1
|
Wu H, Li Y, Shi L, Liu Y, Shen J. New Advances in Periodontal Functional Materials Based on Antibacterial, Anti-Inflammatory, and Tissue Regeneration Strategies. Adv Healthc Mater 2025; 14:e2403206. [PMID: 39895157 DOI: 10.1002/adhm.202403206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/17/2025] [Indexed: 02/04/2025]
Abstract
With the global population aging, awareness of oral health is rising. Periodontitis, a widespread bacterial infectious disease, is gaining attention. Current novel biomaterials address key clinical issues like bacterial infection, gum inflammation, tooth loosening, and loss, focusing on antibacterial, anti-inflammatory, and tissue regeneration properties. However, strategies that integrate the advantages of these biomaterials to achieve synergistic therapeutic effects by clearing oral biofilms, inhibiting inflammation activation, and restoring periodontal soft and hard tissue functions remain very limited. Recent studies highlight the link between periodontitis and systemic diseases, underscoring the complexity of the periodontal disease. There is an urgent need to find comprehensive treatment plans that address clinical requirements. Whether by integrating new biomaterials to enhance existing periodontal treatments or by developing novel approaches to replace traditional therapies, these efforts will drive advancements in periodontitis treatment. Therefore, this review compares novel biomaterials with traditional treatments. It highlights the design concepts and mechanisms of these functional materials, focusing on their antibacterial, anti-inflammatory, and tissue regeneration properties, and discusses the importance of developing comprehensive treatment strategies. This review aims to provide guidance for emerging periodontitis research and to promote the development of precise and efficient treatment strategies.
Collapse
Affiliation(s)
- Haoyue Wu
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yuanfeng Li
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Jing Shen
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| |
Collapse
|
2
|
Akhtar F, Misba L, Khan AU. The dual role of photodynamic therapy to treat cancer and microbial infection. Drug Discov Today 2024; 29:104099. [PMID: 39002771 DOI: 10.1016/j.drudis.2024.104099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Photodynamic therapy (PDT) is a minimally invasive treatment showing promise against cancer and microbial infections. PDT targets tumor cells while sparing healthy tissue, reducing side effects. It induces immunogenic cell death, potentially stimulating antitumor immune responses and reducing cancer recurrence. In microbial treatment, PDT effectively combats bacteria, fungi and viruses. Combining PDT with chemotherapy, radiotherapy and immunotherapy enhances its efficacy. However, challenges such as tumor hypoxia, limited tissue penetration and phototoxicity necessitate ongoing research efforts to optimize PDT protocols and overcome limitations. Overall, PDT is versatile and continually advancing with refined protocols to improve its clinical utility against cancer and microbial infections.
Collapse
Affiliation(s)
- Farheen Akhtar
- Antimicrobial Resistance Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Lama Misba
- Antimicrobial Resistance Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Asad U Khan
- Antimicrobial Resistance Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
3
|
Wu S, Lai Y, Zheng X, Yang Y. Facile fabrication of linezolid/strontium coated hydroxyapatite/graphene oxide nanocomposite for osteoporotic bone defect. Heliyon 2024; 10:e31638. [PMID: 38947479 PMCID: PMC11214387 DOI: 10.1016/j.heliyon.2024.e31638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Hydroxyapatite (HAp) coatings currently have limited therapeutic applications because they lack anti-infection, osteoinductivity, and poor mechanical characteristics. On the titanium substrate, electrochemical deposition (ECD) was used to construct the strontium (Sr)-featuring hydroxyapatite (HAp)/graphene oxides (GO)/linezolid (LZ) nanomaterial coated with antibacterial and drug delivery properties. The newly fabricated nanomaterials were confirmed by X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analysis and morphological features were examined by scanning electron microscope (SEM) analysis. The results reveal multiple nucleation sites for SrHAp/GO/LZ composite coatings due to oxygen-comprising moieties on the 2D surface of GO. It was shown to be favorable for osteoblast proliferation and differentiation. The elastic modulus and hardness of LZ nanocomposite with SrHAp/GO/LZ coatings were increased by 67 % and 121 %, respectively. An initial 5 h burst of LZ release from the SrHAp/GO/LZ coating was followed by 14 h of gradual release, owing to LZ's physical and chemical adsorption. The SrHAp/GO/LZ coating effectively inhibited both S. epidermidis and S. aureus, and the inhibition lasted for three days, as demonstrated by the inhibition zone and colony count assays. When MG-63 cells are coated with SrHAp/GO/LZ composite coating, their adhesion, proliferation, and differentiation greatly improve when coated with pure titanium. A novel surface engineering nanomaterial for treating and preventing osteoporotic bone defects, SrHAp/GO/LZ, was shown to have high mechanical characteristics, superior antibacterial abilities, and osteoinductivity.
