1
|
Pluntze A, Beecher S, Anderson M, Wright D, Mudie D. Material-Sparing Feasibility Screening for Hot Melt Extrusion. Pharmaceutics 2024; 16:76. [PMID: 38258087 PMCID: PMC10819182 DOI: 10.3390/pharmaceutics16010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Hot melt extrusion (HME) offers a high-throughput process to manufacture amorphous solid dispersions. A variety of experimental and model-based approaches exist to predict API solubility in polymer melts, but these methods are typically aimed at determining the thermodynamic solubility and do not take into account kinetics of dissolution or the associated degradation of the API during thermal processing, both of which are critical considerations in generating a successful amorphous solid dispersion by HME. This work aims to develop a material-sparing approach for screening manufacturability of a given pharmaceutical API by HME using physically relevant time, temperature, and shear. Piroxicam, ritonavir, and phenytoin were used as model APIs with PVP VA64 as the dispersion polymer. We present a screening flowchart, aided by a simple custom device, that allows rapid formulation screening to predict both achievable API loadings and expected degradation from an HME process. This method has good correlation to processing with a micro compounder, a common HME screening industry standard, but only requires 200 mg of API or less.
Collapse
Affiliation(s)
- Amanda Pluntze
- Global Research and Development, Small Molecules, Lonza, 64550 Research Road, Bend, OR 97703, USA (D.M.)
| | | | | | | | | |
Collapse
|
2
|
Hot Melt Extruded Posaconazole-Based Amorphous Solid Dispersions—The Effect of Different Types of Polymers. Pharmaceutics 2023; 15:pharmaceutics15030799. [PMID: 36986660 PMCID: PMC10056184 DOI: 10.3390/pharmaceutics15030799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Four model polymers, representing (i) amorphous homopolymers (Kollidon K30, K30), (ii) amorphous heteropolymers (Kollidon VA64, KVA), (iii) semi-crystalline homopolymers (Parteck MXP, PXP), and (iv) semi-crystalline heteropolymers (Kollicoat IR, KIR), were examined for their effectiveness in creating posaconazole-based amorphous solid dispersions (ASDs). Posaconazole (POS) is a triazole antifungal drug that has activity against Candida and Aspergillus species, belonging to class II of the biopharmaceutics classification system (BCS). This means that this active pharmaceutical ingredient (API) is characterized by solubility-limited bioavailability. Thus, one of the aims of its formulation as an ASD was to improve its aqueous solubility. Investigations were performed into how polymers affected the following characteristics: melting point depression of the API, miscibility and homogeneity with POS, improvement of the amorphous API’s physical stability, melt viscosity (and associated with it, drug loading), extrudability, API content in the extrudate, long term physical stability of the amorphous POS in the binary drug–polymer system (in the form of the extrudate), solubility, and dissolution rate of hot melt extrusion (HME) systems. The obtained results led us to conclude that the physical stability of the POS-based system increases with the increasing amorphousness of the employed excipient. Copolymers, compared to homopolymers, display greater homogeneity of the investigated composition. However, the enhancement in aqueous solubility was significantly higher after utilizing the homopolymeric, compared to the copolymeric, excipients. Considering all of the investigated parameters, the most effective additive in the formation of a POS-based ASD is an amorphous homopolymer—K30.
Collapse
|
3
|
Heczko D, Hachuła B, Maksym P, Kamiński K, Zięba A, Orszulak L, Paluch M, Kamińska E. The Effect of Various Poly ( N-vinylpyrrolidone) (PVP) Polymers on the Crystallization of Flutamide. Pharmaceuticals (Basel) 2022; 15:971. [PMID: 36015118 PMCID: PMC9414356 DOI: 10.3390/ph15080971] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, several experimental techniques were applied to probe thermal properties, molecular dynamics, crystallization kinetics and intermolecular interactions in binary mixtures (BMs) composed of flutamide (FL) and various poly(N-vinylpyrrolidone) (PVP) polymers, including a commercial product and, importantly, samples obtained from high-pressure syntheses, which differ in microstructure (defined by the tacticity of the macromolecule) from the commercial PVP. Differential Scanning Calorimetry (DSC) studies revealed a particularly large difference between the glass transition temperature (Tg) of FL+PVPsynth. mixtures with 10 and 30 wt% of the excipient. In the case of the FL+PVPcomm. system, this effect was significantly lower. Such unexpected findings for the former mixtures were strictly connected to the variation of the microstructure of the polymer. Moreover, combined DSC and dielectric measurements showed that the onset of FL crystallization is significantly suppressed in the BM composed of the synthesized polymers. Further non-isothermal DSC investigations carried out on various FL+10 wt% PVP mixtures revealed a slowing down of FL crystallization in all FL-based systems (the best inhibitor of this process was PVP Mn = 190 kg/mol). Our research indicated a significant contribution of the microstructure of the polymer on the physical stability of the pharmaceutical-an issue completely overlooked in the literature.
