a bull’s eye. HA is ubiquitous in the soft connective tissues of animals and therefore has high tissue compatibility for use in medication. Because of HA’s biological safety and water retention properties, it has many ophthalmology-related applications, such as in intravitreal injection, dry eye treatment, and contact lenses. Due to its broad range of applications, the identification and quantification of HA is a critical topic. This review article discusses current methods for analyzing HA. Contact lenses have become a widely used medical device, with HA commonly used as an additive to their production material, surface coating, and multipurpose solution. HA molecules on contact lenses retain moisture and increase the wearer’s comfort. HA absorbed by contact lenses can also gradually release to the anterior segment of the eyes to treat dry eye. This review discusses applications of HA in ophthalmology.
Collapse
Affiliation(s)
- Wan-Hsin Chang
- Research and Development Center, Yung Sheng Optical Company, Daya District, Taichung 42881, Taiwan; (W.-H.C.); (P.-Y.L.); (M.-H.L.); (C.-J.L.); (H.-Y.C.); (C.-Y.N.)
| | - Pei-Yi Liu
- Research and Development Center, Yung Sheng Optical Company, Daya District, Taichung 42881, Taiwan; (W.-H.C.); (P.-Y.L.); (M.-H.L.); (C.-J.L.); (H.-Y.C.); (C.-Y.N.)
| | - Min-Hsuan Lin
- Research and Development Center, Yung Sheng Optical Company, Daya District, Taichung 42881, Taiwan; (W.-H.C.); (P.-Y.L.); (M.-H.L.); (C.-J.L.); (H.-Y.C.); (C.-Y.N.)
| | - Chien-Ju Lu
- Research and Development Center, Yung Sheng Optical Company, Daya District, Taichung 42881, Taiwan; (W.-H.C.); (P.-Y.L.); (M.-H.L.); (C.-J.L.); (H.-Y.C.); (C.-Y.N.)
| | - Hsuan-Yi Chou
- Research and Development Center, Yung Sheng Optical Company, Daya District, Taichung 42881, Taiwan; (W.-H.C.); (P.-Y.L.); (M.-H.L.); (C.-J.L.); (H.-Y.C.); (C.-Y.N.)
| | - Chih-Yu Nian
- Research and Development Center, Yung Sheng Optical Company, Daya District, Taichung 42881, Taiwan; (W.-H.C.); (P.-Y.L.); (M.-H.L.); (C.-J.L.); (H.-Y.C.); (C.-Y.N.)
| | - Yuan-Ting Jiang
- Research and Development Center, Yung Sheng Optical Company, Daya District, Taichung 42881, Taiwan; (W.-H.C.); (P.-Y.L.); (M.-H.L.); (C.-J.L.); (H.-Y.C.); (C.-Y.N.)
- Correspondence: (Y.-T.J.); (Y.-H.H.H.); Tel.: +886-4-25658384 (ext. 3706) (Y.-T.J.); +886-4-23590121 (ext. 32238) (Y.-H.H.H.)
| | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, Xitun District, Taichung 40704, Taiwan
- Correspondence: (Y.-T.J.); (Y.-H.H.H.); Tel.: +886-4-25658384 (ext. 3706) (Y.-T.J.); +886-4-23590121 (ext. 32238) (Y.-H.H.H.)
| |
Collapse
|
31
|
Kumar Dubey S, Pradhan R, Hejmady S, Singhvi G, Choudhury H, Gorain B, Kesharwani P. Emerging innovations in nano-enabled therapy against age-related macular degeneration: A paradigm shift. Int J Pharm 2021; 600:120499. [PMID: 33753164 DOI: 10.1016/j.ijpharm.2021.120499] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/03/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
Age-related macular degeneration (AMD), a degenerative eye disease, is the major cause of irreversible loss of vision among individuals aged 50 and older. Both genetic and environmental factors are responsible for the progressive damage to central vision. It is a multifactorial retinal disease with features such as drusen, hypopigmentation and/or hyperpigmentation of the retinal pigment epithelium, and even choroidal neovascularization in certain patients. AMD is of two major forms: exudative (wet) and atrophic (dry) with changes affecting the macula leading to impaired vision. Although the retina remains an accessible portion for delivering drugs, there are no current options to cure or treat AMD. The existing expensive therapeutics are unable to treat the underlying pathology but display several side effects. However, recent innovations in nanotherapeutics provide an optimal alternative of drug delivery to treat the neovascular condition. These new-age technologies in the nanometer scale would enhance bioactivity and improve the bioavailability of drugs at the site of action to treat AMD. The nanomedicine also provides sustained release of the drug with prolonged retention after penetrating across the ocular tissues. In this review, the insights into the cellular and molecular mechanisms associated with the pathophysiology of AMD are provided. It also serves to review the current progress in nanoparticle-based drug delivery systems that offer feasible treatments in AMD.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India; Medical Research, R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India.
| | - Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Siddhanth Hejmady
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor 47500, Malaysia; Center for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor 47500, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia, Hamdard, New Delhi 110062, India.
| |
Collapse
|
32
|
Hsu XL, Wu LC, Hsieh JY, Huang YY. Nanoparticle-Hydrogel Composite Drug Delivery System for Potential Ocular Applications. Polymers (Basel) 2021; 13:polym13040642. [PMID: 33670014 PMCID: PMC7927131 DOI: 10.3390/polym13040642] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/05/2023] Open
Abstract
Intravitreal injections are clinically established procedures in the treatment of posterior eye diseases, such as wet age-related macular degeneration (wet AMD) which requires monthly intravitreal injections of anti-vascular endothelial growth factor (anti-VEGF) protein drugs that can lead to complications due to frequent dosing. In this study, we designed a composite drug delivery system (DDS) consisting of drug-loaded poly (lactide–co–glycolide) (PLGA) nanoparticles and a chemically crosslinked hyaluronan hydrogel to reduce the dosing frequency. The morphology, size, composition, and drug loading efficiency of the prepared nanoparticles were characterized. The properties of the modified hyaluronan polymers used were also examined. The degree of swelling/degradation and controlled release ability of the hyaluronan hydrogel and the composite DDS were identified using bovine serum albumin (BSA) as a model drug. The results show that this system can retain 75% of its wet weight without losing its integrity and release the model drug at the rate of 0.4 μg/day for more than two months under physiological conditions. In addition, the nanoparticulate formulation of the system can further improve bioavailability of the drugs by penetrating deep into the retinal layers. In conclusion, the proposed composite DDS is easily prepared with biocompatible materials and is promising for providing the sustained release of the protein drugs as a better treatment for ocular neovascular diseases like wet AMD.
Collapse
Affiliation(s)
- Xuan-Ling Hsu
- Department of Biomedical Engineering, National Taiwan University, Taipei 10051, Taiwan; (X.-L.H.); (J.-Y.H.)
| | - Lien-Chen Wu
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan
| | - Jui-Yang Hsieh
- Department of Biomedical Engineering, National Taiwan University, Taipei 10051, Taiwan; (X.-L.H.); (J.-Y.H.)
| | - Yi-You Huang
- Department of Biomedical Engineering, National Taiwan University, Taipei 10051, Taiwan; (X.-L.H.); (J.-Y.H.)
- Department of Biomedical Engineering, National Taiwan University Hospital, Taipei 10051, Taiwan
- Correspondence:
| |
Collapse
|
33
|
Sadasivam R, Packirisamy G, Shakya S, Goswami M. Non-invasive multimodal imaging of Diabetic Retinopathy: A survey on treatment methods and Nanotheranostics. Nanotheranostics 2021; 5:166-181. [PMID: 33564616 PMCID: PMC7868006 DOI: 10.7150/ntno.56015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetes Retinopathy (DR) is one of the most prominent microvascular complications of diabetes. It is one of the pre-eminent causes for vision impairment followed by blindness among the working-age population worldwide. The de facto cause for DR remains challenging, despite several efforts made to unveil the mechanism underlying the pathology of DR. There is quite less availability of the low cost pre-emptive theranostic imaging tools in terms of in-depth resolution, due to the multiple factors involved in the etiology of DR. This review work comprehensively explores the various reports and research works on all perspectives of diabetic retinopathy (DR), and its mechanism. It also discusses various advanced non-destructive imaging modalities, current, and future treatment approaches. Further, the application of various nanoparticle-based drug delivery strategies used for the treatment of DR are also discussed. In a nutshell, the present review work bolsters the pursuit of the development of an advanced non-invasive optical imaging modal with a nano-theranostic approach for the future diagnosis and treatment of DR and its associated ocular complications.
