1
|
Panraksa P, Chaiwarit T, Chanabodeechalermrung B, Worajittiphon P, Jantrawut P. Fabrication of Cellulose Derivatives-Based Highly Porous Floating Tablets for Gastroretentive Drug Delivery via Sugar Templating Method. Polymers (Basel) 2025; 17:485. [PMID: 40006147 PMCID: PMC11859971 DOI: 10.3390/polym17040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
This work presents an innovative application of the sugar templating method to fabricate highly porous floating tablets based on cellulose derivatives for gastroretentive drug delivery systems (GRDDS). Ethyl cellulose (EC) and hydroxypropyl methylcellulose (HPMC) were utilized to develop formulations that optimize porosity, buoyancy, and drug release. Among the tested formulations, E10H5/CPM, consisting of 10% w/w EC and 5% w/w HPMC loaded with chlorpheniramine maleate (CPM), exhibited the most favorable properties, including high porosity (94.4%), uniform pore distribution, immediate buoyancy, and over 24 h of floating time. E10H5/CPM tablets demonstrated superior drug release performance compared to an EC-only formulation (E10/CPM), attributed to the presence of HPMC, which facilitated improved hydration and diffusion. The in vitro release study showed that E10H5/CPM achieved a cumulative release of 79.01% over 72 h, following a Fickian diffusion mechanism. However, a limitation was noted in drug loading, with E10H5/CPM incorporating 6.40 mg of CPM, compared to 8.72 mg in E10/CPM. Future work should focus on enhancing drug load and further optimizing polymer composition to improve the release profile. Overall, this study underscores the potential of sugar templating in developing cost-effective, scalable floating tablet formulations for improved gastric retention and localized drug delivery.
Collapse
Affiliation(s)
- Pattaraporn Panraksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (T.C.); (B.C.)
| | - Tanpong Chaiwarit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (T.C.); (B.C.)
| | - Baramee Chanabodeechalermrung
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (T.C.); (B.C.)
| | - Patnarin Worajittiphon
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (T.C.); (B.C.)
| |
Collapse
|
2
|
Ahmad S, Khan JA, Kausar TN, Mahnashi MH, Alasiri A, Alqahtani AA, Alqahtani TS, Walbi IA, Alshehri OM, Elnoubi OA, Mahmood F, Sadiq A. Preparation, Characterization and Evaluation of Flavonolignan Silymarin Effervescent Floating Matrix Tablets for Enhanced Oral Bioavailability. Molecules 2023; 28:molecules28062606. [PMID: 36985575 PMCID: PMC10054735 DOI: 10.3390/molecules28062606] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
The convenient and highly compliant route for the delivery of active pharmaceutical ingredients is the tablet. A versatile platform of tablets is available for the delivery of therapeutic agents to the gastrointestinal tract. This study aimed to prepare gastro retentive drug delivery floating tablets of silymarin to improve its oral bioavailability and solubility. Hydroxypropyl methylcellulose (HPMCK4M and HPMCK15), Carbopol 934p and sodium bicarbonate were used as a matrix, floating enhancer and gas generating agent, respectively. The prepared tablets were evaluated for physicochemical parameters such as hardness, weight variation, friability, floating properties (floating lag time, total floating time), drug content, stability study, in vitro drug release, in vivo floating behavior and in vivo pharmacokinetics. The drug–polymer interaction was studied by Differential Scanning Calorimetry (DSC) thermal analysis and Fourier transform infrared (FTIR). The floating lag time of the formulation was within the prescribed limit (<2 min). The formulation showed good matrix integrity and retarded the release of drug for >12 h. The dissolution can be described by zero-order kinetics (r2 = 0.979), with anomalous diffusion as the release mechanism (n = 0.65). An in vivo pharmacokinetic study showed that Cmax and AUC were increased by up to two times in comparison with the conventional dosage form. An in vivo imaging study showed that the tablet was present in the stomach for 12 h. It can be concluded from this study that the combined matrix system containing hydrophobic and hydrophilic polymers min imized the burst release of the drug from the tablet and achieved a drug release by zero-order kinetics, which is practically difficult with only a hydrophilic matrix. An in vivo pharmacokinetic study elaborated that the bioavailability and solubility of silymarin were improved with an increased mean residence time.