Collapse
Affiliation(s)
- Shuhui Wu
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian, 463003, China
- Medical College, Huanghuai University, Zhumadian, 463003, China
| | - Yunxiao Lai
- Medical College, Huanghuai University, Zhumadian, 463003, China
| | - Xian Zheng
- Department of Obstetrics, Wenling First People's Hospital, Wenling, 317500, China
| | - Yang Yang
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian, 463003, China
- Medical College, Huanghuai University, Zhumadian, 463003, China
| |
Collapse
|
4
|
Yu Q, Wang C, Zhang X, Chen H, Wu MX, Lu M. Photochemical Strategies toward Precision Targeting against Multidrug-Resistant Bacterial Infections. ACS NANO 2024; 18:14085-14122. [PMID: 38775446 DOI: 10.1021/acsnano.3c12714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Infectious diseases pose a serious threat and a substantial economic burden on global human and public health security, especially with the frequent emergence of multidrug-resistant (MDR) bacteria in clinical settings. In response to this urgent need, various photobased anti-infectious therapies have been reported lately. This Review explores and discusses several photochemical targeted antibacterial therapeutic strategies for addressing bacterial infections regardless of their antibiotic susceptibility. In contrast to conventional photobased therapies, these approaches facilitate precise targeting of pathogenic bacteria and/or infectious microenvironments, effectively minimizing toxicity to mammalian cells and surrounding healthy tissues. The highlighted therapies include photodynamic therapy, photocatalytic therapy, photothermal therapy, endogenous pigments-based photobleaching therapy, and polyphenols-based photo-oxidation therapy. This comprehensive exploration aims to offer updated information to facilitate the development of effective, convenient, safe, and alternative strategies to counter the growing threat of MDR bacteria in the future.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chenxi Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Haoyi Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, Massachusetts 02114, United States
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
5
|
Allamyradov Y, Yosef JB, Kylychbekov S, Majidov I, Khuzhakulov Z, Er AY, Kitchens C, Banga S, Er AO. The role of efflux pump inhibitor in enhancing antimicrobial efficiency of Ag NPs and MB as an effective photodynamic therapy agent. Photodiagnosis Photodyn Ther 2024; 47:104212. [PMID: 38740317 DOI: 10.1016/j.pdpdt.2024.104212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/19/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Efflux pumps are active transporters, which allow the cell to remove toxic substances from within the cell including antibiotics and photosensitizer complexes. Efflux pump inhibitors (EPIs), chemicals that prevent the passage of molecules through efflux pumps, play a crucial role in antimicrobial effectiveness against pathogen. In this work, we studied the effect of EPI, namely, reserpine, on photodeactivation rate of pathogens when used with Ag NPs and methylene blue (MB). Our results show that using reserpine led to a higher deactivation rate than Ag NPs and MB alone. The mechanism of this observation was investigated with singlet oxygen generation amount. Additionally, different sizes of Ag NPs were tested with reserpine. Molecular docking calculation shows that reserpine had higher affinity toward AcrB than MB. The improvement in bacterial deactivation rate is attributed to blockage of the AcrAB-TolC efflux pump preventing the removal of MB rather than enhanced singlet oxygen production. These results suggest that using reserpine with nanoparticles and photosynthesize is a promising approach in photodynamic therapy.
