1
|
Ruan H, Geng X, Situ Z, Shen Q, Ye T, Chen X, Su W. From In Vivo Predictive Dissolution to Virtual Bioequivalence: A GastroPlus ®-Driven Framework for Generic Candesartan Cilexetil Tablets. Pharmaceuticals (Basel) 2025; 18:562. [PMID: 40283997 PMCID: PMC12030460 DOI: 10.3390/ph18040562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Candesartan cilexetil, a Biopharmaceutics Classification System (BCS) II prodrug, demonstrates compromised bioavailability attributable to its limited aqueous solubility coupled with P-glycoprotein (P-gp)-mediated efflux and hepatic first-pass metabolism, thereby introducing complexities in generic drug bioequivalence assessments. With the rapid advancement of computational technologies, the integration of biorelevant dissolution methodologies with physiologically based pharmacokinetic (PBPK) modeling is emerging as a transformative paradigm in advancing bioequivalence evaluation strategies for generic drug products. This study presents a GastroPlus®-driven framework integrating in vivo predictive dissolution (IPD) and virtual bioequivalence (VBE) to evaluate the quality consistency of generic candesartan cilexetil tablets. Methods: By developing an oral PBPK model in GastroPlus®, we established an IPD method using a phosphate-buffer-based flow-through cell dissolution apparatus. In vitro dissolution profiles of generic tablets from four manufacturers were measured and incorporated into the model to perform VBE simulations. Results: The results demonstrated that only the product from Company A achieved virtual bioequivalence with the reference product, aligning with real-world quality consistency assessments. Conclusions: The proposed framework exhibited robust predictive capability, bridging in vitro dissolution data to in vivo bioequivalence outcomes, thereby offering a cost-effective and efficient strategy for formulation optimization and preclinical bioequivalence evaluation of generic drugs.
Collapse
Affiliation(s)
- Hao Ruan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China;
- Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, NMPA Key Laboratory for Core Technology of Generic Drug Evaluation, Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Xiaoting Geng
- Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, NMPA Key Laboratory for Core Technology of Generic Drug Evaluation, Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Zijing Situ
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qian Shen
- Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, NMPA Key Laboratory for Core Technology of Generic Drug Evaluation, Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Tianjian Ye
- Zhejiang Yongning Pharmaceutical Co., Ltd., Taizhou 318020, China
| | - Xin Chen
- Zhejiang Yongning Pharmaceutical Co., Ltd., Taizhou 318020, China
| | - Weike Su
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China;
| |
Collapse
|
2
|
Muhamad H, Ward A, Patel K, Williamson J, Blunt L, Conway B, Østergaard J, Asare-Addo K. Investigation into the swelling and dissolution behaviour of Polymer-Excipient blends of PEO Utilising dissolution imaging. Int J Pharm 2024; 666:124850. [PMID: 39437848 DOI: 10.1016/j.ijpharm.2024.124850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
The use of dissolution imaging in analysing the behaviourof hydrophilic matrices and various types of excipients is examined in this study.The main aim was to investigate how different ratios of excipients with different solubility properties, such as lactose, microcrystalline cellulose, and dicalcium phosphate impact on the swelling properties and propranolol hydrochloride (PPN) release characteristics of polyethylene oxide matrix compacts. The surface properties of the compacts were investigated using a focus variation microscope after which dissolution studies were conducted to determine compact swelling and drug release properties. Smr2, a surface parameter representing the percentage of deeper valley structures on the surface, was used to calculate the proportion of the compact surface available for retaining lubrication (dissolution media in this case). Smr2 values of 83 and 84 were measured for the 1:1 and 1:3 PEO lactose compacts, respectively. This parameter utilised in this experiment gives an indication of the compact surface available for the initial hydration process and suggests a higher rate of hydration for the 1:1 and 1:3 PEO lactose compacts. The swelling studies revealed that a higher PEO ratio (3:1) resulted in more extensive gel layer formation as compared to the 1:3 compacts. All PEO:excipient compacts exhibited faster drug release than the compacts comprising PEO as the sole excipient. The quantity of PEO present was thus crucial in influencing the capacity of the matrix to control the release of PPN. This study underscores the potential for modifying drug release by altering the quantity of the matrix gel-former (PEO in this case) as well as the type or ratio of excipient used. The study also highlights the novelty of using UV dissolution imaging to image and quantify swelling and drug dissolution processes as well as providing qualitative observations such as channel formation which can support formulation optimisation and mechanistic understanding.