Collapse
Affiliation(s)
- Sher Ahmad
- Department of Pharmacy, University of Peshawar, Peshawar 25120, KP, Pakistan
| | - Jamshaid Ali Khan
- Department of Pharmacy, University of Peshawar, Peshawar 25120, KP, Pakistan
- Correspondence: (J.A.K.); (M.H.M.); (A.S.)
| | | | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia
- Correspondence: (J.A.K.); (M.H.M.); (A.S.)
| | - Ali Alasiri
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia
| | - Abdulsalam A. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia
| | - Thamer S. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia
| | - Ismail A. Walbi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia
| | - Osama M. Alshehri
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia
| | - Osman A. Elnoubi
- College of Applied Medical Sciences, Najran University, Najran 55461, Saudi Arabia
| | - Fawad Mahmood
- Department of Pharmacy, University of Peshawar, Peshawar 25120, KP, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara 18000, KP, Pakistan
- Correspondence: (J.A.K.); (M.H.M.); (A.S.)
| |
Collapse
|
3
|
Mora-Castaño G, Millán-Jiménez M, Caraballo I. Hydrophilic High Drug-Loaded 3D Printed Gastroretentive System with Robust Release Kinetics. Pharmaceutics 2023; 15:pharmaceutics15030842. [PMID: 36986703 PMCID: PMC10057139 DOI: 10.3390/pharmaceutics15030842] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Three-dimensional printing (3DP) technology enables an important improvement in the design of new drug delivery systems, such as gastroretentive floating tablets. These systems show a better temporal and spatial control of the drug release and can be customized based on individual therapeutic needs. The aim of this work was to prepare 3DP gastroretentive floating tablets designed to provide a controlled release of the API. Metformin was used as a non-molten model drug and hydroxypropylmethyl cellulose with null or negligible toxicity was the main carrier. High drug loads were assayed. Another objective was to maintain the release kinetics as robust as possible when varying drug doses from one patient to another. Floating tablets using 10–50% w/w drug-loaded filaments were obtained by Fused Deposition Modelling (FDM) 3DP. The sealing layers of our design allowed successful buoyancy of the systems and sustained drug release for more than 8 h. Moreover, the effect of different variables on the drug release behaviour was studied. It should be highlighted that the robustness of the release kinetics was affected by varying the internal mesh size, and therefore the drug load. This could represent a step forward in the personalization of the treatments, a key advantage of 3DP technology in the pharmaceutical field.
Collapse
|
4
|
Controlled delivery via hot-melt extrusion: A focus on non-biodegradable carriers for non-oral applications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
5
|
Dauer K, Werner C, Lindenblatt D, Wagner KG. Impact of process stress on protein stability in highly-loaded solid protein/PEG formulations from small-scale melt extrusion. Int J Pharm X 2022; 5:100154. [PMID: 36632069 PMCID: PMC9826855 DOI: 10.1016/j.ijpx.2022.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
As protein-based therapeutics often exhibit a limited stability in liquid formulations, there is a growing interest in the development of solid protein formulations due to improved protein stability in the solid state. We used small-scale (<3 g) ram and twin-screw extrusion for the solid stabilization of proteins (Lysozyme, BSA, and human insulin) in PEG-matrices. Protein stability after extrusion was systematically investigated using ss-DSC, ss-FTIR, CD spectroscopy, SEM-EDX, SEC, RP-HPLC, and in case of Lysozyme an activity assay. The applied analytical methods offered an accurate assessment of protein stability in extrudates, enabling the comparison of different melt extrusion formulations and process parameters (e.g., shear stress levels, screw configurations, residence times). Lysozyme was implemented as a model protein and was completely recovered in its active form after extrusion. Differences seen between Lysozyme- and BSA- or human insulin-loaded extrudates indicated that melt extrusion could have an impact on the conformational stability. In particular, BSA and human insulin were more susceptible to heat exposure and shear stress compared to Lysozyme, where shear stress was the dominant parameter. Consequently, ram extrusion led to less conformational changes compared to TSE. Ram extrusion showed good protein particle distribution resulting in the preferred method to prepare highly-loaded solid protein formulations.
