1
|
García MA, Paulos C, Ibarra Viñales M, Michelet R, Cabrera-Pérez MÁ, Aceituno A, Bone M, Ibacache M, Cortínez LI, Guzmán M. Modeling and Simulations in Latin-American Generic Markets: Perspectives from Chilean Local Industry, Regulatory Agency, and Academia. Mol Pharm 2024. [PMID: 39454202 DOI: 10.1021/acs.molpharmaceut.4c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
In the last 20 years, modeling and simulations (M&S) have gained increased attention in pharmaceutical sciences. International industry and world-reference agencies have used M&S to make cost-efficient decisions through the model-informed drug development (MIDD) framework. Modeling tools include biopredictive dissolution models, physiologically based pharmacokinetic models (PBPK), biopharmaceutic models (PBBM), and virtual bioequivalence, among many others. Regulatorily, health agencies are becoming more and more open to accept the use of M&S to support regulatory applications, including setting dissolution specifications, quality-by-design (QbD), postapproval changes (SUPAC), etc. Nonetheless, the potential of M&S has been only barely explored in Latin America (Latam) across different actors: industry, regulatory agencies, and even academia. In this manuscript, we discuss the challenges and opportunities for implementing M&S approaches in Latam. Perspectives of regional experts were shared in a workshop. Attendance (professionals from industry, regulator, academia, and clinicians) also shared their views via survey. The rational development of bioequivalent generics was considered the main opportunity for M&S in regional market, particularly the use of PBPK and PBBM. Nonetheless, a critical mass of modeling scientists is needed before Latin American industry and regulators can actually benefit from M&S. Collaborations (e.g., Academia-Industry and Academia-Regulatory) may be a path to develop applied research projects and train the future modelers. Reaching that critical mass, scientists from industry may apply modeling across generic drug development process and life cycle, while regulatory scientists may issue guidelines in local language to support regional industry. Only at that stage could the full potential of MIDD be reached in Latin American generic markets.
Collapse
Affiliation(s)
- Mauricio A García
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Claudio Paulos
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Manuel Ibarra Viñales
- Department of Pharmaceutical Sciences, Faculty of Chemistry, Universidad de la República, Montevideo 11800, Uruguay
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Kelchstraße 31, Berlin 14195, Germany
- qPharmetra LLC, Berlin 14195, Germany
| | - Miguel Ángel Cabrera-Pérez
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta 1240000, Chile
| | - Alexis Aceituno
- National Drug Agency Department, Institute of Public Health (ISP), Santiago 7780050, Chile
- University of Valparaíso, Faculty of Pharmacy, Valparaíso 2381850, Chile
| | - Michelle Bone
- National Drug Agency Department, Institute of Public Health (ISP), Santiago 7780050, Chile
| | - Mauricio Ibacache
- División Anestesiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago de Chile 7820436, Chile
| | - Luis Ignacio Cortínez
- División Anestesiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago de Chile 7820436, Chile
| | - Marcelo Guzmán
- Validations and Bioequivalence, Laboratorio Milab, Grupo FEMSA, Santiago 8380000, Chile
| |
Collapse
|
2
|
Kádár S, Kennedy A, Lee S, Ruiz R, Farkas A, Tőzsér P, Csicsák D, Tóth G, Sinkó B, Borbás E. Bioequivalence prediction with small-scale biphasic dissolution and simultaneous dissolution-permeation apparatus-An aripiprazole case study. Eur J Pharm Sci 2024; 198:106782. [PMID: 38697313 DOI: 10.1016/j.ejps.2024.106782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Both biphasic dissolution and simultaneous dissolution-permeation (D-P) systems have great potential to improve the in vitro-in vivo correlation compared to simple dissolution assays, but the assay conditions, and the evaluation methods still need to be refined in order to effectively use these apparatuses in drug development. Therefore, this comprehensive study aimed to compare the predictive accuracy of small-volume (16-20 mL) D-P system and small-volume (40-80 mL) biphasic dissolution apparatus in bioequivalence prediction of five aripiprazole (ARP) containing marketed drug products. Assay conditions, specifically dose dependence were studied to overcome the limitations of both small-scale systems. In case of biphasic dissolution the in vivo maximum plasma concentration (Cmax) prediction greatly improved with the dose reduction of ARP, while in case of the D-P setup the use of whole tablet gave just as accurate prediction as the scaled dose. With the dose reduction strategy both equipment was able to reach 100 % accuracy in bioequivalence prediction for Cmax ratio. In case of the in vivo area under the curve (AUC) prediction the predictive accuracy for the AUC ratio was not dependent on the dose, and both apparatus had a 100 % accuracy predicting bioequivalence based on AUC results. This paper presents for the first time that not only selected parameters of flux assays (like permeability, initial flux, AUC value) were used as an input parameter of a mechanistic model (gastrointestinal unified theory) to predict absorption rate but the whole in vitro flux profile was used. All fraction absorbed values estimated by Predictor Software fell within the ±15 % acceptance range during the comparison with the in vivo data.