Collapse
Affiliation(s)
- Yaran Allamyradov
- Department of Physics & Astronomy, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Justice Ben Yosef
- Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Salizhan Kylychbekov
- Department of Physics & Astronomy, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Inomjon Majidov
- Department of Physics & Astronomy, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Zikrulloh Khuzhakulov
- Department of Physics & Astronomy, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Alper Yusuf Er
- Gatton Academy of Mathematics and Science, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Chazz Kitchens
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Simran Banga
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Ali Oguz Er
- Department of Physics & Astronomy, Western Kentucky University, Bowling Green, KY 42101, USA.
| |
Collapse
|
6
|
Metal nanoparticles against multi-drug-resistance bacteria. J Inorg Biochem 2022; 237:111938. [PMID: 36122430 DOI: 10.1016/j.jinorgbio.2022.111938] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 01/18/2023]
Abstract
Antimicrobial-resistant (AMR) bacterial infections remain a significant public health concern. The situation is exacerbated by the rapid development of bacterial resistance to currently available antimicrobials. Metal nanoparticles represent a new perspective in treating AMR due to their unique mechanisms, such as disrupting bacterial cell membrane potential and integrity, biofilm inhibition, reactive oxygen species (ROS) formation, enhancing host immune responses, and inhibiting RNA and protein synthesis by inducing intracellular processes. Metal nanoparticles (MNPs) properties such as size, shape, surface functionalization, surface charges, and co-encapsulated drug delivery capability all play a role in determining their potential against multidrug-resistant bacterial infections. Silver, gold, zinc oxide, selenium, copper, cobalt, and iron oxide nanoparticles have recently been studied extensively against multidrug-resistant bacterial infections. This review aims to provide insight into the size, shape, surface properties, and co-encapsulation of various MNPs in managing multidrug-resistant bacterial infections.
Collapse
|
7
|
Sequence-Specific Gene Silencing of acrA in the Multi-drug Efflux System AcrAB Induces Sensitivity in Drug-Resistant Klebsiella pneumoniae. Mol Biotechnol 2022; 65:953-960. [DOI: 10.1007/s12033-022-00585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022]
|
8
|
Weldick PJ, Wang A, Halbus AF, Paunov VN. Emerging nanotechnologies for targeting antimicrobial resistance. NANOSCALE 2022; 14:4018-4041. [PMID: 35234774 DOI: 10.1039/d1nr08157h] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Antimicrobial resistance is a leading cause of mortality worldwide. Without newly approved antibiotics and antifungals being brought to the market, resistance is being developed to the ones currently available to clinicians. The reason is the applied evolutionary pressure to bacterial and fungal species due to the wide overuse of common antibiotics and antifungals in clinical practice and agriculture. Biofilms harbour antimicrobial-resistant subpopulations, which make their antimicrobial treatment even more challenging. Nanoparticle-based technologies have recently been shown to successfully overcome antimicrobial resistance in both planktonic and biofilms phenotypes. This results from the combination of novel nanomaterial research and classic antimicrobial therapies which promise to deliver a whole new generation of high-performance active nanocarrier systems. This review discusses the latest developments of promising nanotechnologies with applications against resistant pathogens and evaluates their potential and feasibility for use in novel antimicrobial therapies.