Collapse
Key Words
- BSA, bovine serum albumin
- BSE, backscattered electron
- CD, circular dichroism
- DSC, Differential Scanning Calorimetry
- EDX, energy-dispersive X-ray detector
- EVA, Ethylene-vinyl acetate
- FTIR, Fourier transformation infrared spectroscopy
- HME, hot-melt extrusion
- HMWS, high molecular weight species
- Hot-melt extrusion
- PEG, polyethylene glycol
- PEO, polyethylene oxide
- PLGA, Poly Lactic-co-Glycolic Acid
- Protein stability
- SEM, scanning electron microscopy
- Small-scale
- Solid-state characterization
- TSE, twin-screw extrusion
- ss, solid-state
Collapse
Affiliation(s)
- Katharina Dauer
- University of Bonn, Department of Pharmaceutics, Institute of Pharmacy, Bonn, Germany
| | - Christian Werner
- University of Cologne, Department of Chemistry, Institute of Biochemistry, Cologne, Germany
| | - Dirk Lindenblatt
- University of Cologne, Department of Chemistry, Institute of Biochemistry, Cologne, Germany
| | - Karl Gerhard Wagner
- University of Bonn, Department of Pharmaceutics, Institute of Pharmacy, Bonn, Germany
- Corresponding author at: University of Bonn, Department of Pharmaceutics, 53121 Bonn, Germany.
| |
Collapse
|
6
|
Haimhoffer Á, Vasvári G, Budai I, Béresová M, Deák Á, Németh N, Váradi J, Sinka D, Bácskay I, Vecsernyés M, Fenyvesi F. In Vitro and In Vivo Studies of a Verapamil-Containing Gastroretentive Solid Foam Capsule. Pharmaceutics 2022; 14:pharmaceutics14020350. [PMID: 35214082 PMCID: PMC8878168 DOI: 10.3390/pharmaceutics14020350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
Gastroretentive systems may overcome problems associated with incomplete drug absorption by localized release of the API in the stomach. Low-density drug delivery systems can float in the gastric content and improve the bioavailability of small molecules. The current publication presents verapamil–HCl-containing solid foam prepared by continuous manufacturing. Production runs were validated, and the foam structure was characterized by micro-CT scans and SEM. Dissolution properties, texture changes during dissolution, and floating forces were analyzed. An optimized formulation was chosen and given orally to Beagle dogs to determine the pharmacokinetic parameters of the solid foam capsules. As a result, a 12.5 m/m% stearic acid content was found to be the most effective to reduce the apparent density of capsules. Drug release can be described by the first-order model, where 70% of verapamil dissolved after 10 h from the optimized formulation. The texture analysis proved that the structures of the solid foams are resistant. Additionally, the floating forces of the samples remained constant during their dissolution in acidic media. An in vivo study confirmed the prolonged release of the API, and gastroscopic images verified the retention of the capsule in the stomach.
Collapse
Affiliation(s)
- Ádám Haimhoffer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (G.V.); (J.V.); (D.S.); (I.B.); (M.V.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (G.V.); (J.V.); (D.S.); (I.B.); (M.V.)
| | - István Budai
- Faculty of Engineering, University of Debrecen, Ótemető Street 2-4, H-4028 Debrecen, Hungary;
| | - Monika Béresová
- Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 94, H-4032 Debrecen, Hungary;
| | - Ádám Deák
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Móricz Zsigmond u. 22, H-4032 Debrecen, Hungary; (Á.D.); (N.N.)
| | - Norbert Németh
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Móricz Zsigmond u. 22, H-4032 Debrecen, Hungary; (Á.D.); (N.N.)
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (G.V.); (J.V.); (D.S.); (I.B.); (M.V.)
| | - Dávid Sinka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (G.V.); (J.V.); (D.S.); (I.B.); (M.V.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (G.V.); (J.V.); (D.S.); (I.B.); (M.V.)
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (G.V.); (J.V.); (D.S.); (I.B.); (M.V.)
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (G.V.); (J.V.); (D.S.); (I.B.); (M.V.)