Collapse
Affiliation(s)
- Szabina Kádár
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 3 Műegyetem rkp, H-1111, Budapest, Hungary
| | - Andrew Kennedy
- Pion Inc UK Ltd., Forest Row Business Park, Forest Row RH18 5DW, UK
| | - Samuel Lee
- Pion Inc UK Ltd., Forest Row Business Park, Forest Row RH18 5DW, UK
| | - Rebeca Ruiz
- Pion Inc UK Ltd., Forest Row Business Park, Forest Row RH18 5DW, UK
| | - Attila Farkas
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 3 Műegyetem rkp, H-1111, Budapest, Hungary
| | - Petra Tőzsér
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 3 Műegyetem rkp, H-1111, Budapest, Hungary
| | - Dóra Csicsák
- Department of Pharmaceutical Chemistry, Semmelweis University, 9 Hőgyes Endre Street, Budapest 1092, Hungary
| | - Gergő Tóth
- Department of Pharmaceutical Chemistry, Semmelweis University, 9 Hőgyes Endre Street, Budapest 1092, Hungary
| | - Bálint Sinkó
- Pion Inc., 10 Cook Street, Billerica, MA 01821, USA.
| | - Enikő Borbás
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 3 Műegyetem rkp, H-1111, Budapest, Hungary.
| |
Collapse
|
3
|
Hens B, Sarcevica I, Tomaszewska I, McAllister M. Digitalizing the TIM-1 Model Using Computational Approaches─Part Two: Digital TIM-1 Model in GastroPlus. Mol Pharm 2023; 20:5429-5439. [PMID: 37878668 DOI: 10.1021/acs.molpharmaceut.3c00423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
A TIM-1 model is an in vitro gastrointestinal (GI) simulator considering crucial physiological parameters that will affect the in vivo drug release process. The outcome of these experiments can indicate the critical bioavailability attributes (CBAs) that will impact the fraction absorbed in vivo. The model is widely used in the nonclinical stage of drug product development to assess the bioaccessible fraction of drugs for numerous candidate formulations. In this work, we developed a digital TIM-1 model in the GastroPlus platform. In a first step, we performed validation experiments to assess the luminal concentrations and bioaccessible fractions for two marker compounds. The digital TIM-1 was able to adequately reflect the luminal concentrations and bioaccessible fractions of these markers under different prandial conditions, confirming the appropriate integration of mass transfer in the TIM-1 model. In a second set of experiments, a case example with PF-07059013 was performed, where luminal concentrations and bioaccessible fractions were predicted for 200 and 1000 mg doses under fasted and achlorhydric conditions. Experimental and simulated data pointed out that the achlorhydric effect was more pronounced at the 1000 mg dose, showing a solubility-limited dissolution and, consequently, decreased bioaccessible fraction. Toward future applications, the digital TIM-1 model will be thoroughly applied to explore a link between in vitro and in vivo outcomes based on more case examples with model compounds with the access of TIM-1 and plasma data. Ideally, this digital TIM-1 can be directly used in GastroPlus to explore an in vitro-in vivo correlation (IVIVC) between the fraction dissolved (digital TIM-1 settings) and the fraction absorbed (human PBPK settings).