Collapse
Affiliation(s)
- Dawid Heczko
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Barbara Hachuła
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Paulina Maksym
- Institute of Material Science, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Kamil Kamiński
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Andrzej Zięba
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Luiza Orszulak
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Marian Paluch
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
4
|
Kramarczyk D, Knapik-Kowalczuk J, Smolka W, Monteiro MF, Tajber L, Paluch M. Inhibition of celecoxib crystallization by mesoporous silica – molecular dynamics studies leading to the discovery of the stabilization origin. Eur J Pharm Sci 2022; 171:106132. [DOI: 10.1016/j.ejps.2022.106132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/24/2022]
|
5
|
Chmiel K, Knapik-Kowalczuk J, Kamińska E, Tajber L, Paluch M. High-Pressure Dielectric Studies-a Way to Experimentally Determine the Solubility of a Drug in the Polymer Matrix at Low Temperatures. Mol Pharm 2021; 18:3050-3062. [PMID: 34250800 PMCID: PMC8397395 DOI: 10.1021/acs.molpharmaceut.1c00264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
In this work, we
employed broad-band dielectric spectroscopy to
determine the solubility limits of nimesulide in the Kollidon VA64
matrix at ambient and elevated pressure conditions. Our studies confirmed
that the solubility of the drug in the polymer matrix decreases with
increasing pressure, and molecular dynamics controls the process of
recrystallization of the excess of amorphous nimesulide from the supersaturated
drug–polymer solution. More precisely, recrystallization initiated
at a certain structural relaxation time of the sample stops when a
molecular mobility different from the initial one is reached, regardless
of the temperature and pressure conditions. Finally, based on the
presented results, one can conclude that by transposing vertically
the results obtained at elevated pressures, one can obtain the solubility
limit values corresponding to low temperatures. This approach was
validated by the comparison of the experimentally determined points
with the theoretically obtained values based on the Flory–Huggins
theory.
Collapse
Affiliation(s)
- Krzysztof Chmiel
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Justyna Knapik-Kowalczuk
- Institute of Physics, Faculty of Science and Technology, University of Silesia, SMCEBI, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Lidia Tajber
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 2 Dublin, Ireland
| | - Marian Paluch
- Institute of Physics, Faculty of Science and Technology, University of Silesia, SMCEBI, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| |
Collapse
|
6
|
Thakore SD, Akhtar J, Jain R, Paudel A, Bansal AK. Analytical and Computational Methods for the Determination of Drug-Polymer Solubility and Miscibility. Mol Pharm 2021; 18:2835-2866. [PMID: 34041914 DOI: 10.1021/acs.molpharmaceut.1c00141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the pharmaceutical industry, poorly water-soluble drugs require enabling technologies to increase apparent solubility in the biological environment. Amorphous solid dispersion (ASD) has emerged as an attractive strategy that has been used to market more than 20 oral pharmaceutical products. The amorphous form is inherently unstable and exhibits phase separation and crystallization during shelf life storage. Polymers stabilize the amorphous drug by antiplasticization, reducing molecular mobility, reducing chemical potential of drug, and increasing glass transition temperature in ASD. Here, drug-polymer miscibility is an important contributor to the physical stability of ASDs. The current Review discusses the basics of drug-polymer interactions with the major focus on the methods for the evaluation of solubility and miscibility of the drug in the polymer. Methods for the evaluation of drug-polymer solubility and miscibility have been classified as thermal, spectroscopic, microscopic, solid-liquid equilibrium-based, rheological, and computational methods. Thermal methods have been commonly used to determine the solubility of the drug in the polymer, while other methods provide qualitative information about drug-polymer miscibility. Despite advancements, the majority of these methods are still inadequate to provide the value of drug-polymer miscibility at room temperature. There is still a need for methods that can accurately determine drug-polymer miscibility at pharmaceutically relevant temperatures.