- Correspondence:
| |
Collapse
|
7
|
Haimhoffer Á, Fenyvesi F, Lekli I, Béresová M, Bak I, Czagány M, Vasvári G, Bácskay I, Tóth J, Budai I. Preparation of Acyclovir-Containing Solid Foam by Ultrasonic Batch Technology. Pharmaceutics 2021; 13:pharmaceutics13101571. [PMID: 34683864 PMCID: PMC8541121 DOI: 10.3390/pharmaceutics13101571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 02/08/2023] Open
Abstract
In recent years, the application of solid foams has become widespread. Solid foams are not only used in the aerospace field but also in everyday life. Although foams are promising dosage forms in the pharmaceutical industry, their usage is not prevalent due to decreased stability of the solid foam structure. These special dosage forms can result in increased bioavailability of drugs. Low-density floating formulations can also increase the gastric residence time of drugs; therefore, drug release will be sustained. Our aim was to produce a stable floating formula by foaming. Matrix components, PEG 4000 and stearic acid type 50, were selected with the criteria of low gastric irritation, a melting range below 70 °C, and well-known use in oral drug formulations. This matrix was melted at 54 °C in order to produce a dispersion of active substance and was foamed by different gases at atmospheric pressure using an ultrasonic homogenizer. The density of the molded solid foam was studied by the pycnometer method, and its structure was investigated by SEM and micro-CT. The prolonged drug release and mucoadhesive properties were proved in a pH 1.2 buffer. According to our experiments, a stable foam could be produced by rapid homogenization (less than 1 min) without any surfactant material.
Collapse
Affiliation(s)
- Ádám Haimhoffer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (F.F.); (G.V.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (F.F.); (G.V.); (I.B.)
| | - István Lekli
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (I.L.); (I.B.)
| | - Mónika Béresová
- Department of Medical Imaging, University of Debrecen, Nagyerdei Krt. 94, H-4032 Debrecen, Hungary;
| | - István Bak
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (I.L.); (I.B.)
| | - Máté Czagány
- Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, H-3515 Miskolc-Egyetemváros, Hungary;
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (F.F.); (G.V.); (I.B.)
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (F.F.); (G.V.); (I.B.)
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Judit Tóth
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, H-4032 Debrecen, Hungary;
| | - István Budai
- Faculty of Engineering, University of Debrecen, Ótemető Str. 2-4, H-4028 Debrecen, Hungary
- Correspondence: ; Tel.: +36-202128618
| |
Collapse
|
8
|
dos Santos J, da Silva GS, Velho MC, Beck RCR. Eudragit ®: A Versatile Family of Polymers for Hot Melt Extrusion and 3D Printing Processes in Pharmaceutics. Pharmaceutics 2021; 13:1424. [PMID: 34575500 PMCID: PMC8471576 DOI: 10.3390/pharmaceutics13091424] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022] Open
Abstract
Eudragit® polymers are polymethacrylates highly used in pharmaceutics for the development of modified drug delivery systems. They are widely known due to their versatility with regards to chemical composition, solubility, and swelling properties. Moreover, Eudragit polymers are thermoplastic, and their use has been boosted in some production processes, such as hot melt extrusion (HME) and fused deposition modelling 3D printing, among other 3D printing techniques. Therefore, this review covers the studies using Eudragit polymers in the development of drug delivery systems produced by HME and 3D printing techniques over the last 10 years. Eudragit E has been the most used among them, mostly to formulate immediate release systems or as a taste-masker agent. On the other hand, Eudragit RS and Eudragit L100-55 have mainly been used to produce controlled and delayed release systems, respectively. The use of Eudragit polymers in these processes has frequently been devoted to producing solid dispersions and/or to prepare filaments to be 3D printed in different dosage forms. In this review, we highlight the countless possibilities offered by Eudragit polymers in HME and 3D printing, whether alone or in blends, discussing their prominence in the development of innovative modified drug release systems.
Collapse
Affiliation(s)
- Juliana dos Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-900, Brazil; (J.d.S.); (M.C.V.)
| | - Guilherme Silveira da Silva
- Departamento de Produção e Controle de Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-900, Brazil;
| | - Maiara Callegaro Velho
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-900, Brazil; (J.d.S.); (M.C.V.)
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-900, Brazil; (J.d.S.); (M.C.V.)
- Departamento de Produção e Controle de Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-900, Brazil;
| |
Collapse
|
9
|
Chen P, Liu J, Zhang K, Huang D, Huang S, Xie Q, Yang F, Huang J, Fang D, Huang Z, Lu Z, Chen Y. Preparation of clarithromycin floating core-shell systems (CSS) using multi-nozzle semi-solid extrusion-based 3D printing. Int J Pharm 2021; 605:120837. [PMID: 34197910 DOI: 10.1016/j.ijpharm.2021.120837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
Matrix erosion is unavoidable during the release of poorly soluble drugs from gastric floating delivery system (GFDDS), which shortens the floating time and diminishes drug release. We fabricated a core-shell system (CSS) consisting of a low-density drug-loaded shell and a floating core using multi-nozzle semi-solid extrusion (SSE) 3D printing technology. The clarithromycin (CAM) loading capacity of the shell was 81.7%. The floating core paste provided structural support during printing and formed a hollow structure in CAM CSS, which increased the buoyancy in the early stage of drug release. In addition, the floating core had numerous micro-airbags that swelled when the solution penetrated the core, and generated CO2. The micro-airbag structure and CO2 generation further increased the buoyancy of CSS. The CAM CSS achieved 74.5% (w/w) drug loading, 8 h sustained release, and immediate and prolonged floating (>10 h). This structure of CSS and floating core provide a novel perspective for constructing a stable gastric floating drug delivery system.