Collapse
Affiliation(s)
- Bart Hens
- Drug Product Design, Pfizer, Discovery Park, Ramsgate Road, Sandwich CT13 9ND, U.K
| | - Inese Sarcevica
- Drug Product Design, Pfizer, Discovery Park, Ramsgate Road, Sandwich CT13 9ND, U.K
| | - Irena Tomaszewska
- Drug Product Design, Pfizer, Discovery Park, Ramsgate Road, Sandwich CT13 9ND, U.K
| | - Mark McAllister
- Drug Product Design, Pfizer, Discovery Park, Ramsgate Road, Sandwich CT13 9ND, U.K
| |
Collapse
|
4
|
Sarcevica I, Hens B, Tomaszewska I, McAllister M. Digitalizing the TIM-1 Model using Computational Approaches-Part One: TIM-1 Data Explorer. Mol Pharm 2023; 20:5416-5428. [PMID: 37878746 DOI: 10.1021/acs.molpharmaceut.3c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The TIM-1 gastrointestinal model is one of the most advanced in vitro systems currently available for biorelevant dissolution testing. This technology, the initial version of which was developed nearly 30 years ago and has been subject to a number of significant updates over this period, simulates the dynamic environment of the human gastrointestinal tract, including pH, transfer times, secretion of bile, enzymes, and electrolytes. In the pharmaceutical industry, the TIM-1 system is used to support drug product design and provide a biopredictive assessment of drug product performance. Typically, the bioaccessibility data sets generated by TIM-1 experiments are used to qualitatively compare formulation performance, and the use of bioaccessibility data as inputs for physiologically based pharmacokinetic (PBPK) modeling for quantitative predictions is limited. To expand the utility of the TIM-1 model beyond standard bioaccessibility measurements (which define the fraction available for absorption), we have developed a computational tool, TIM-1 Data Explorer, to describe the fluid and mass balance within the TIM-1 system. The use of this tool allows a detailed inspection and in-depth interpretation of the experimental data. In addition to mass balance calculation, this model also can be used to describe the critical processes a drug substance would undergo during a TIM-1 experiment, such as dissolution, precipitation on transfer from the stomach to duodenum, and redissolution. The TIM-1 Data Explorer was validated in two case studies. In the first case study with paracetamol, we have shown the ability of the simulator to adequately describe mass transfer events within the TIM-1 system, and in the second study with a weakly basic in-house compound, PF-07059013, the TIM-1 Data Explorer was successfully used to describe dissolution and precipitation processes.
Collapse
Affiliation(s)
- Inese Sarcevica
- Drug Product Design, Pfizer, Discovery Park, Ramsgate Road, Sandwich CT13 9ND, U.K
| | - Bart Hens
- Drug Product Design, Pfizer, Discovery Park, Ramsgate Road, Sandwich CT13 9ND, U.K
| | - Irena Tomaszewska
- Drug Product Design, Pfizer, Discovery Park, Ramsgate Road, Sandwich CT13 9ND, U.K
| | - Mark McAllister
- Drug Product Design, Pfizer, Discovery Park, Ramsgate Road, Sandwich CT13 9ND, U.K
| |
Collapse
|
5
|
Tsume Y, Ashworth L, Bermejo M, Cheng J, Cicale V, Dressman J, Fushimi M, Gonzalez-Alvarez I, Guo Y, Jankovsky C, Lu X, Matsui K, Patel S, Sanderson N, Sun CC, Thakral NK, Yamane M, Zöller L. Harmonizing Biopredictive Methodologies Through the Product Quality Research Institute (PQRI) Part I: Biopredictive Dissolution of Ibuprofen and Dipyridamole Tablets. AAPS J 2023; 25:45. [PMID: 37085637 DOI: 10.1208/s12248-023-00793-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/07/2023] [Indexed: 04/23/2023] Open
Abstract
Assessing in vivo performance to inform formulation selection and development decisions is an important aspect of drug development. Biopredictive dissolution methodologies for oral dosage forms have been developed to understand in vivo performance, assist in formulation development/optimization, and forecast the outcome of bioequivalence studies by combining them with simulation tools to predict plasma profiles in humans. However, unlike compendial dissolution methodologies, the various biopredictive methodologies have not yet been harmonized or standardized. This manuscript presents the initial phases of an effort to develop best practices and move toward standardization of the biopredictive methodologies through the Product Quality Research Institute (PQRI, https://pqri.org ) entitled "The standardization of in vitro predictive dissolution methodologies and in silico bioequivalence study Working Group." This Working Group (WG) is comprised of participants from 10 pharmaceutical companies and academic institutes. The project will be accomplished in a total of five phases including assessing the performance of dissolution protocols designed by the individual WG members, and then building "best practice" protocols based on the initial dissolution profiles. After refining the "best practice" protocols to produce equivalent dissolution profiles, those will be combined with physiologically based biopharmaceutics models (PBBM) to predict plasma profiles. In this manuscript, the first two of the five phases are reported, namely generating biopredictive dissolution profiles for ibuprofen and dipyridamole and using those dissolution profiles with PBBM to match the clinical plasma profiles. Key experimental parameters are identified, and this knowledge will be applied to build the "best practice" protocol in the next phase.