Collapse
Affiliation(s)
- Haja Muhamad
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Adam Ward
- Centre for Pharmaceutical Engineering Science, School of Pharmacy, University of Bradford, UK
| | - Krishan Patel
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - James Williamson
- EPSRC Future Metrology Hub, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Liam Blunt
- EPSRC Future Metrology Hub, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Barbara Conway
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Jesper Østergaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK.
| |
Collapse
|
3
|
Taseva AR, Persoons T, Healy AM, D'Arcy DM. Application of shadowgraph imaging (SGI) particle characterisation data to interpret the impact of varying test conditions on powder dissolution and to develop an automated agglomeration identification method (AIM) in the USP flow-through apparatus. Int J Pharm 2024; 666:124778. [PMID: 39349225 DOI: 10.1016/j.ijpharm.2024.124778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
The aims of this work were 1) to explore the application of shadowgraph imaging (SGI) as a real time monitoring tool to characterize ibuprofen particle behaviour during dissolution testing under various conditions in the USP 4 flow-through apparatus and 2) to investigate the potential to develop an SGI-based automated agglomeration identification method (AIM) for real time agglomerate detection during dissolution testing. The effect of surfactant addition, changes in the drug mass and flow rate, the use of sieved and un-sieved powder fractions, and the use of different drug crystal habits were investigated. Videos at every sampling time point during dissolution were taken and analysed by SGI. The AIM was developed to characterize agglomerates based on two criteria - size and solidity. All detections were confirmed by manual video observation and a reference agglomerate data set. The method was validated under new dissolution conditions with un-sieved particles. Characterisation of particle dispersion behaviour by SGI enabled interpretation of the impact of dissolution test conditions. Higher numbers of early detections reflected greater dissolution rates with increased surfactant concentration, using sieved fraction or plate-shaped crystals, but was impacted by drug mass tested. An AIM was successfully developed and applied to detect agglomerates during dissolution, suggesting potential, with appropriate method development, for application in quality control.
Collapse
Affiliation(s)
- Alexandra R Taseva
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland.
| | - Tim Persoons
- Department of Mechanical, Manufacturing & Biomedical Engineering, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland.
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland.
| | - Deirdre M D'Arcy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland.
| |
Collapse
|
4
|
Getahun H, Belew S, Hasen G, Tefera G, Mekasha YT, Suleman S. Quality evaluation of selected expired fluoroquinolones medicines obtained from the public hospitals in Jimma zone, Oromia regional state, Ethiopia. Front Med (Lausanne) 2024; 11:1420146. [PMID: 39170041 PMCID: PMC11335507 DOI: 10.3389/fmed.2024.1420146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Background The problem of medicine expiration presents a notable obstacle, resulting in considerable financial losses. Nevertheless, there is currently limited data indicating that certain medications do not experience a significant decrease in effectiveness after their expiration date. Therefore, the aim of the study was to assess the physico-chemical quality of expired fluoroquinolone antibiotics. Methods The expired samples of fluoroquinolone antibiotics were purposively collected from public hospitals in the Jimma zone of the Oromia regional state, Ethiopia. A World Health Organization quality evaluation sampling strategy was employed. Then, simple random sampling techniques were utilized for the selection of tablets for the laboratory quality control test. The assay, identification, and dissolution were performed in accordance with the United States Pharmacopeia (USP) guidelines, as well as failure mode and effect analysis (FMEA) techniques. Results The finding revealed that about 100% (7/7) expired samples passed pharmacopeia quality specifications for identity and assay tests. However, of the seven expired brands, about 14.3% (1/7) of the sample (Code-002) was unable to release its API content within the USP criteria of 30 min. The risk-based quality evaluation revealed that assay was the most critical quality attributed to ciprofloxacin tablets (RPN = 189), followed by identity (RPN = 100). Assay was also the most critical quality attribute (RPN = 378), followed by identity (RPN = 100) for Norfloxacin tablets. The risk-based desirability function approach showed that 75% (3/4) of ciprofloxacin products were of good quality, and 25% (1) were found to be of acceptable quality, while the desirability function of norfloxacin tablets was found to be excellent 1 (33.3%), good 1 (33.3%), and acceptable 1 (33.3%). Conclusion The study revealed that medications can maintain their quality beyond their labeled expiration date. By combining pharmacopeial standards with risk-based approaches like failure mode and effect analysis (FMEA), the study provides a comprehensive evaluation framework. This approach not only confirms the continued effectiveness of expired fluoroquinolone antibiotics but also underscores the potential waste reduction and cost-saving benefits. This could significantly contribute to addressing healthcare challenges in low-resource settings, promoting more efficient pharmaceutical resource utilization.
