1
|
Candiani A, Milanesi A, Foglio Bonda A, Diana G, Bari E, Segale L, Torre ML, Giovannelli L. Solid Lipid Microparticles by Spray Congealing of Water/Oil Emulsion: An Effective/Versatile Loading Strategy for a Highly Soluble Drug. Pharmaceutics 2022; 14:pharmaceutics14122805. [PMID: 36559298 PMCID: PMC9785713 DOI: 10.3390/pharmaceutics14122805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Spray congealing technique was exploited to produce solid lipid microparticles (SLMp) loaded with a highly water-soluble drug (metoclopramide hydrochloride) dissolved in the aqueous phase of a water in oil (W/O) emulsion. The use of an emulsion as starting material for a spray congealing treatment is not so frequent. Moreover, for this application, a W/O emulsion with a drug dissolved in water is a totally novel path. A ternary diagram was built to optimize the emulsion composition, a factorial design was used to identify the factors affecting the properties of the microparticles and a Design of Experiment strategy was applied to define the impact of process conditions and formulation variables on the SLMp properties. SLMp were characterized by particle size distribution, morphology, residual moisture, drug content, release behavior, FT-IR analysis and XRPD. The obtained microparticles presented a spherical shape, particle size distribution between 54-98 µm depending on atomizing pressure used during the production step and 2-5% residual moisture 4 days after the preparation. XRPD analysis revealed that lipid polymorphic transition alfa-beta occurs depending on the presence of water. In vitro drug release tests highlighted that all the formulations had a reduced release rate compared to the drug alone. These results suggest that spray congealing of a W/O emulsion could be proposed as a good strategy to obtain SLMp with a high loading of a hydrophilic drug and able to control its release rate.
Collapse
Affiliation(s)
- Alessandro Candiani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Andrea Milanesi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
- APTSol S.R.L., Largo Donegani 2, 28100 Novara, Italy
| | | | - Giada Diana
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Elia Bari
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Lorena Segale
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
- APTSol S.R.L., Largo Donegani 2, 28100 Novara, Italy
- Correspondence:
| | - Maria Luisa Torre
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
- Pharmaexceed S.R.L., Piazza Castello 19, 27100 Pavia, Italy
| | - Lorella Giovannelli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
- APTSol S.R.L., Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
2
|
Ouyang H, Ang SJ, Lee ZY, Hiew TN, Heng PWS, Chan LW. Effect of drug load and lipid-wax blends on drug release and stability from spray-congealed microparticles. Pharm Dev Technol 2022; 27:1069-1082. [PMID: 36422997 DOI: 10.1080/10837450.2022.2152048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study was designed to evaluate paraffin wax as a potential controlled release matrix for spray congealing and its impact on drug release and stability of the microparticles. Paraffin wax can form a hydrophobic barrier to moisture and reduce drug degradation besides retarding drug release in the gastrointestinal tract. More hydrophilic lipid-based additives can be incorporated to modulate the drug release through the paraffin wax barrier. This study reports the findings of lipid-wax formulations at preserving the stability of moisture-sensitive drugs in spray-congealed microparticles. Aspirin-loaded microparticles formulated with different drug loads, lipid additives, and lipid:wax ratios were produced by spray congealing. Stearic acid (SA), cetyl alcohol (CA), and cetyl ester (CE) were the lipid additives studied. The microparticles were evaluated for yield, encapsulation efficiency, particle size, drug stability, and release. CE exhibited the greatest effect on increasing drug release, followed by CA and SA. Dissolution profiles showed the best fit to Weibull kinetic model. The degree of drug degradation was low, with CA imparting the least protective effect, followed by SA and CE. Paraffin wax is useful for preserving the stability of moisture-sensitive aspirin and retarding its release from spray-congealed microparticles. The addition of lipid additives modulated drug release without compromising drug stability.
Collapse
Affiliation(s)
- Hongyi Ouyang
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Soon Jun Ang
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Zong Yang Lee
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Tze Ning Hiew
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Paul Wan Sia Heng
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Lai Wah Chan
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Nishiumi H, Deiringer N, Krause N, Yoneda S, Torisu T, Menzen T, Friess W, Uchiyama S. Utility of Three Flow Imaging Microscopy Instruments for Image Analysis in Evaluating four Types of Subvisible Particle in Biopharmaceuticals. J Pharm Sci 2022; 111:3017-3028. [PMID: 35948157 DOI: 10.1016/j.xphs.2022.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022]
Abstract
Subvisible particles (SVPs) are a critical quality attribute of parenteral and ophthalmic products. United States Pharmacopeia recommends the characterizations of SVPs which are classified into intrinsic, extrinsic, and inherent particles. Flow imaging microscopy (FIM) is useful as an orthogonal method in both the quantification and classification of SVPs because FIM instruments provide particle images. In addition to the conventionally used FlowCam (Yokogawa Fluid Imaging Technologies) and Micro-Flow Imaging (Bio-Techne) instruments, the iSpect DIA-10 (Shimadzu) instrument has recently been released. The three instruments have similar detection principles but different optical settings and image processing, which may lead to different results of the quantification and classification of SVPs based on the information from particle images. The present study compares four types of SVP (protein aggregates, silicone oil droplets, and surrogates for solid free-fatty-acid particles, milled-lipid particles, and sprayed-lipid particles) to compare the results of size distributions and classification abilities obtained using morphological features and a deep-learning approach. Although the three FIM instruments were effective in classifying the four types of SVP through convolutional neural network analysis, there was no agreement on the size distribution for the same protein aggregate solution, suggesting that using the classifiers of the FIM instruments could result in different evaluations of SVPs in the field of biopharmaceuticals.
Collapse
Affiliation(s)
- Haruka Nishiumi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Natalie Deiringer
- Department of Pharmacy; Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| | - Nils Krause
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152, Martinsried, Germany
| | - Saki Yoneda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuo Torisu
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tim Menzen
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152, Martinsried, Germany
| | - Wolfgang Friess
- Department of Pharmacy; Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; U-medico Inc., 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
4
|
Sorita G, Santamaria-Echart A, Gozzo A, Gonçalves O, Leimann F, Bona E, Manrique Y, Fernandes I, Ferreira I, Barreiro M. Lipid composition optimization in spray congealing technique and testing with curcumin-loaded microparticles. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.03.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|