Collapse
Affiliation(s)
- Yasuhiro Tsume
- Merck & Co., Inc., 126 E Lincoln Avenue, Rahway, New Jersey, USA.
| | | | | | - Joan Cheng
- University of Minnesota, Minneapolis, Minneapolis, USA
| | - Vincent Cicale
- Bristol-Myers Squibb Company, New Brunswick, New Jersey, USA
| | - Jennifer Dressman
- Fraunhofer Institute for Translational Medicine Pharmacology, Frankfurt, Germany
- Goethe Universität, Frankfurt, Germany
| | | | | | - Yiwang Guo
- University of Minnesota, Minneapolis, Minneapolis, USA
| | - Corinne Jankovsky
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | - Xujin Lu
- Bristol-Myers Squibb Company, New Brunswick, New Jersey, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhang F, Wu X, Wu K, Yu M, Liu B, Wang H. Predicting the Pharmacokinetics of Orally Administered Drugs across BCS Classes 1-4 by Virtual Bioequivalence Model. Mol Pharm 2023; 20:395-408. [PMID: 36469444 DOI: 10.1021/acs.molpharmaceut.2c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To evaluate the influence of solubility and permeability on the pharmacokinetic prediction performance of orally administered drugs using avirtual bioequivalence (VBE) model, a total of 23 orally administered drugs covering Biopharmaceutics Classification System (BCS) classes 1-4 were selected. A VBE model (i.e., a physiologically based pharmacokinetic model integrated with dissolution data) based on a B2O simulator was applied for pharmacokinetic (PK) prediction in a virtual population. Parameter sensitivity analysis was used for input parameter selection. The predictive performances of PK parameters (i.e., AUC0-t, Cmax, and Tmax), PK profiles, and bioequivalence (BE) results were evaluated using the twofold error, average fold error (AFE), absolute average fold error (AAFE), and BE reassessment metrics. All models successfully simulated the mean PK profiles, with AAFE < 2 and AFE ranging from 0.58 to 1.66. As for the PK parameters, except for the time of peak concentration, Tmax, of isosorbide mononitrate, other simulated PK parameters were all within a twofold error. The simulated PK behaviors were comparable to the observed ones, both for test (T) and reference (R) products, and the simulated T/R arithmetic mean ratios were all within 0.88-1.16 of the observed values. These four evaluation metrics were distributed equally among BCS class 1-4 drugs. The VBE model showed powerful performance to predict the PK behavior of orally administered drugs with various combinations of solubility and permeability, irrespective of the BCS category.
Collapse
Affiliation(s)
- Fan Zhang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100730, China
| | - Xiaofei Wu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100730, China
| | - Keheng Wu
- Yinghan Pharmaceutical Technology (Shanghai) Co., Ltd, Shanghai201100, China
| | - Mengyang Yu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100730, China
| | - Bo Liu
- Wuhan Institute of Technology, Wuhan, Hubei430205, China
| | - Hongyun Wang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100730, China
| |
Collapse
|
7
|
Non-Effective Improvement of Absorption for Some Nanoparticle Formulations Explained by Permeability under Non-Sink Conditions. Pharmaceutics 2022; 14:pharmaceutics14040816. [PMID: 35456650 PMCID: PMC9024805 DOI: 10.3390/pharmaceutics14040816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
We evaluated the in vitro permeability of nanoparticle formulations of high and low lipophilic compounds under non-sink conditions, wherein compounds are not completely dissolved. The permeability of the highly lipophilic compound, griseofulvin, was improved by about 30% due to nanonization under non-sink conditions. Moreover, this permeability was about 50% higher than that under sink conditions. On the other hand, for the low lipophilic compound, hydrocortisone, there was no difference in permeability between micro-and nano-sized compounds under non-sink conditions. The nanonization of highly lipophilic compounds improves the permeability of the unstirred water layer (UWL), which in turn improves overall permeability. On the other hand, because the rate-limiting step in permeation for the low lipophilic compounds is the diffusion of the compounds in the membrane, the improvement of UWL permeability by nanonization does not improve the overall permeability. Based on this mechanism, nanoparticle formulations are not effective for low lipophilic compounds. To accurately predict the absorption of nanoparticle formulations, it is necessary to consider their permeability under non-sink conditions which reflect in vivo conditions.