Collapse
Affiliation(s)
- Peihong Chen
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jinling Liu
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Kaijun Zhang
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dongzhen Huang
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Siyu Huang
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Center for Drug Research and Development, Guangzhou 510006, China
| | - Qingchun Xie
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Center for Drug Research and Development, Guangzhou 510006, China
| | - Fan Yang
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiaying Huang
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Danqiao Fang
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zeju Huang
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhufen Lu
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Center for Drug Research and Development, Guangzhou 510006, China
| | - YanZhong Chen
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Center for Drug Research and Development, Guangzhou 510006, China.
| |
Collapse
|
10
|
Haimhoffer Á, Vasvári G, Trencsényi G, Béresová M, Budai I, Czomba Z, Rusznyák Á, Váradi J, Bácskay I, Ujhelyi Z, Fehér P, Vecsernyés M, Fenyvesi F. Process Optimization for the Continuous Production of a Gastroretentive Dosage Form Based on Melt Foaming. AAPS PharmSciTech 2021; 22:187. [PMID: 34155595 PMCID: PMC8217006 DOI: 10.1208/s12249-021-02066-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022] Open
Abstract
Several drugs have poor oral bioavailability due to low or incomplete absorption which is affected by various effects as pH, motility of GI, and enzyme activity. The gastroretentive drug delivery systems are able to deal with these problems by prolonging the gastric residence time, while increasing the therapeutic efficacy of drugs. Previously, we developed a novel technology to foam hot and molten dispersions on atmospheric pressure by a batch-type in-house apparatus. Our aim was to upgrade this technology by a new continuous lab-scale apparatus and confirm that our formulations are gastroretentive. At first, we designed and built the apparatus and continuous production was optimized using a Box-Behnken experimental design. Then, we formulated barium sulfate-loaded samples with the optimal production parameters, which was suitable for in vivo imaging analysis. In vitro study proved the low density, namely 507 mg/cm3, and the microCT record showed high porosity with 40 μm average size of bubbles in the molten suspension. The BaSO4-loaded samples showed hard structure at room temperature and during the wetting test, the complete wetting was detected after 120 min. During the in vivo study, the X-ray taken showed the retention of the formulation in the rat stomach after 2 h. We can conclude that with our device low-density floating formulations were prepared with prolonged gastric residence time. This study provides a promising platform for marketed active ingredients with low bioavailability.
Collapse
Affiliation(s)
- Ádám Haimhoffer
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei St. 98, Debrecen, H-4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei St. 98, Debrecen, H-4032, Hungary
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - György Trencsényi
- Department of Medical Imaging, University of Debrecen, Nagyerdei krt. 94, Debrecen, H-4032, Hungary
| | - Monika Béresová
- Department of Medical Imaging, University of Debrecen, Nagyerdei krt. 94, Debrecen, H-4032, Hungary
| | - István Budai
- Faculty of Engineering, University of Debrecen, Ótemető utca 2-4, Debrecen, H-4028, Hungary
| | - Zsuzsa Czomba
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Ágnes Rusznyák
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei St. 98, Debrecen, H-4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei St. 98, Debrecen, H-4032, Hungary
| | - Judit Váradi
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei St. 98, Debrecen, H-4032, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.