Collapse
Affiliation(s)
- Paul J Weldick
- Department of Chemistry and Biochemistry, University of Hull, Hull, HU6 7RX, UK
| | - Anheng Wang
- Department of Chemistry and Biochemistry, University of Hull, Hull, HU6 7RX, UK
| | - Ahmed F Halbus
- Department of Chemistry, College of Science, University of Babylon, Hilla, Iraq
| | - Vesselin N Paunov
- Department of Chemistry, Nazarbayev University, Kabanbay Baryr Ave. 53, Nur-sultan city, 010000, Kazakhstan.
| |
Collapse
|
9
|
Zhao X, Wei X, Chen LJ, Yan XP. Bacterial microenvironment-responsive dual-channel smart imaging guided on-demand self-regulated photodynamic/chemodynamic synergistic sterilization and wound healing. Biomater Sci 2022; 10:2907-2916. [DOI: 10.1039/d2bm00374k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial infections pose a serious threat to public health. The integration of photodynamic therapy (PDT) and chemodynamic therapy (CDT) has emerged as a promising means to combat bacterial infection. However,...
Collapse
|
10
|
Youf R, Müller M, Balasini A, Thétiot F, Müller M, Hascoët A, Jonas U, Schönherr H, Lemercier G, Montier T, Le Gall T. Antimicrobial Photodynamic Therapy: Latest Developments with a Focus on Combinatory Strategies. Pharmaceutics 2021; 13:1995. [PMID: 34959277 PMCID: PMC8705969 DOI: 10.3390/pharmaceutics13121995] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) has become a fundamental tool in modern therapeutics, notably due to the expanding versatility of photosensitizers (PSs) and the numerous possibilities to combine aPDT with other antimicrobial treatments to combat localized infections. After revisiting the basic principles of aPDT, this review first highlights the current state of the art of curative or preventive aPDT applications with relevant clinical trials. In addition, the most recent developments in photochemistry and photophysics as well as advanced carrier systems in the context of aPDT are provided, with a focus on the latest generations of efficient and versatile PSs and the progress towards hybrid-multicomponent systems. In particular, deeper insight into combinatory aPDT approaches is afforded, involving non-radiative or other light-based modalities. Selected aPDT perspectives are outlined, pointing out new strategies to target and treat microorganisms. Finally, the review works out the evolution of the conceptually simple PDT methodology towards a much more sophisticated, integrated, and innovative technology as an important element of potent antimicrobial strategies.
Collapse
Affiliation(s)
- Raphaëlle Youf
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Max Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Ali Balasini
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Franck Thétiot
- Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 6521, Université de Brest (UBO), CS 93837, 29238 Brest, France
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Alizé Hascoët
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Gilles Lemercier
- Coordination Chemistry Team, Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7312, Institut de Chimie Moléculaire de Reims (ICMR), Université de Reims Champagne-Ardenne, BP 1039, CEDEX 2, 51687 Reims, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
- CHRU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200 Brest, France
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| |
Collapse
|
11
|
Kaur K, Reddy S, Barathe P, Shriram V, Anand U, Proćków J, Kumar V. Combating Drug-Resistant Bacteria Using Photothermally Active Nanomaterials: A Perspective Review. Front Microbiol 2021; 12:747019. [PMID: 34867863 PMCID: PMC8633304 DOI: 10.3389/fmicb.2021.747019] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/15/2021] [Indexed: 01/15/2023] Open
Abstract
Injudicious use of antibiotics has been the main driver of severe bacterial non-susceptibility to commonly available antibiotics (known as drug resistance or antimicrobial resistance), a global threat to human health and healthcare. There is an increase in the incidence and levels of resistance to antibacterial drugs not only in nosocomial settings but also in community ones. The drying pipeline of new and effective antibiotics has further worsened the situation and is leading to a potentially "post-antibiotic era." This requires novel and effective therapies and therapeutic agents for combating drug-resistant pathogenic microbes. Nanomaterials are emerging as potent antimicrobial agents with both bactericidal and potentiating effects reported against drug-resistant microbes. Among them, the photothermally active nanomaterials (PANs) are gaining attention for their broad-spectrum antibacterial potencies driven mainly by the photothermal effect, which is characterized by the conversion of absorbed photon energy into heat energy by the PANs. The current review capitalizes on the importance of using PANs as an effective approach for overcoming bacterial resistance to drugs. Various PANs leveraging broad-spectrum therapeutic antibacterial (both bactericidal and synergistic) potentials against drug-resistant pathogens have been discussed. The review also provides deeper mechanistic insights into the mechanisms of the action of PANs against a variety of drug-resistant pathogens with a critical evaluation of efflux pumps, cell membrane permeability, biofilm, and quorum sensing inhibition. We also discuss the use of PANs as drug carriers. This review also discusses possible cytotoxicities related to the therapeutic use of PANs and effective strategies to overcome this. Recent developments, success stories, challenges, and prospects are also presented.