Collapse
|
8
|
Kádár S, Tőzsér P, Nagy B, Farkas A, Nagy ZK, Tsinman O, Tsinman K, Csicsák D, Völgyi G, Takács-Novák K, Borbás E, Sinkó B. Flux-Based Formulation Development-A Proof of Concept Study. AAPS J 2022; 24:22. [PMID: 34988721 PMCID: PMC8816521 DOI: 10.1208/s12248-021-00668-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/16/2021] [Indexed: 12/05/2022] Open
Abstract
The work aimed to develop the Absorption Driven Drug Formulation (ADDF) concept, which is a new approach in formulation development to ensure that the drug product meets the expected absorption rate. The concept is built on the solubility-permeability interplay and the rate of supersaturation as the driving force of absorption. This paper presents the first case study using the ADDF concept where not only dissolution and solubility but also permeation of the drug is considered in every step of the formulation development. For that reason, parallel artificial membrane permeability assay (PAMPA) was used for excipient selection, small volume dissolution-permeation apparatus was used for testing amorphous solid dispersions (ASDs), and large volume dissolution-permeation tests were carried out to characterize the final dosage forms. The API-excipient interaction studies on PAMPA indicated differences when different fillers or surfactants were studied. These differences were then confirmed with small volume dissolution-permeation assays where the addition of Tween 80 to the ASDs decreased the flux dramatically. Also, the early indication of sorbitol’s advantage over mannitol by PAMPA has been confirmed in the investigation of the final dosage forms by large-scale dissolution-permeation tests. This difference between the fillers was observed in vivo as well. The presented case study demonstrated that the ADDF concept opens a new perspective in generic formulation development using fast and cost-effective flux-based screening methods in order to meet the bioequivalence criteria. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Szabina Kádár
- Budapest University of Technology and Economics, 3 Műegyetem rkp, Budapest, 1111, Hungary
| | - Petra Tőzsér
- Budapest University of Technology and Economics, 3 Műegyetem rkp, Budapest, 1111, Hungary
| | - Brigitta Nagy
- Budapest University of Technology and Economics, 3 Műegyetem rkp, Budapest, 1111, Hungary
| | - Attila Farkas
- Budapest University of Technology and Economics, 3 Műegyetem rkp, Budapest, 1111, Hungary
| | - Zsombor K Nagy
- Budapest University of Technology and Economics, 3 Műegyetem rkp, Budapest, 1111, Hungary
| | - Oksana Tsinman
- Pion Inc., 10 Cook Street, Billerica, Massachusetts, 01821, USA
| | | | - Dóra Csicsák
- Semmelweis University, 9 Hőgyes Endre Street, Budapest, 1092, Hungary
| | - Gergely Völgyi
- Semmelweis University, 9 Hőgyes Endre Street, Budapest, 1092, Hungary
| | | | - Enikő Borbás
- Budapest University of Technology and Economics, 3 Műegyetem rkp, Budapest, 1111, Hungary.
| | - Bálint Sinkó
- Pion Inc., 10 Cook Street, Billerica, Massachusetts, 01821, USA.
| |
Collapse
|
9
|
Abstract
Oral drug absorption modeling has developed at a rapid pace in the 40 years or so since the first ideas for mathematical approaches to oral absorption were introduced. The success of compartmental approaches accelerated the uptake of absorption modeling, and over the last 20 years, work on absorption modeling has shifted almost exclusively to the compartmental framework. This report describes a new noncompartmental absorption modeling framework, the Lilly Absorption Modeling Platform (LAMP). LAMP connects a well-mixed stomach to a continuous tube model of the small intestine with plug flow. Within the continuous tube framework, the model includes intestinal mixing and a novel highly tunable precipitation model that can describe a combination of rapid nucleation and slow growth. The framework is designed to balance speed, consistency, and ease of use with a minimum of model complexity to capture the essential features of gastrointestinal (GI) physiology and critical elements of the oral absorption process. The model was validated based on predictions of the fraction absorbed and the maximum absorbable dose for a set of Eli Lilly and Company clinical compounds.
Collapse
Affiliation(s)
- Stephen D Stamatis
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - John P Rose
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| |
Collapse
|
10
|
Bennett-Lenane H, Jørgensen JR, Koehl NJ, Henze LJ, O'Shea JP, Müllertz A, Griffin BT. Exploring porcine gastric and intestinal fluids using microscopic and solubility estimates: Impact of placebo self-emulsifying drug delivery system administration to inform bio-predictive in vitro tools. Eur J Pharm Sci 2021; 161:105778. [PMID: 33647402 DOI: 10.1016/j.ejps.2021.105778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/09/2023]
Abstract
Validation and characterisation of in vitro and pre-clinical animal models to support bio-enabling formulation development is of paramount importance. In this work, post-mortem gastric and small intestinal fluids were collected in the fasted, fed state and at five sample-points post administration of a placebo Self-Emulsifying Drug Delivery System (SEDDS) in the fasted state to pigs. Cryo-TEM and Negative Stain-TEM were used for ultrastructure characterisation. Ex vivo solubility of fenofibrate was determined in the fasted-state, fed-state and post-SEDDS administration. Highest observed ex vivo drug solubility in intestinal fluids after SEDDS administration was used for optimising the biorelevant in vitro conditions to determine maximum solubility. Under microscopic evaluation, fasted, fed and SEDDS fluids resulted in different colloidal structures. Drug solubility appeared highest 1 hour post SEDDS administration, corresponding with presence of SEDDS lipid droplets. A 1:200 dispersion of SEDDS in biorelevant media matched the highest observed ex vivo solubility upon SEDDS administration. Overall, impacts of this study include increasing evidence for the pig preclinical model to mimic drug solubility in humans, observations that SEDDS administration may poorly mimic colloidal structures observed under fed state, while microscopic and solubility porcine assessments provided a framework for increasingly bio-predictive in vitro tools.