Collapse
Affiliation(s)
- Habtamu Getahun
- Pharmaceutical Quality Assurance and Regulatory Affairs, Oromia Regional Health Bureau, Addis Ababa, Oromia, Ethiopia
| | - Sileshi Belew
- School of Pharmacy, Institute of Health Science, Jimma University, Jimma, Oromia, Ethiopia
| | - Gemmechu Hasen
- School of Pharmacy, Institute of Health Science, Jimma University, Jimma, Oromia, Ethiopia
| | - Guta Tefera
- School of Pharmacy, Pharmaceutical Quality Assurance and Regulatory Affairs, Wolkite University, Wolkite, Ethiopia
| | - Yesuneh Tefera Mekasha
- Pharmaceutical Science, Pharmaceutical Quality Assurance and Regulatory Affairs, University of Gondar, Gondar, Ethiopia
| | - Sultan Suleman
- School of Pharmacy, Institute of Health Science, Jimma University, Jimma, Oromia, Ethiopia
| |
Collapse
|
5
|
Zhang K, Qian S, Liu Z, Liu H, Lin Z, Heng W, Gao Y, Zhang J, Wei Y. Specific surface area of mannitol rather than particle size dominant the dissolution rate of poorly water-soluble drug tablets: A study of binary mixture. Int J Pharm 2024; 660:124280. [PMID: 38802025 DOI: 10.1016/j.ijpharm.2024.124280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
The dissolution behavior of tablets, particularly those containing poorly water-soluble drugs, is a critical factor in determining their absorption and therapeutic efficacy. Traditionally, the particle size of excipients has been considered a key property affecting tablet dissolution. However, lurasidone hydrochloride (LH) tablets prepared by similar particle size mannitol, namely M200 (D90 = 209.68 ± 1.42 μm) and 160C (D90 = 195.38 ± 6.87 μm), exhibiting significant differences in their dissolution behavior. In order to find the fundamental influential factors of mannitol influencing the dissolution of LH tablets, the properties (particle size, water content, true density, bulk density, tapped density, specific surface area, circularity, surface free energy, mechanical properties and flowability) of five grades mannitol including M200 and 160C were investigated. Principal component analysis (PCA) was used to establish a relationship between mannitol properties and the dissolution behavior of LH. The results demonstrated that specific surface area (SSA) emerged as the key property influencing the dissolution of LH tablets. Moreover, our investigation based on the percolation theory provided further insights that the SSA of mannitol influences the probability of LH-LH bonding and LH infinite cluster formation, resulting in the different percolation threshold states, then led to different dissolution behaviors. Importantly, it is worth noting that these findings do not invalidate previous conclusions, as reducing particle size generally increases SSA, thereby affecting the percolation threshold and dissolution behavior of LH. Instead, this study provides a deeper understanding of the underlying role played by excipient SSA in the dissolution of drug tablets. This study provides valuable guidance for the development of novel excipients aimed at improving drug dissolution functionality.