Collapse
Affiliation(s)
- Kawaljeet Kaur
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Ganeshkhind, Savitribai Phule Pune University, Pune, India
| | - Sagar Reddy
- Department of Botany, Prof. Ramkrishna More College, Savitribai Phule Pune University, Pune, India
| | - Pramod Barathe
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Ganeshkhind, Savitribai Phule Pune University, Pune, India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More College, Savitribai Phule Pune University, Pune, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Ganeshkhind, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
12
|
Aroso RT, Schaberle FA, Arnaut LG, Pereira MM. Photodynamic disinfection and its role in controlling infectious diseases. Photochem Photobiol Sci 2021; 20:1497-1545. [PMID: 34705261 PMCID: PMC8548867 DOI: 10.1007/s43630-021-00102-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Photodynamic therapy is witnessing a revival of its origins as a response to the rise of multi-drug resistant infections and the shortage of new classes of antibiotics. Photodynamic disinfection (PDDI) of microorganisms is making progresses in preclinical models and in clinical cases, and the perception of its role in the clinical armamentarium for the management of infectious diseases is changing. We review the positioning of PDDI from the perspective of its ability to respond to clinical needs. Emphasis is placed on the pipeline of photosensitizers that proved effective to inactivate biofilms, showed efficacy in animal models of infectious diseases or reached clinical trials. Novel opportunities resulting from the COVID-19 pandemic are briefly discussed. The molecular features of promising photosensitizers are emphasized and contrasted with those of photosensitizers used in the treatment of solid tumors. The development of photosensitizers has been accompanied by the fabrication of a variety of affordable and customizable light sources. We critically discuss the combination between photosensitizer and light source properties that may leverage PDDI and expand its applications to wider markets. The success of PDDI in the management of infectious diseases will ultimately depend on the efficacy of photosensitizers, affordability of the light sources, simplicity of the procedures, and availability of fast and efficient treatments.
Collapse
Affiliation(s)
- Rafael T Aroso
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Fábio A Schaberle
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Luís G Arnaut
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal.
| | - Mariette M Pereira
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
13
|
Akhtar F, Khan AU. Antimicrobial photodynamic therapy (aPDT) against vancomycin resistant Staphylococcus aureus (VRSA) biofilm disruption: A putative role of phagocytosis in infection control. Photodiagnosis Photodyn Ther 2021; 36:102552. [PMID: 34597830 DOI: 10.1016/j.pdpdt.2021.102552] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Biofilm mediated infections have major clinical impact. Staphylococcus aureus is a pathogen that frequently causes biofilm forming infections, such as those associated with medical devices and persistent wounds. Microorganisms embedded in biofilm are impervious to antibiotics and other antimicrobial agents, thus they are difficult to eliminate. The upsurge of multi-drug resistant strains makes treating such illnesses even more difficult. Therefore, new strategies are required to combat such type of infections. In this work, we have proposed an alternative therapeutic option to eradicate preformed biofilm of vancomycin resistant Staphylococcus aureus (VRSA) and enhanced phagocytosis by neutrophils in fresh human blood using curcumin mediated antimicrobial photodynamic therapy (aPDT).At sub-MIC of curcumin, different anti-biofilm assays and microscopic examinations were performed, followed by 20 J/cm2 of blue laser light irradiation which corresponds to 52 s only. The result showed significant disruption of VRSA biofilm. Moreover, when curcumin-aPDT treated VRSA biofilm was exposed to whole blood from healthy donors, it was nearly completely eradicated. The present study suggests that curcumin-aPDT enhanced phagocytosis may be a useful strategy for inactivating VRSA biofilms adhering to medical implant surfaces.