Collapse
Affiliation(s)
| | - Jacob R Jørgensen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Niklas J Koehl
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Laura J Henze
- School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | | |
Collapse
|
11
|
The promising antischistosomal activity of oleic acid-loaded polymeric nanocapsules for oral administration. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Hens B, Augustijns P, Lennernäs H, McAllister M, Abrahamsson B. Leveraging Oral Drug Development to a Next Level: Impact of the IMI-Funded OrBiTo Project on Patient Healthcare. Front Med (Lausanne) 2021; 8:480706. [PMID: 33748152 PMCID: PMC7973356 DOI: 10.3389/fmed.2021.480706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
A thorough understanding of the behavior of drug formulations in the human gastrointestinal (GI) tract is essential when working in the field of oral drug development in a pharmaceutical company. For orally administered drug products, various GI processes, including disintegration of the drug formulation, drugrelease, dissolution, precipitation, degradation, dosage form transit and permeation, dictate absorption into the systemic circulation. These processes are not always fully captured in predictive in vitro and in silico tools, as commonly applied in the pre-clinical stage of formulation drug development. A collaborative initiative focused on the science of oral biopharmaceutics was established in 2012 between academic institutions and industrial companies to innovate, optimize and validate these in vitro and in silico biopharmaceutical tools. From that perspective, the predictive power of these models can be revised and, if necessary, optimized to improve the accuracy toward predictions of the in vivo performance of orally administered drug products in patients. The IMI/EFPIA-funded "Oral Bioavailability Tools (OrBiTo)" project aimed to improve our fundamental understanding of the GI absorption process. The gathered information was integrated into the development of new (or already existing) laboratory tests and computer-based methods in order to deliver more accurate predictions of drug product behavior in a real-life setting. These methods were validated with the use of industrial data. Crucially, the ultimate goal of the project was to set up a scientific framework (i.e., decision trees) to guide the use of these new tools in drug development. The project aimed to facilitate and accelerate the formulation development process and to significantly reduce the need for animal experiments in this area as well as for human clinical studies in the future. With respect to the positive outcome for patients, high-quality oral medicines will be developed where the required dose is well-calculated and consistently provides an optimal clinical effect. In a first step, this manuscript summarizes the setup of the project and how data were collected across the different work packages. In a second step, case studies of how this project contributed to improved knowledge of oral drug delivery which can be used to develop improved products for patients will be illustrated.
Collapse
Affiliation(s)
- Bart Hens
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.,Drug Product Design, Pfizer, Sandwich, United Kingdom
| | - Patrick Augustijns
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Hans Lennernäs
- Department of Pharmaceutical Biosciences and Technology, Uppsala University, Uppsala, Sweden
| | | | - Bertil Abrahamsson
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca Gothenburg, Mölndal, Sweden
| |
Collapse
|
13
|
Loisios-Konstantinidis I, Dressman J. Physiologically Based Pharmacokinetic/Pharmacodynamic Modeling to Support Waivers of In Vivo Clinical Studies: Current Status, Challenges, and Opportunities. Mol Pharm 2020; 18:1-17. [PMID: 33320002 DOI: 10.1021/acs.molpharmaceut.0c00903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling has been extensively applied to quantitatively translate in vitro data, predict the in vivo performance, and ultimately support waivers of in vivo clinical studies. In the area of biopharmaceutics and within the context of model-informed drug discovery and development (MID3), there is a rapidly growing interest in applying verified and validated mechanistic PBPK models to waive in vivo clinical studies. However, the regulatory acceptance of PBPK analyses for biopharmaceutics and oral drug absorption applications, which is also referred to variously as "PBPK absorption modeling" [Zhang et al. CPT: Pharmacometrics Syst. Pharmacol. 2017, 6, 492], "physiologically based absorption modeling", or "physiologically based biopharmaceutics modeling" (PBBM), remains rather low [Kesisoglou et al. J. Pharm. Sci. 2016, 105, 2723] [Heimbach et al. AAPS J. 2019, 21, 29]. Despite considerable progress in the understanding of gastrointestinal (GI) physiology, in vitro biopharmaceutic and in silico tools, PBPK models for oral absorption often suffer from an incomplete understanding of the physiology, overparameterization, and insufficient model validation and/or platform verification, all of which can represent limitations to their translatability and predictive performance. The complex interactions of drug substances and (bioenabling) formulations with the highly dynamic and heterogeneous environment of the GI tract in different age, ethnic, and genetic groups as well as disease states have not been yet fully elucidated, and they deserve further research. Along with advancements in the understanding of GI physiology and refinement of current or development of fully mechanistic in silico tools, we strongly believe that harmonization, interdisciplinary interaction, and enhancement of the translational link between in vitro, in silico, and in vivo will determine the future of PBBM. This Perspective provides an overview of the current status of PBBM, reflects on challenges and knowledge gaps, and discusses future opportunities around PBPK/PD models for oral absorption of small and large molecules to waive in vivo clinical studies.