Collapse
Affiliation(s)
- Rajkumar Sadasivam
- Divyadrishti Imaging Laboratory, Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand-247667, India
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand-247667, India
| | - Snehlata Shakya
- Department of clinical physiology, Lund University, Skåne University Hospital, Skåne, Sweden
| | - Mayank Goswami
- Divyadrishti Imaging Laboratory, Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand-247667, India
| |
Collapse
|
34
|
Yan T, Ma Z, Liu J, Yin N, Lei S, Zhang X, Li X, Zhang Y, Kong J. Thermoresponsive GenisteinNLC-dexamethasone-moxifloxacin multi drug delivery system in lens capsule bag to prevent complications after cataract surgery. Sci Rep 2021; 11:181. [PMID: 33420301 PMCID: PMC7794611 DOI: 10.1038/s41598-020-80476-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
Cataract surgery is the most common intraocular procedure. To decrease postsurgical inflammation, prevent infection and reduce the incidence of secondary cataract, we built a temperature-sensitive drug delivery system carrying dexamethasone, moxifloxacin and genistein nanostructured lipid carrier (GenNLC) modified by mPEG-PLA based on F127/F68 as hydrogel. Characterizations and release profiles of the drug delivery system were studied. In vitro functions were detected by CCK-8 test, immunofluorescence, wound-healing assay, real time-PCR and western blotting. The size of GenNLCs was 39.47 ± 0.69 nm in average with surface charges of - 4.32 ± 0.84 mV. The hydrogel gelation temperature and time were 32 °C, 20 s with a viscosity, hardness, adhesiveness and stringiness of 6.135 Pa.s, 54.0 g, 22.0 g, and 3.24 mm, respectively. Transmittance of the gel-release medium was above 90% (93.44 ± 0.33% to 100%) at range of 430 nm to 800 nm. Moxifloxacin released completely within 10 days. Fifty percent of dexamethasone released at a constant rate in the first week, and then released sustainably with a tapering down rate until day 30. Genistein released slowly but persistently with a cumulative release of 63% at day 40. The thermoresponsive hydrogel inhibited the proliferation, migration and epithelial-mesenchymal transition of SRA 01/04 cells, which were confirmed by testing CCK-8, wound-healing assay, western blot, real time-PCR (RT-PCR) and immunofluorescence. These results support this intracameral thermoresponsive in situ multi-drug delivery system with programmed release amounts and release profiles to cut down the need of eye drops for preventing inflammation or infection and to reduce posterior capsular opacification following cataract surgery.