Collapse
Affiliation(s)
- Ke Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhenjing Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Huina Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zezhi Lin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
6
|
Pawar G, Wu F, Zhao L, Fang L, Burckart GJ, Feng K, Mousa YM, Al Shoyaib A, Jones MC, Batchelor HK. Integration of Biorelevant Pediatric Dissolution Methodology into PBPK Modeling to Predict In Vivo Performance and Bioequivalence of Generic Drugs in Pediatric Populations: a Carbamazepine Case Study. AAPS J 2023; 25:67. [PMID: 37386339 DOI: 10.1208/s12248-023-00826-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
This study investigated the impact of gastro-intestinal fluid volume and bile salt (BS) concentration on the dissolution of carbamazepine (CBZ) immediate release (IR) 100 mg tablets and to integrate these in vitro biorelevant dissolution profiles into physiologically based pharmacokinetic modelling (PBPK) in pediatric and adult populations to determine the biopredictive dissolution profile. Dissolution profiles of CBZ IR tablets (100 mg) were generated in 50-900 mL biorelevant adult fasted state simulated gastric and intestinal fluid (Ad-FaSSGF and Ad-FaSSIF), also in three alternative compositions of biorelevant pediatric FaSSGF and FaSSIF medias at 200 mL. This study found that CBZ dissolution was poorly sensitive to changes in the composition of the biorelevant media, where dissimilar dissolution (F2 = 46.2) was only observed when the BS concentration was changed from 3000 to 89 μM (Ad-FaSSIF vs Ped-FaSSIF 50% 14 BS). PBPK modeling demonstrated the most predictive dissolution volume and media composition to forecast the PK was 500 mL of Ad-FaSSGF/Ad-FaSSIF media for adults and 200 mL Ped-FaSSGF/FaSSIF media for pediatrics. A virtual bioequivalence simulation was conducted by using Ad-FaSSGF and/or Ad-FaSSIF 500 mL or Ped-FaSSGF and/or Ped-FaSSIF 200 mL dissolution data for CBZ 100 mg (reference and generic test) IR product. The CBZ PBPK models showed bioequivalence of the product. This study demonstrates that the integration of biorelevant dissolution data can predict the PK profile of a poorly soluble drug in both populations. Further work using more pediatric drug products is needed to verify biorelevant dissolution data to predict the in vivo performance in pediatrics.
Collapse
Affiliation(s)
- Gopal Pawar
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Fang Wu
- Division of Quantitative Methods and Modelling, Office of Research and Standard, Office of Generic Drug Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, 20993, USA.
| | - Liang Zhao
- Division of Quantitative Methods and Modelling, Office of Research and Standard, Office of Generic Drug Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Lanyan Fang
- Division of Quantitative Methods and Modelling, Office of Research and Standard, Office of Generic Drug Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Gilbert J Burckart
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Kairui Feng
- Division of Quantitative Methods and Modelling, Office of Research and Standard, Office of Generic Drug Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Youssef M Mousa
- Division of Quantitative Methods and Modelling, Office of Research and Standard, Office of Generic Drug Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Abdullah Al Shoyaib
- Division of Quantitative Methods and Modelling, Office of Research and Standard, Office of Generic Drug Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Marie-Christine Jones
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hannah K Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| |
Collapse
|
7
|
van Haaren C, De Bock M, Kazarian SG. Advances in ATR-FTIR Spectroscopic Imaging for the Analysis of Tablet Dissolution and Drug Release. Molecules 2023; 28:4705. [PMID: 37375260 DOI: 10.3390/molecules28124705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
One of the major challenges in the development of effective pharmaceutical formulations for oral administration is the poor solubility of active pharmaceutical ingredients. For this reason, the dissolution process and drug release from solid oral dosage forms, such as tablets, is usually thoroughly studied in order to understand the dissolution behaviour under various conditions and optimize the formulation accordingly. Standard dissolution tests used in the pharmaceutical industry provide information on the amount of drug released over time; however, these do not allow for a detailed analysis of the underlying chemical and physical mechanisms of tablet dissolution. FTIR spectroscopic imaging, by contrast, does offer the ability to study these processes with high spatial and chemical specificity. As such, the method allows us to see the chemical and physical processes which occur inside the tablet as it dissolves. In this review, the power of ATR-FTIR spectroscopic imaging is demonstrated by presenting a number of successful applications of this chemical imaging technique to dissolution and drug release studies for a range of different pharmaceutical formulations and study conditions. Understanding these processes is essential for the development of effective oral dosage forms and optimization of pharmaceutical formulations.
Collapse
Affiliation(s)
- Céline van Haaren
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Marieke De Bock
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Sergei G Kazarian
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
8
|
Vandevivere L, Denduyver P, Portier C, Häusler O, De Beer T, Vervaet C, Vanhoorne V. The Effect of Binder Types on the Breakage and Drying Behavior of Granules in a Semi-Continuous Fluid Bed Dryer after Twin Screw Wet Granulation. Int J Pharm 2022; 614:121449. [PMID: 34999149 DOI: 10.1016/j.ijpharm.2022.121449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/19/2021] [Accepted: 01/01/2022] [Indexed: 11/30/2022]
Abstract
Current study investigated the effect of different binder types on the granule drying process and the granule breakage behavior in a semi-continuous fluid bed dryer integrated in the C25 ConsiGma-system. The studied binders (i.e. hydroxypropyl pea starch, hydroxypropyl methylcellulose E15, polyvinylpyrrolidone K12, and starch octenyl succinate CO 01) required different liquid amounts to produce similar granule quality. These different liquid requirements were translated into different drying conditions for each binder to result in sufficiently dry granules at the end of a drying cycle. By comparing the size distribution of the granules before entering and after exiting the fluid bed dryer, granule breakage could be evaluated. No effect of the binder type on the granule breakage during drying was observed. However, differences in granule breakage were observed for the binders when processed with the horizontal set-up of the C25 system, as granule breakage during pneumatic transport depended on the binder type. Only one binder (hydroxypropyl pea starch) allowed to avoid granule breakage during the entire process. Furthermore, this research showed that the drying process was mainly steered by the liquid requirements for granulation, and that these liquid requirements depended on the binder used.