Collapse
Affiliation(s)
| | - Jennifer Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main 60438, Germany.,Fraunhofer Institute of Translational Pharmacology and Medicine (ITMP), Carl-von-Noorden Platz 9, Frankfurt am Main 60438, Germany
| |
Collapse
|
14
|
Mohylyuk V, Goldoozian S, Andrews GP, Dashevskiy A. IVIVC for Extended Release Hydrophilic Matrix Tablets in Consideration of Biorelevant Mechanical Stress. Pharm Res 2020; 37:227. [PMID: 33094368 PMCID: PMC7581586 DOI: 10.1007/s11095-020-02940-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/28/2020] [Indexed: 12/23/2022]
Abstract
Purpose When establishing IVIVC, a special problem arises by interpretation of averaged in vivo profiles insight of considerable individual variations in term of time and number of mechanical stress events in GI-tract. The objective of the study was to investigate and forecast the effect of mechanical stress on in vivo behavior in human of hydrophilic matrix tablets. Methods Dissolution profiles for the marketed products were obtained at different conditions (stirring speed, single- or repeatable mechanical stress applied) and convoluted into C-t profiles. Vice versa, published in vivo C-t profiles of the products were deconvoluted into absorption profiles and compared with dissolution profiles by similarity factor. Results Investigated hydrophilic matrix tablets varied in term of their resistance against hydrodynamic stress or single stress during the dissolution. Different scenarios, including repeatable mechanical stress, were investigated on mostly prone Seroquel® XR 50 mg. None of the particular scenarios fits to the published in vivo C-t profile of Seroquel® XR 50 mg representing, however, the average of individual profiles related to scenarios differing by number, frequency and time of contraction stress. When different scenarios were combined in different proportions, the profiles became closer to the original in vivo profile including a burst between 4 and 5 h, probably, due to stress-events in GI-tract. Conclusion For establishing IVIVC of oral dosage forms susceptible mechanical stress, a comparison of the deconvoluted individual in vivo profiles with in vitro profiles of different dissolution scenarios can be recommended.
Collapse
Affiliation(s)
- Valentyn Mohylyuk
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
- College of Pharmacy, Freie Universität Berlin, Kelchstrasse 31, 12169, Berlin, Germany
| | - Seyedreza Goldoozian
- College of Pharmacy, Freie Universität Berlin, Kelchstrasse 31, 12169, Berlin, Germany
| | - Gavin P Andrews
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Andriy Dashevskiy
- College of Pharmacy, Freie Universität Berlin, Kelchstrasse 31, 12169, Berlin, Germany.
| |
Collapse
|
15
|
Parrott N, Suarez-Sharp S, Kesisoglou F, Pathak SM, Good D, Wagner C, Dallmann A, Mullin J, Patel N, Riedmaier AE, Mitra A, Raines K, Butler J, Kakhi M, Li M, Zhao Y, Tsakalozou E, Flanagan T, Dressman J, Pepin X. Best Practices in the Development and Validation of Physiologically Based Biopharmaceutics Modeling. A Workshop Summary Report. J Pharm Sci 2020; 110:584-593. [PMID: 33058891 DOI: 10.1016/j.xphs.2020.09.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022]
Abstract
This workshop report summarizes the proceedings of Day 2 of a three-day workshop on "Current State and Future Expectations of Translational Modeling Strategies toSupportDrug Product Development, Manufacturing Changes and Controls". From a drug product quality perspective, physiologically based biopharmaceutics modeling (PBBM) is a tool to link variations in the drug product quality attributes to in vivo outcomes enabling the establishment of clinically relevant drug product specifications (CRDPS). Day 2 of the workshop focused on best practices in developing, verifying and validating PBBM. This manuscript gives an overview of podium presentations and summarizes breakout (BO) session discussions related to (1) challenges and opportunities for using PBBM to assess the clinical impact of formulation and manufacturing changes on the in vivo performance of a drug product, (2) best practices to account for parameter uncertainty and variability during model development, (3) best practices in the development, verification and validation of PBBM and (4) opportunities and knowledge gaps related to leveraging PBBM for virtual bioequivalence simulations.