Collapse
Affiliation(s)
- Tingyu Yan
- grid.412644.1Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No.11 Xinhua Road, Heping District, Shenyang, 110005 Liaoning Province China
| | - Zhongxu Ma
- grid.265021.20000 0000 9792 1228Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Clinical College of Ophthalmology, Tianjin Medical University, No. 4 Gansu Rd, Heping District, Tianjin, 300020 China
| | - Jingjing Liu
- grid.412644.1Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No.11 Xinhua Road, Heping District, Shenyang, 110005 Liaoning Province China
| | - Na Yin
- grid.412561.50000 0000 8645 4345Department of Pharmaceutics, Shenyang Pharmaceutical University, No.103 Wen Hua Road, Shenyang, 110016 China
| | - Shizhen Lei
- grid.412644.1Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No.11 Xinhua Road, Heping District, Shenyang, 110005 Liaoning Province China
| | - Xinxin Zhang
- grid.412644.1Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No.11 Xinhua Road, Heping District, Shenyang, 110005 Liaoning Province China
| | - Xuedong Li
- grid.412644.1Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No.11 Xinhua Road, Heping District, Shenyang, 110005 Liaoning Province China
| | - Yu Zhang
- grid.412561.50000 0000 8645 4345Department of Pharmaceutics, Shenyang Pharmaceutical University, No.103 Wen Hua Road, Shenyang, 110016 China
| | - Jun Kong
- grid.412644.1Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No.11 Xinhua Road, Heping District, Shenyang, 110005 Liaoning Province China
| |
Collapse
|
35
|
Rahić O, Tucak A, Omerović N, Sirbubalo M, Hindija L, Hadžiabdić J, Vranić E. Novel Drug Delivery Systems Fighting Glaucoma: Formulation Obstacles and Solutions. Pharmaceutics 2020; 13:E28. [PMID: 33375224 PMCID: PMC7824381 DOI: 10.3390/pharmaceutics13010028] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is considered to be one of the biggest health problems in the world. It is the main cause of preventable blindness due to its asymptomatic nature in the early stages on the one hand and patients' non-adherence on the other. There are several approaches in glaucoma treatment, whereby this has to be individually designed for each patient. The first-line treatment is medication therapy. However, taking into account numerous disadvantages of conventional ophthalmic dosage forms, intensive work has been carried out on the development of novel drug delivery systems for glaucoma. This review aims to provide an overview of formulation solutions and strategies in the development of in situ gel systems, nanosystems, ocular inserts, contact lenses, collagen corneal shields, ocular implants, microneedles, and iontophoretic devices. The results of studies confirming the effectiveness of the aforementioned drug delivery systems were also briefly presented.
Collapse
Affiliation(s)
- Ognjenka Rahić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Amina Tucak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Naida Omerović
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Merima Sirbubalo
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Lamija Hindija
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Jasmina Hadžiabdić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Edina Vranić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| |
Collapse
|
36
|
Cavalcanti ADD, Melo BAGD, Ferreira BAM, Santana MHA. Performance of the main downstream operations on hyaluronic acid purification. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Caputo TM, Aliberti A, Cusano AM, Ruvo M, Cutolo A, Cusano A. Stimuli‐responsive hybrid microgels for controlled drug delivery: Sorafenib as a model drug. J Appl Polym Sci 2020. [DOI: 10.1002/app.50147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tania Mariastella Caputo
- CeRICT scrl Regional Center Information Communication Technology Benevento Italy
- Optoelectronics Group, Department of Engineering University of Sannio Benevento Italy
| | - Anna Aliberti
- Optoelectronics Group, Department of Engineering University of Sannio Benevento Italy
| | - Angela Maria Cusano
- CeRICT scrl Regional Center Information Communication Technology Benevento Italy
| | - Menotti Ruvo
- Institute of Biostructure and Bioimaging National Research Council Naples Italy
| | - Antonello Cutolo
- Department of Electrical Engineering and Information Technology University of Naples Federico II Naples Italy
| | - Andrea Cusano
- CeRICT scrl Regional Center Information Communication Technology Benevento Italy
- Optoelectronics Group, Department of Engineering University of Sannio Benevento Italy
| |
Collapse
|
38
|
Ibeanu N, Egbu R, Onyekuru L, Javaheri H, Tee Khaw P, R. Williams G, Brocchini S, Awwad S. Injectables and Depots to Prolong Drug Action of Proteins and Peptides. Pharmaceutics 2020; 12:E999. [PMID: 33096803 PMCID: PMC7589296 DOI: 10.3390/pharmaceutics12100999] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
Proteins and peptides have emerged in recent years to treat a wide range of multifaceted diseases such as cancer, diabetes and inflammation. The emergence of polypeptides has yielded advancements in the fields of biopharmaceutical production and formulation. Polypeptides often display poor pharmacokinetics, limited permeability across biological barriers, suboptimal biodistribution, and some proclivity for immunogenicity. Frequent administration of polypeptides is generally required to maintain adequate therapeutic levels, which can limit efficacy and compliance while increasing adverse reactions. Many strategies to increase the duration of action of therapeutic polypeptides have been described with many clinical products having been developed. This review describes approaches to optimise polypeptide delivery organised by the commonly used routes of administration. Future innovations in formulation may hold the key to the continued successful development of proteins and peptides with optimal clinical properties.