| |
Collapse
|
11
|
|
12
|
Nashed N, Lam M, Nokhodchi A. A comprehensive overview of extended release oral dosage forms manufactured through hot melt extrusion and its combination with 3D printing. Int J Pharm 2021; 596:120237. [DOI: 10.1016/j.ijpharm.2021.120237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022]
|
13
|
Wook Huh H, Na YG, Kang H, Kim M, Han M, Mai Anh Pham T, Lee H, Baek JS, Lee HK, Cho CW. Novel self-floating tablet for enhanced oral bioavailability of metformin based on cellulose. Int J Pharm 2021; 592:120113. [PMID: 33246050 DOI: 10.1016/j.ijpharm.2020.120113] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/02/2020] [Accepted: 11/20/2020] [Indexed: 12/25/2022]
Abstract
Metformin has several problems such as low bioavailability, short half-life, and narrow absorption window, sustained and site-specific drug delivery system is required. Floating drug delivery systems are very useful to achieve these purposes. However, conventional floating systems have several limitations; lag time, a high proportion of excipient in the tablet, using non-biocompatible excipient, and requirement of a complicated procedure. To overcome these obstacles, we developed a hollow-core floating tablet (HCFT). The HCFT immediately floated in pH 1.2, 4.0, 6.8 medium, and even distilled water. The floating duration time of HCFT was>24 h. From the in vitro release study, it was confirmed that HCFT showed the sustain release profile of metformin for 12 h. Water uptake and matrix erosion were evaluated for predicting the buoyancy and drug release kinetics of HCFT in the body. Factor analysis was applied to optimize the formulation. There were significant (p < 0.05) differences in metformin plasma concentration of 4 h and 6 h between two groups. Compared with Glucophage® XR, the relative bioavailability of metformin HCFT was 123.81 ± 3.52%. The X-ray imaging of optimized formulation revealed that HCFT was constantly floating in the stomach region of the rabbit, thereby indicating improved gastric retention for>6 h. Consequently, all the findings indicate that HCFT could be an effective gastric retention system and applied extensively to other drugs with narrow absorption windows.
Collapse
Affiliation(s)
- Hyun Wook Huh
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Young-Guk Na
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - HeeChol Kang
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Minki Kim
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Mingu Han
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Thi Mai Anh Pham
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Hyeonmin Lee
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jong-Suep Baek
- Department of Bio-Health Convergence, Kangwon National Univerisity, Chucheon, Gangwon-do 25949, Republic of Korea.
| | - Hong-Ki Lee
- Animal Model Research Group, Jeonbuk Branch, Korea Institute of Toxicology (KIT), Jeongeup, Jeollabuk-do 53212, Republic of Korea.
| | - Cheong-Weon Cho
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
14
|
Predicting pharmacokinetic parameters by convolution: An in vitro approach for investigating bifunctional capsulated dosage form. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Razali S, Bose A, Chong PW, Benetti C, Colombo P, Wong TW. Design of multi-particulate "Dome matrix" with sustained-release melatonin and delayed-release caffeine for jet lag treatment. Int J Pharm 2020; 587:119618. [PMID: 32673769 DOI: 10.1016/j.ijpharm.2020.119618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/14/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Multi-particulate Dome matrix with sustained-release melatonin and delayed-release caffeine was designed to restore jet lag sleep-wake cycle. The polymeric pellets were produced using extrusion-spheronization technique and fluid-bed coated when applicable. The compact and Dome module were produced by compressing pellets with cushioning agent. Dome matrix was assembly of modules with pre-determined compact formulation and drug release characteristics. The physicochemical and in vivo pharmacokinetics of delivery systems were examined. Melatonin loaded alginate/chitosan-less matrix exhibited full drug release within 8 h gastrointestinal transit with low viscosity hydroxypropymethylcellulose as cushioning agent. The cushioning agent reduced burst drug release and omission of alginate-chitosan enabled full drug release. Delayed-release alginate-chitosan caffeine matrix was not attainable through polymer coating due to premature coat detachment. Admixing of cushioning agent high viscosity hydroxypropylmethylcellulose and high viscosity ethylcellulose (9:1 wt ratio) with coat-free caffeine loaded particulates introduced delayed-release response via hydroxypropylmethylcellulose swelled in early dissolution phase and ethylcellulose sustained matrix hydrophobicity at prolonged phase. The caffeine was released substantially in colonic fluid in response to matrix polymers being degraded by rat colonic content. Dome matrix with dual drug release kinetics and modulated pharmacokinetics is produced to introduce melatonin-induced sleep phase then caffeine-stimulated wake phase.