Collapse
Affiliation(s)
- Farheen Akhtar
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
14
|
Conrado PCV, Sakita KM, Arita GS, Galinari CB, Gonçalves RS, Lopes LDG, Lonardoni MVC, Teixeira JJV, Bonfim-Mendonça PS, Kioshima ES. A systematic review of photodynamic therapy as an antiviral treatment: Potential guidance for dealing with SARS-CoV-2. Photodiagnosis Photodyn Ther 2021; 34:102221. [PMID: 33601001 PMCID: PMC7883714 DOI: 10.1016/j.pdpdt.2021.102221] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND SARS-CoV-2, which causes the coronavirus disease (COVID-19), presents high rates of morbidity and mortality around the world. The search to eliminate SARS-CoV-2 is ongoing and urgent. This systematic review seeks to assess whether photodynamic therapy (PDT) could be effective in SARS-CoV-2 inactivation. METHODS The focus question was: Can photodynamic therapy be used as potential guidance for dealing with SARS-CoV-2?". A literature search, according to PRISMA statements, was conducted in the electronic databases PubMed, EMBASE, SCOPUS, Web of Science, LILACS, and Google Scholar. Studies published from January 2004 to June 2020 were analyzed. In vitro and in vivo studies were included that evaluated the effect of PDT mediated by several photosensitizers on RNA and DNA enveloped and non-enveloped viruses. RESULTS From 27 selected manuscripts, 26 publications used in vitro studies, 24 were exclusively in vitro, and two had in vitro/in vivo parts. Only one analyzed publication was exclusively in vivo. Meta-analysis studies were unfeasible due to heterogeneity of the data. The risk of bias was analyzed in all studies. CONCLUSION The in vitro and in vivo studies selected in this systematic review indicated that PDT is capable of photoinactivating enveloped and non-enveloped DNA and RNA viruses, suggesting that PDT can potentially photoinactivate SARS-CoV-2.
Collapse
Affiliation(s)
- Pollyanna C V Conrado
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | - Karina M Sakita
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | - Glaucia S Arita
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | - Camila B Galinari
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | | | - Luciana D G Lopes
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | - Maria V C Lonardoni
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | - Jorge J V Teixeira
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | | | - Erika S Kioshima
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil.
| |
Collapse
|
15
|
Zheng W, Jia Y, Zhao Y, Zhang J, Xie Y, Wang L, Zhao X, Liu X, Tang R, Chen W, Jiang X. Reversing Bacterial Resistance to Gold Nanoparticles by Size Modulation. NANO LETTERS 2021; 21:1992-2000. [PMID: 33616397 DOI: 10.1021/acs.nanolett.0c04451] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
One major frustration in developing antibiotics is that bacteria can quickly develop resistance that would require an entirely new cycle of research and clinical testing to overcome. Although plenty of bactericidal nanomaterials have been developed against increasingly severe superbugs, few reports have studied the resistance to these nanomaterials. Herein, we show that antibacterial 4,6-diamino-2-pyrimidine thiol (DAPT)-capped gold nanoparticles (AuDAPTs) can induce a 16-fold increased minimum inhibitory concentration (MIC) of E. coli only after very long term exposure (183 days), without developing cross-resistance to commercialized antibiotics. Strikingly, we recovered the bactericidal activities of AuDAPTs to the resistant strain by tuning the sizes of AuDAPTs without employing new chemicals. Such slow, easy-to-handle resistance induced by AuDAPTs is unprecedented compared to traditional antibiotics or other nanomaterials. In addition to the novel antibacterial activities and biocompatibilities, our approach will accelerate the development of gold nanomaterial-based therapeutics against multi-drug-resistant (MDR) bacterial infections.