Collapse
Affiliation(s)
- Nkiruka Ibeanu
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Raphael Egbu
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Lesley Onyekuru
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Hoda Javaheri
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Peng Tee Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Gareth R. Williams
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Steve Brocchini
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Sahar Awwad
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| |
Collapse
|
39
|
Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J. Printability and Shape Fidelity of Bioinks in 3D Bioprinting. Chem Rev 2020; 120:11028-11055. [PMID: 32856892 PMCID: PMC7564085 DOI: 10.1021/acs.chemrev.0c00084] [Citation(s) in RCA: 539] [Impact Index Per Article: 107.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Indexed: 12/23/2022]
Abstract
Three-dimensional bioprinting uses additive manufacturing techniques for the automated fabrication of hierarchically organized living constructs. The building blocks are often hydrogel-based bioinks, which need to be printed into structures with high shape fidelity to the intended computer-aided design. For optimal cell performance, relatively soft and printable inks are preferred, although these undergo significant deformation during the printing process, which may impair shape fidelity. While the concept of good or poor printability seems rather intuitive, its quantitative definition lacks consensus and depends on multiple rheological and chemical parameters of the ink. This review discusses qualitative and quantitative methodologies to evaluate printability of bioinks for extrusion- and lithography-based bioprinting. The physicochemical parameters influencing shape fidelity are discussed, together with their importance in establishing new models, predictive tools and printing methods that are deemed instrumental for the design of next-generation bioinks, and for reproducible comparison of their structural performance.
Collapse
Affiliation(s)
- Andrea Schwab
- AO
Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Riccardo Levato
- Department
of Orthopaedics, University Medical Center
Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Department
of Clinical Sciences, Faculty of Veterinary
Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Matteo D’Este
- AO
Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Susanna Piluso
- Department
of Orthopaedics, University Medical Center
Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Department
of Developmental BioEngineering, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - David Eglin
- AO
Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Jos Malda
- Department
of Orthopaedics, University Medical Center
Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Department
of Clinical Sciences, Faculty of Veterinary
Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| |
Collapse
|
40
|
Preclinical challenges for developing long acting intravitreal medicines. Eur J Pharm Biopharm 2020; 153:130-149. [DOI: 10.1016/j.ejpb.2020.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
|
41
|
Ilochonwu BC, Urtti A, Hennink WE, Vermonden T. Intravitreal hydrogels for sustained release of therapeutic proteins. J Control Release 2020; 326:419-441. [PMID: 32717302 DOI: 10.1016/j.jconrel.2020.07.031] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022]
Abstract
This review highlights how hydrogel formulations can improve intravitreal protein delivery to the posterior segment of the eye in order to increase therapeutic outcome and patient compliance. Several therapeutic proteins have shown excellent clinical successes for the treatment of various intraocular diseases. However, drug delivery to the posterior segment of the eye faces significant challenges due to multiple physiological barriers preventing drugs from reaching the retina, among which intravitreal protein instability and rapid clearance from the site of injection. Hence, frequent injections are required to maintain therapeutic levels. Moreover, because the world population ages, the number of patients suffering from ocular diseases, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR) is increasing and causing increased health care costs. Therefore, there is a growing need for suitable delivery systems able to tackle the current limitations in retinal protein delivery, which also may reduce costs. Hydrogels have shown to be promising delivery systems capable of sustaining release of therapeutic proteins and thus extending their local presence. Here, an extensive overview of preclinically developed intravitreal hydrogels is provided with attention to the rational design of clinically useful intravitreal systems. The currently used polymers, crosslinking mechanisms, in vitro/in vivo models and advancements are discussed together with the limitations and future perspective of these biomaterials.