Collapse
Affiliation(s)
- Sharipah Razali
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Anirbandeep Bose
- Taab Biostudy Services, Jadavpur University, Jadavpur, Kolkata 32, India
| | - Pee Win Chong
- InQpharm Group Sdn Bhd, Plaza Mont Kiara, 2, Jalan Kiara, 50480 Kuala Lumpur, Malaysia
| | - Camillo Benetti
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Dipartimento di Farmacia, Università degli Studi di Parma, Parma, Italy
| | - Paolo Colombo
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma, Italy
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia.
| |
Collapse
|
16
|
In-Depth Study into Polymeric Materials in Low-Density Gastroretentive Formulations. Pharmaceutics 2020; 12:pharmaceutics12070636. [PMID: 32645909 PMCID: PMC7408198 DOI: 10.3390/pharmaceutics12070636] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/01/2022] Open
Abstract
The extensive use of oral dosage forms for the treatment of diseases may be linked to deficient pharmacokinetic properties. In some cases the drug is barely soluble; in others, the rapid transit of the formulation through the gastrointestinal tract (GIT) makes it difficult to achieve therapeutic levels in the organism; moreover, some drugs must act locally due to a gastric pathology, but the time they remain in the stomach is short. The use of formulations capable of improving all these parameters, as well as increasing the resident time in the stomach, has been the target of numerous research works, with low-density systems being the most promising and widely explored, however, there is further scope to improve these systems. There are a vast variety of polymeric materials used in low-density gastroretentive systems and a number of methods to improve the bioavailability of the drugs. This works aims to expedite the development of breakthrough approaches by providing an in-depth understanding of the polymeric materials currently used, both natural and synthetic, their properties, advantages, and drawbacks.
Collapse
|
17
|
Engineering approaches for drug delivery systems production and characterization. Int J Pharm 2020; 581:119267. [DOI: 10.1016/j.ijpharm.2020.119267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
|
18
|
Mendonsa N, Almutairy B, Kallakunta VR, Sarabu S, Thipsay P, Bandari S, Repka MA. Manufacturing strategies to develop amorphous solid dispersions: An overview. J Drug Deliv Sci Technol 2019; 55. [PMID: 32863891 DOI: 10.1016/j.jddst.2019.101459] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the past several decades, poor water solubility of existing and new drugs in the pipeline have remained a challenging issue for the pharmaceutical industry. Literature describes several approaches to improve the overall solubility, dissolution rate, and bioavailability of drugs with poor water solubility. Moreover, the development of amorphous solid dispersion (SD) using suitable polymers and methods have gained considerable importance in the recent past. In the present review, we attempt to discuss the important and industrially scalable thermal strategies for the development of amorphous SD. These include both solvent (spray drying and fluid bed processing) and fusion (hot melt extrusion and KinetiSol®) based techniques. The current review also provides insights into the thermodynamic properties of drugs, their polymer miscibility and solubility, and their molecular dynamics to develop stable and more efficient amorphous SD.
Collapse
Affiliation(s)
- Nicole Mendonsa
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi, Oxford, MS, 38677, United States
| | - Bjad Almutairy
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi, Oxford, MS, 38677, United States
| | - Venkata Raman Kallakunta
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi, Oxford, MS, 38677, United States
| | - Sandeep Sarabu
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi, Oxford, MS, 38677, United States
| | - Priyanka Thipsay
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi, Oxford, MS, 38677, United States
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi, Oxford, MS, 38677, United States
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi, Oxford, MS, 38677, United States.,Pii Center for Pharmaceutical Innovation & Instruction, The University of Mississippi, Oxford, MS, 38677, United States
| |
Collapse
|
19
|
Fused Deposition Modelling as a Potential Tool for Antimicrobial Dialysis Catheters Manufacturing: New Trends vs. Conventional Approaches. COATINGS 2019. [DOI: 10.3390/coatings9080515] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The rising rate of individuals with chronic kidney disease (CKD) and ineffective treatment methods for catheter-associated infections in dialysis patients has led to the need for a novel approach to the manufacturing of catheters. The current process requires moulding, which is time consuming, and coated catheters used currently increase the risk of bacterial resistance, toxicity, and added expense. Three-dimensional (3D) printing has gained a lot of attention in recent years and offers the opportunity to rapidly manufacture catheters, matched to patients through imaging and at a lower cost. Fused deposition modelling (FDM) in particular allows thermoplastic polymers to be printed into the desired devices from a model made using computer aided design (CAD). Limitations to FDM include the small range of thermoplastic polymers that are compatible with this form of printing and the high degradation temperature required for drugs to be extruded with the polymer. Hot-melt extrusion (HME) allows the potential for antimicrobial drugs to be added to the polymer to create catheters with antimicrobial activity, therefore being able to overcome the issue of increased rates of infection. This review will cover the area of dialysis and catheter-related infections, current manufacturing processes of catheters and methods to prevent infection, limitations of current processes of catheter manufacture, future directions into the manufacture of catheters, and how drugs can be incorporated into the polymers to help prevent infection.