Collapse
Affiliation(s)
- L Vandevivere
- Ghent University, Laboratory of Pharmaceutical Technology, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - P Denduyver
- Ghent University, Laboratory of Pharmaceutical Technology, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - C Portier
- Ghent University, Laboratory of Pharmaceutical Technology, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - O Häusler
- Roquette Frères, Rue de la Haute Loge, 62136 Lestrem, France
| | - T De Beer
- Ghent University, Laboratory of Pharmaceutical Process Analytical Technology, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - C Vervaet
- Ghent University, Laboratory of Pharmaceutical Technology, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - V Vanhoorne
- Ghent University, Laboratory of Pharmaceutical Technology, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
9
|
Brown B, Ward A, Fazili Z, Østergaard J, Asare-Addo K. Application of UV dissolution imaging to pharmaceutical systems. Adv Drug Deliv Rev 2021; 177:113949. [PMID: 34461199 DOI: 10.1016/j.addr.2021.113949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
UV-vis spectrometry is widely used in the pharmaceutical sciences for compound quantification, alone or in conjunction with separation techniques, due to most drug entities possessing a chromophore absorbing light in the range 190-800 nm. UV dissolution imaging, the scope of this review, generates spatially and temporally resolved absorbance maps by exploiting the UV absorbance of the analyte. This review aims to give an introduction to UV dissolution imaging and its use in the determination of intrinsic dissolution rates and drug release from whole dosage forms. Applications of UV imaging to non-oral formulations have started to emerge and are reviewed together with the possibility of utilizing UV imaging for physical chemical characterisation of drug substances. The benefits of imaging drug diffusion and transport processes are also discussed.
Collapse
|
10
|
Berardi A, Bisharat L, Quodbach J, Abdel Rahim S, Perinelli DR, Cespi M. Advancing the understanding of the tablet disintegration phenomenon - An update on recent studies. Int J Pharm 2021; 598:120390. [PMID: 33607196 DOI: 10.1016/j.ijpharm.2021.120390] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Disintegration is the de-aggregation of particles within tablets upon exposure to aqueous fluids. Being an essential step in the bioavailability cascade, disintegration is a fundamental quality attribute of immediate release tablets. Although the disintegration phenomenon has been studied for over six decades, some gaps of knowledge and research questions still exist. Three reviews, published in 2015, 2016 and 2017, have discussed the literature relative to tablet disintegration and summarised the understanding of this topic. Yet, since then more studies have been published, adding to the established body of knowledge. This article guides a step forward towards the comprehension of disintegration by reviewing, concisely, the most recent scientific updates on this topic. Initially, we revisit the mechanisms of disintegration with relation to the three most used superdisintegrants, namely sodium starch glycolate, croscarmellose sodium and crospovidone. Then, the influence of formulation, storage, manufacturing and media conditions on disintegration is analysed. This is followed by an excursus on novel disintegrants. Finally, we highlight unanswered research questions and envision future research venues in the field.
Collapse
Affiliation(s)
- Alberto Berardi
- Department of Pharmaceutical Sciences and Pharmaceutics Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan.