Collapse
Affiliation(s)
- Blessing C Ilochonwu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Arto Urtti
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
42
|
Pérez-Madrigal MM, Shaw JE, Arno MC, Hoyland JA, Richardson SM, Dove AP. Robust alginate/hyaluronic acid thiol-yne click-hydrogel scaffolds with superior mechanical performance and stability for load-bearing soft tissue engineering. Biomater Sci 2019; 8:405-412. [PMID: 31729512 DOI: 10.1039/c9bm01494b] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hydrogels based on hyaluronic acid (HA) exhibit great potential as tissue engineering (TE) scaffolds as a consequence of their unique biological features. Herein, we examine how the advantages of two natural polymers (i.e. HA and alginate) are combined with the efficiency and rapid nature of the thiol-yne click chemistry reaction to obtain biocompatible matrices with tailored properties. Our injectable click-hydrogels revealed excellent mechanical performance, long-term stability, high cytocompatibility and adequate stiffness for the targeted application. This simple approach yielded HA hydrogels with characteristics that make them suitable for applications as 3D scaffolds to support and promote soft tissue regeneration.
Collapse
Affiliation(s)
| | - Joshua E Shaw
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Maria C Arno
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK.
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK and NIHR Manchester Biomedical Research Centre, Central Manchester Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Stephen M Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Andrew P Dove
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
43
|
Awwad S, Abubakre A, Angkawinitwong U, Khaw PT, Brocchini S. In situ antibody-loaded hydrogel for intravitreal delivery. Eur J Pharm Sci 2019; 137:104993. [DOI: 10.1016/j.ejps.2019.104993] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
|
44
|
Lynch C, Kondiah PPD, Choonara YE, du Toit LC, Ally N, Pillay V. Advances in Biodegradable Nano-Sized Polymer-Based Ocular Drug Delivery. Polymers (Basel) 2019; 11:E1371. [PMID: 31434273 PMCID: PMC6722735 DOI: 10.3390/polym11081371] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/27/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
The effective delivery of drugs to the eye remains a challenge. The eye has a myriad of defense systems and physiological barriers that leaves ocular drug delivery systems with low bioavailability profiles. This is mainly due to poor permeability through the epithelia and rapid clearance from the eye following administration. However, recent advances in both polymeric drug delivery and biomedical nanotechnology have allowed for improvements to be made in the treatment of ocular conditions. The employment of biodegradable polymers in ocular formulations has led to improved retention time, greater bioavailability and controlled release through mucoadhesion to the epithelia in the eye, amongst other beneficial properties. Nanotechnology has been largely investigated for uses in the medical field, ranging from diagnosis of disease to treatment. The nanoscale of these developing drug delivery systems has helped to improve the penetration of drugs through the various ocular barriers, thus improving bioavailability. This review will highlight the physiological barriers encountered in the eye, current conventional treatment methods as well as how polymeric drug delivery and nanotechnology can be employed to optimize drug penetration to both the anterior and posterior segment of the eye.
Collapse
Affiliation(s)
- Courtney Lynch
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Naseer Ally
- Division of Ophthalmology, Department of Neurosciences, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
45
|
Subrizi A, del Amo EM, Korzhikov-Vlakh V, Tennikova T, Ruponen M, Urtti A. Design principles of ocular drug delivery systems: importance of drug payload, release rate, and material properties. Drug Discov Today 2019; 24:1446-1457. [DOI: 10.1016/j.drudis.2019.02.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/10/2019] [Accepted: 02/01/2019] [Indexed: 12/26/2022]
|
46
|
Cooper RC, Yang H. Hydrogel-based ocular drug delivery systems: Emerging fabrication strategies, applications, and bench-to-bedside manufacturing considerations. J Control Release 2019; 306:29-39. [PMID: 31128143 PMCID: PMC6629478 DOI: 10.1016/j.jconrel.2019.05.034] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 12/14/2022]
Abstract
The physiological barriers of the eye pose challenges to the delivery of the array of therapeutics for ocular diseases. Hydrogels have been widely explored for medical applications and introduce possible solutions to overcoming the medication challenges of the ocular environment. While the innovations in drug encapsulation and release mechanisms, biocompatibility, and treatment duration have become highly sophisticated, the challenge of widespread application of hydrogel formulations in the clinic is still apparent. This article reviews the latest hydrogel formulations and their associated chemistries for use in ocular therapies, spanning from external anterior to internal posterior regions of the eye in order to evaluate the state of recent research. This article discusses the utility of hydrogels in soft contact lens, wound dressings, intraocular lens, vitreous substitutes, vitreous drug release hydrogels, and cell-based therapies for regeneration. Additional focus is placed on the pre-formulation, formulation, and manufacturing considerations of the hydrogels based on individual components (polymer chains, linkers, and therapeutics), final hydrogel product, and required preparations for clinical/commercial applications, respectively.