Collapse
|
20
|
Mechanically Robust Gastroretentive Drug-Delivery Systems Capable of Controlling Dissolution Behaviors of Coground β-Lapachone. Pharmaceutics 2019; 11:pharmaceutics11060271. [PMID: 31185692 PMCID: PMC6630442 DOI: 10.3390/pharmaceutics11060271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/27/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
In this study, we aimed to design a highly swellable and mechanically robust matrix tablet (SMT) as a gastroretentive drug-delivery system (GRDDS) capable of improving the dissolution behavior of β-lapachone with low aqueous solubility. For the preparation of SMTs, the cogrinding technique and freeze–thaw method were used to disperse β-lapachone in SMTs in an amorphous state and to enhance the swelling and mechanical properties of SMTs, respectively. As a result, the crystallinity of coground β-lapachone incorporated in the SMTs was found to be considerably decreased; thereby, the dissolution rates of the drug in a simulated gastric fluid could be substantially increased. The SMTs of β-lapachone also demonstrated significantly enhanced swelling and mechanical properties compared to those of a marketed product. The reason for this might be because the physically crosslinked polymeric networks with a porous structure that were formed in SMTs through the freeze–thaw method. In addition, β-lapachone was gradually released from the SMTs in 6 h. Therefore, SMTs of β-lapachone developed in this study could be used as GRDDS with appropriate swelling and mechanical properties for improving the dissolution behavior of hydrophobic drugs such as β-lapachone.
Collapse
|
21
|
Sarabu S, Bandari S, Kallakunta VR, Tiwari R, Patil H, Repka MA. An update on the contribution of hot-melt extrusion technology to novel drug delivery in the twenty-first century: part II. Expert Opin Drug Deliv 2019; 16:567-582. [PMID: 31046479 DOI: 10.1080/17425247.2019.1614912] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Interest in hot-melt extrusion (HME) technology for novel applications is growing day by day, which is evident from several hundred publications within the last 5 years. HME is a cost-effective, solvent free, 'green' technology utilized for various formulations with low investment costs compared to conventional technologies. HME has also earned the attention of the pharmaceutical industry by the transformation of this technology for application in continuous manufacturing. AREAS COVERED Part II of the review focuses on various novel opportunities or innovations of HME such as multiple component systems (co-crystals, co-amorphous systems and salts), twin-screw granulation, semi-solids, co-extrusion, abuse deterrent formulations, solid self-emulsifying drug delivery systems, chronotherapeutic drug delivery systems, and miscellaneous applications. EXPERT OPINION HME is being investigated as an alternative technology for preparation of multicomponent systems such as co-crystals and co-amorphous techniques. Twin-screw granulation has gained increased interest in preparation of granules via twin-screw melt granulation or twin-screw dry granulation. This novel application of the HME process provides a promising alternate approach in the formulation of granules and solid dosage forms. However, this technology may need to be further investigated for scalability aspects of these novel applications for industrial production.
Collapse
Affiliation(s)
- Sandeep Sarabu
- a Department of Pharmaceutics and Drug Delivery , The University of Mississippi, University , MS , USA
| | - Suresh Bandari
- a Department of Pharmaceutics and Drug Delivery , The University of Mississippi, University , MS , USA
| | - Venkata Raman Kallakunta
- a Department of Pharmaceutics and Drug Delivery , The University of Mississippi, University , MS , USA
| | - Roshan Tiwari
- a Department of Pharmaceutics and Drug Delivery , The University of Mississippi, University , MS , USA
| | - Hemlata Patil
- a Department of Pharmaceutics and Drug Delivery , The University of Mississippi, University , MS , USA
| | - Michael A Repka
- a Department of Pharmaceutics and Drug Delivery , The University of Mississippi, University , MS , USA.,b Pii Center for Pharmaceutical Technology , The University of Mississippi, University , MS , USA
| |
Collapse
|