Collapse
Affiliation(s)
- Samarth D Thakore
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Junia Akhtar
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Ranjna Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering (RCPE) GmbH, Inffeldgasse 13, 8010 Graz, Austria.,Institute for Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| |
Collapse
|
7
|
Knapik-Kowalczuk J, Rams-Baron M, Paluch M. Current research trends in dielectric relaxation studies of amorphous pharmaceuticals: Physical stability, tautomerism, and the role of hydrogen bonding. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Chmiel K, Knapik-Kowalczuk J, Paluch M. Isochronal Conditions-The Key To Maintain the Given Solubility Limit, of a Small Molecule within the Polymer Matrix, at Elevated Pressure. Mol Pharm 2020; 17:3730-3739. [PMID: 32790413 PMCID: PMC7539297 DOI: 10.1021/acs.molpharmaceut.0c00463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022]
Abstract
In this work, we proposed the method to maintain the desired level of drug's solubility within the polymer matrix by adjusting conditions to uphold the same molecular dynamics of the system (e.g., temperature for set elevated pressure or vice versa). Namely, we observed, that recrystallization of the drug from the supersaturated drug-polymer system, initiated for the same structural relaxation time of the sample (τα-1) ceases when certain, different than the initial, molecular mobility of the systems is reached (τα-2)-regardless of a given combination of temperature and pressure conditions. Based on the presented results, one can conclude that the molecular dynamics seem to control the process of recrystallization of the excess amount of solute from the supersaturated solution (e.g., small molecules dissolved within the polymer). Therefore, it appears that the elevated pressure compensates the effect of solubility enhancement caused by the elevated temperature. Such information not only is of fundamental relevance in science but also, from a much broader perspective, could be potentially very useful considering extrusion-based manufacturing methods.
Collapse
Affiliation(s)
- Krzysztof Chmiel
- Faculty
of Science and Technology, Institute of Physics, University of Silesia, SMCEBI, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Justyna Knapik-Kowalczuk
- Faculty
of Science and Technology, Institute of Physics, University of Silesia, SMCEBI, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Marian Paluch
- Faculty
of Science and Technology, Institute of Physics, University of Silesia, SMCEBI, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| |
Collapse
|
9
|
Matić J, Paudel A, Bauer H, Garcia RAL, Biedrzycka K, Khinast JG. Developing HME-Based Drug Products Using Emerging Science: a Fast-Track Roadmap from Concept to Clinical Batch. AAPS PharmSciTech 2020; 21:176. [PMID: 32572701 PMCID: PMC7308264 DOI: 10.1208/s12249-020-01713-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
This paper presents a rational workflow for developing enabling formulations, such as amorphous solid dispersions, via hot-melt extrusion in less than a year. First, our approach to an integrated product and process development framework is described, including state-of-the-art theoretical concepts, modeling, and experimental characterization described in the literature and developed by us. Next, lab-scale extruder setups are designed (processing conditions and screw design) based on a rational, model-based framework that takes into account the thermal load required, the mixing capabilities, and the thermo-mechanical degradation. The predicted optimal process setup can be validated quickly in the pilot plant. Lastly, a transfer of the process to any GMP-certified manufacturing site can be performed in silico for any extruder based on our validated computational framework. In summary, the proposed workflow massively reduces the risk in product and process development and shortens the drug-to-market time for enabling formulations.
Collapse
Affiliation(s)
- Josip Matić
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria.
- Institute for Process and Particle Engineering, Graz University of Technology, Graz, Austria.
| | - Hannes Bauer
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | | | | | - Johannes G Khinast
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria.