Collapse
Affiliation(s)
- Remy C Cooper
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
47
|
Soliman KA, Ullah K, Shah A, Jones DS, Singh TRR. Poloxamer-based in situ gelling thermoresponsive systems for ocular drug delivery applications. Drug Discov Today 2019; 24:1575-1586. [PMID: 31175956 DOI: 10.1016/j.drudis.2019.05.036] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/15/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
Abstract
In situ gels have recently received interest as ocular drug delivery vehicles because they combine the merits of easy instillation and sustained drug release. In this review, we focus on the use of poloxamers as in situ gelling systems in ocular drug delivery because of their thermoresponsive gelling behaviour, biocompatibility, and ease of sterilisation. Furthermore, the sol-gel transition temperature, mucoadhesive properties, and drug release profiles of poloxamer-based in situ gels can be finely tuned, enabling them to be used as vehicles for the delivery of small and large drug molecules to treat diseases of the anterior and posterior segments of the eye. Poloxamer-based ocular products have already found their way to the pharmaceutical market, but remain a potential arena for further investigation and commercial exploitation.
Collapse
Affiliation(s)
- Karim A Soliman
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - K Ullah
- Department of Pharmacy, COMSATS University Islamabad, Abottabad Campus, Pakistan
| | - A Shah
- Department of Pharmacy, COMSATS University Islamabad, Abottabad Campus, Pakistan
| | - David S Jones
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Thakur R R Singh
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
48
|
Srinivasarao DA, Lohiya G, Katti DS. Fundamentals, challenges, and nanomedicine‐based solutions for ocular diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 11:e1548. [DOI: 10.1002/wnan.1548] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/21/2018] [Accepted: 10/28/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Dadi A. Srinivasarao
- Department of Biological Sciences and Bioengineering Indian Institute of Technology Kanpur Kanpur India
| | - Garima Lohiya
- Department of Biological Sciences and Bioengineering Indian Institute of Technology Kanpur Kanpur India
| | - Dhirendra S. Katti
- Department of Biological Sciences and Bioengineering Indian Institute of Technology Kanpur Kanpur India
| |
Collapse
|
49
|
Update on the main use of biomaterials and techniques associated with tissue engineering. Drug Discov Today 2018; 23:1474-1488. [DOI: 10.1016/j.drudis.2018.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/08/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022]
|
50
|
Awwad S, Angkawinitwong U. Overview of Antibody Drug Delivery. Pharmaceutics 2018; 10:E83. [PMID: 29973504 PMCID: PMC6161251 DOI: 10.3390/pharmaceutics10030083] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022] Open
Abstract
Monoclonal antibodies (mAbs) are one of the most important classes of therapeutic proteins, which are used to treat a wide number of diseases (e.g., oncology, inflammation and autoimmune diseases). Monoclonal antibody technologies are continuing to evolve to develop medicines with increasingly improved safety profiles, with the identification of new drug targets being one key barrier for new antibody development. There are many opportunities for developing antibody formulations for better patient compliance, cost savings and lifecycle management, e.g., subcutaneous formulations. However, mAb-based medicines also have limitations that impact their clinical use; the most prominent challenges are their short pharmacokinetic properties and stability issues during manufacturing, transport and storage that can lead to aggregation and protein denaturation. The development of long acting protein formulations must maintain protein stability and be able to deliver a large enough dose over a prolonged period. Many strategies are being pursued to improve the formulation and dosage forms of antibodies to improve efficacy and to increase the range of applications for the clinical use of mAbs.
Collapse
Affiliation(s)
- Sahar Awwad
- UCL School of Pharmacy, London WC1N 1AX, UK.
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1 V9EL, UK.
| | | |
Collapse
|