| | - Lorina Bisharat
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Julian Quodbach
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Germany
| | - Safwan Abdel Rahim
- Department of Pharmaceutical Sciences and Pharmaceutics Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Diego R Perinelli
- School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy
| | - Marco Cespi
- School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy
| |
Collapse
|
11
|
Vandevivere L, Vangampelaere M, Portier C, de Backere C, Häusler O, De Beer T, Vervaet C, Vanhoorne V. Identifying Critical Binder Attributes to Facilitate Binder Selection for Efficient Formulation Development in a Continuous Twin Screw Wet Granulation Process. Pharmaceutics 2021; 13:210. [PMID: 33546383 PMCID: PMC7913514 DOI: 10.3390/pharmaceutics13020210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
The suitability of pharmaceutical binders for continuous twin-screw wet granulation was investigated as the pharmaceutical industry is undergoing a switch from batch to continuous manufacturing. Binder selection for twin-screw wet granulation should rely on a scientific approach to enable efficient formulation development. Therefore, the current study identified binder attributes affecting the binder effectiveness in a wet granulation process of a highly soluble model excipient (mannitol). For this formulation, higher binder effectiveness was linked to fast activation of the binder properties (i.e., fast binder dissolution kinetics combined with low viscosity attributes and good wetting properties by the binder). As the impact of binder attributes on the granulation process of a poorly soluble formulation (dicalcium phosphate) was previously investigated, this enabled a comprehensive comparison between both formulations in current research focusing on binder selection. This comparison revealed that binder attributes that are important to guide binder selection differ in function of the solubility of the formulation. The identification of critical binder attributes in the current study enables rational and efficient binder selection for twin-screw granulation of well soluble and poorly soluble formulations. Binder addition proved especially valuable for a poorly soluble formulation.
Collapse
Affiliation(s)
- Lise Vandevivere
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (L.V.); (M.V.); (C.P.); (C.d.B.); (C.V.)
| | - Maxine Vangampelaere
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (L.V.); (M.V.); (C.P.); (C.d.B.); (C.V.)
| | - Christoph Portier
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (L.V.); (M.V.); (C.P.); (C.d.B.); (C.V.)
| | - Cedrine de Backere
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (L.V.); (M.V.); (C.P.); (C.d.B.); (C.V.)
| | - Olaf Häusler
- Roquette Frères, Rue de la Haute Loge, 62136 Lestrem, France;
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium;
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (L.V.); (M.V.); (C.P.); (C.d.B.); (C.V.)
| | - Valérie Vanhoorne
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (L.V.); (M.V.); (C.P.); (C.d.B.); (C.V.)
| |
Collapse
|
12
|
Li Z, Sun Y, Bar-Shalom D, Mu H, Larsen SW, Jensen H, Østergaard J. Towards functional characterization of excipients for oral solid dosage forms using UV-vis imaging. Liberation, release and dissolution. J Pharm Biomed Anal 2020; 194:113789. [PMID: 33298380 DOI: 10.1016/j.jpba.2020.113789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022]
Abstract
The purpose of this study was to investigate whole-dosage form UV-vis imaging as a potential tool for functional characterization of excipients used in solid oral dosage forms. To this end, tablets (average mass 260.0 mg, 224.5 mg and 222.1 mg) containing theophylline anhydrate (20 % w/w), 1% (w/w) magnesium stearate, and 79 % (w/w) of either microcrystalline cellulose (MCC, Avicel PH 101) or hydroxypropyl methylcellulose (HPMC, Methocel K15 M or K100 M) were prepared as model systems. Drug liberation from tablets was studied in 0.01 M HCl at 37 °C using a Sirius SDi2 equipped with a USP IV type flow cell comprising a UV-vis imaging detector operating at 255 nm and 520 nm. The effluent from the flow cell was passed through a downstream spectrophotometer, and UV-vis spectra in the wavelength range 200-800 nm were recorded every 2 min. The erosion and swelling behavior of the MCC tablets and HPMC K15 M and K100 M tablets were visualized in real time. The swelling of HPMC K15 M and K100 M containing tablets was assessed quantitatively as changes in tablet diameter measured at 520 nm, and was clearly distinguished from the swelling of the MCC tablets. Namely, an increment of 2.5 mm in diameter was determined for the HPMC tablets while the MCC tablets increased by 0.5-1 mm in diameter. Gel layers of variable thickness were observed only for the HPMC K15 M and K100 M tablets. In addition, a relatively high initial liberation rate of theophylline was found for the MCC tablets as compared to the HPMC tablets. UV-vis imaging revealed features of liberation not revealed by simply measuring drug concentration in the dissolution media or by visual assessment. It may be sufficiently sensitive to be further developed for functional characterization of excipients and provide insights into drug-excipient interactions likely to be useful in formulation development.
Collapse
Affiliation(s)
- Zhuoxuan Li
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| | - Yu Sun
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| | - Daniel Bar-Shalom
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark; Bioneer: Farma, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| | - Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| | - Susan Weng Larsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| | - Henrik Jensen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| | - Jesper Østergaard
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| |
Collapse
|