Collapse
Affiliation(s)
- Neil Parrott
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. Grenzacherstrasse 124, CH-4070 Basel, Switzerland.
| | | | | | | | - David Good
- Biopharmaceutics, Bristol-Myers Squibb, New Brunswick, NJ, USA
| | - Christian Wagner
- Pharmaceutical Technologies, Chemical and Pharmaceutical Development, Merck KGaA, Darmstadt, Germany
| | - André Dallmann
- Clinical Pharmacometrics, Research & Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| | - James Mullin
- Simulations Plus Inc., 42505 10th Street West, Lancaster, CA 93534, USA
| | | | | | - Amitava Mitra
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, Spring House, PA, USA
| | - Kimberly Raines
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - James Butler
- Biopharmaceutics, Drug Product Design & Dev, GlaxoSmithKline R&D, Ware, UK
| | - Maziar Kakhi
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Min Li
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Yang Zhao
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Eleftheria Tsakalozou
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Talia Flanagan
- Pharmaceutical Development, UCB Pharma SA, Braine l'Alleud, Belgium
| | - Jennifer Dressman
- Fraunhofer Institute of Translational Medicine and Pharmacology, Carl-von-Noorden-Platz 9, 60596 Frankfurt am Main, Germany
| | - Xavier Pepin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| |
Collapse
|
16
|
Dahlgren D, Sjögren E, Lennernäs H. Intestinal absorption of BCS class II drugs administered as nanoparticles: A review based on in vivo data from intestinal perfusion models. ADMET AND DMPK 2020; 8:375-390. [PMID: 35300192 PMCID: PMC8915587 DOI: 10.5599/admet.881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
An established pharmaceutical strategy to increase oral drug absorption of low solubility–high permeability drugs is to create nanoparticles of them. Reducing the size of the solid-state particles increases their dissolution and transport rate across the mucus barrier and the aqueous boundary layer. Suspensions of nanoparticles also sometimes behave differently than those of larger particles in the fed state. This review compares the absorption mechanisms of nano- and larger particles in the lumen at different prandial states, with an emphasis on data derived from in vivo models. Four BSC class II drugs—aprepitant, cyclosporine, danazol and fenofibrate—are discussed in detail based on information from preclinical intestinal perfusion models.
Collapse
Affiliation(s)
- David Dahlgren
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, Sweden
| | - Erik Sjögren
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, Sweden
| | - Hans Lennernäs
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, Sweden
| |
Collapse
|
17
|
Matsumura N, Ono A, Akiyama Y, Fujita T, Sugano K. Bottom-Up Physiologically Based Oral Absorption Modeling of Free Weak Base Drugs. Pharmaceutics 2020; 12:E844. [PMID: 32899235 PMCID: PMC7558956 DOI: 10.3390/pharmaceutics12090844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022] Open
Abstract
In this study, we systematically evaluated "bottom-up" physiologically based oral absorption modeling, focusing on free weak base drugs. The gastrointestinal unified theoretical framework (the GUT framework) was employed as a simple and transparent model. The oral absorption of poorly soluble free weak base drugs is affected by gastric pH. Alternation of bulk and solid surface pH by dissolving drug substances was considered in the model. Simple physicochemical properties such as pKa, the intrinsic solubility, and the bile micelle partition coefficient were used as input parameters. The fraction of a dose absorbed (Fa) in vivo was obtained by reanalyzing the pharmacokinetic data in the literature (15 drugs, a total of 85 Fa data). The AUC ratio with/without a gastric acid-reducing agent (AUCr) was collected from the literature (22 data). When gastric dissolution was neglected, Fa was underestimated (absolute average fold error (AAFE) = 1.85, average fold error (AFE) = 0.64). By considering gastric dissolution, predictability was improved (AAFE = 1.40, AFE = 1.04). AUCr was also appropriately predicted (AAFE = 1.54, AFE = 1.04). The Fa values of several drugs were slightly overestimated (less than 1.7-fold), probably due to neglecting particle growth in the small intestine. This modeling strategy will be of great importance for drug discovery and development.
Collapse
Affiliation(s)
- Naoya Matsumura
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Asami Ono
- Laboratory for Chemistry, Manufacturing, and Control, Pharmaceuticals Production & Technology Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan;
| | - Yoshiyuki Akiyama
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan;
| | - Takuya Fujita
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan;
| | - Kiyohiko Sugano
- Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan;
| |
Collapse
|