- Institute for Process and Particle Engineering, Graz University of Technology, Graz, Austria.
| |
Collapse
|
10
|
Knapik-Kowalczuk J, Chmiel K, Pacułt J, Bialek K, Tajber L, Paluch M. Enhancement of the Physical Stability of Amorphous Sildenafil in a Binary Mixture, with either a Plasticizing or Antiplasticizing Compound. Pharmaceutics 2020; 12:pharmaceutics12050460. [PMID: 32443637 PMCID: PMC7284710 DOI: 10.3390/pharmaceutics12050460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022] Open
Abstract
The main purpose of this paper was to evaluate the impact of both high- and low-Tg polymer additives on the physical stability of an amorphous drug, sildenafil (SIL). The molecular mobility of neat amorphous SIL was strongly affected by the polymeric excipients used (Kollidon VA64 (KVA) and poly(vinylacetate) (PVAc)). The addition of KVA slowed down the molecular dynamics of amorphous SIL (antiplasticizing effect), however, the addition of PVAc accelerated the molecular motions of the neat drug (plasticizing effect). Therefore, in order to properly assess the effect of the polymer on the physical stability of SIL, the amorphous samples at both: isothermal (at constant temperature—353 K) and isochronal (at constant relaxation time—τα = 1.5 ms) conditions were compared. Our studies showed that KVA suppressed the recrystallization of amorphous SIL more efficiently than PVAc. KVA improved the physical stability of the amorphous drug, regardless of the chosen concentration. On the other hand, in the case of PVAc, a low polymer content (i.e., 25 wt.%) destabilized amorphous SIL, when stored at 353 K. Nevertheless, at high concentrations of this excipient (i.e., 75 wt.%), its effect on the amorphous pharmaceutical seemed to be the opposite. Therefore, above a certain concentration, the PVAc presence no longer accelerates the SIL recrystallization process, but inhibits it.
Collapse
Affiliation(s)
- Justyna Knapik-Kowalczuk
- Institute of Physics, Faculty of Science and Technology University of Silesia, SMCEBI, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland; (J.K.-K.); (J.P.); (M.P.)
| | - Krzysztof Chmiel
- Institute of Physics, Faculty of Science and Technology University of Silesia, SMCEBI, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland; (J.K.-K.); (J.P.); (M.P.)
- Correspondence:
| | - Justyna Pacułt
- Institute of Physics, Faculty of Science and Technology University of Silesia, SMCEBI, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland; (J.K.-K.); (J.P.); (M.P.)
| | - Klaudia Bialek
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland; (K.B.); (L.T.)
| | - Lidia Tajber
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland; (K.B.); (L.T.)
| | - Marian Paluch
- Institute of Physics, Faculty of Science and Technology University of Silesia, SMCEBI, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland; (J.K.-K.); (J.P.); (M.P.)
| |
Collapse
|
11
|
Compression-Induced Phase Transitions of Bicalutamide. Pharmaceutics 2020; 12:pharmaceutics12050438. [PMID: 32397432 PMCID: PMC7284452 DOI: 10.3390/pharmaceutics12050438] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 11/26/2022] Open
Abstract
The formation of solid dispersions with the amorphous drug dispersed in the polymeric matrix improves the dissolution characteristics of poorly soluble drugs. Although they provide an improved absorption after oral administration, the recrystallization, which can occur upon absorption of moisture or during solidification and other formulation stages, serves as a major challenge. This work aims at understanding the amorphization-recrystallization changes of bicalutamide. Amorphous solid dispersions with poly(vinylpyrrolidone-co-vinyl acetate) (PVP/VA) were obtained by either ball milling or spray drying. The applied processes led to drug amorphization as confirmed using X-ray diffraction and differential scanning calorimetry. Due to a high propensity towards mechanical activation, the changes of the crystal structure of physical blends of active pharmaceutical ingredient (API) and polymer upon pressure were also examined. The compression led to drug amorphization or transition from form I to form II polymorph, depending on the composition and applied force. The formation of hydrogen bonds confirmed using infrared spectroscopy and high miscibility of drug and polymer determined using non-isothermal dielectric measurements contributed to the high stability of amorphous solid dispersions. They exhibited improved wettability and dissolution enhanced by 2.5- to 11-fold in comparison with the crystalline drug. The drug remained amorphous upon compression when the content of PVP/VA in solid dispersions exceeded 20% or 33%, in the case of spray-dried and milled systems, respectively.
Collapse
|