Collapse
Affiliation(s)
- Wenshu Zheng
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Yuexiao Jia
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Yuyun Zhao
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Jiangjiang Zhang
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Yangzhouyun Xie
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Le Wang
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Xiaohui Zhao
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Xiaoyan Liu
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Rongbing Tang
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Wenwen Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
16
|
Galdiero E, Salvatore MM, Maione A, Carraturo F, Galdiero S, Falanga A, Andolfi A, Salvatore F, Guida M. Impact of the Peptide WMR-K on Dual-Species Biofilm Candida albicans/Klebsiella pneumoniae and on the Untargeted Metabolomic Profile. Pathogens 2021; 10:214. [PMID: 33669279 PMCID: PMC7920046 DOI: 10.3390/pathogens10020214] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 01/09/2023] Open
Abstract
In recent years, the scientific community has focused on the development of new antibiotics to address the difficulties linked to biofilm-forming microorganisms and drug-resistant infections. In this respect, synthetic antimicrobial peptides (AMPs) are particularly regarded for their therapeutic potential against a broad spectrum of pathogens. In this work, the antimicrobial and antibiofilm activities of the peptide WMR-K towards single and dual species cultures of Candida albicans and Klebsiella pneumoniae were investigated. We found minimum inhibitory concentration (MIC) values for WMR-K of 10 µM for K. pneumoniae and of 200 µM for C. albicans. Furthermore, sub-MIC concentrations of peptide showed an in vitro inhibition of biofilm formation of mono and polymicrobial systems and also a good biofilm eradication even if higher concentrations of it are needed. In order to provide additional evidence for the effect of the examined peptide, a study of changes in extracellular metabolites excreted and/or uptaken from the culture medium (metabolomic footprinting) in the poly-microbial association of C. albicans and K. pneumoniae in presence and absence of WMR-K was performed. Comparing to the untreated dual species biofilm culture, the metabolomic profile of the WMR-K treated culture appears significantly altered. The differentially expressed compounds are mainly related to the primary metabolic pathways, including amino acids, trehalose, pyruvic acid, glycerol and vitamin B6.
Collapse
Affiliation(s)
- Emilia Galdiero
- Department of Biology, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (E.G.); (A.M.); (F.C.); (M.G.)
| | - Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (A.A.); (F.S.)
| | - Angela Maione
- Department of Biology, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (E.G.); (A.M.); (F.C.); (M.G.)
| | - Federica Carraturo
- Department of Biology, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (E.G.); (A.M.); (F.C.); (M.G.)
| | - Stefania Galdiero
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples ‘Federico II’, Via dell’ Università 100, 80055 Naples, Italy;
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (A.A.); (F.S.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples ‘Federico II’, 80055 Naples, Italy
| | - Francesco Salvatore
- Department of Chemical Sciences, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (A.A.); (F.S.)
| | - Marco Guida
- Department of Biology, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (E.G.); (A.M.); (F.C.); (M.G.)
| |
Collapse
|
17
|
Akhtar F, Khan AU, Misba L, Akhtar K, Ali A. Antimicrobial and antibiofilm photodynamic therapy against vancomycin resistant Staphylococcus aureus (VRSA) induced infection in vitro and in vivo. Eur J Pharm Biopharm 2021; 160:65-76. [PMID: 33508436 DOI: 10.1016/j.ejpb.2021.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/22/2020] [Accepted: 01/20/2021] [Indexed: 02/08/2023]
Abstract
Biofilm mediated infection caused by multi-drug resistant bacteria are difficult to treat since it protects the microorganisms by host defense system, making them resistant to antibiotics and other antimicrobial agents. Combating such type of nosocomial infection, especially in immunocompromised patients, is an urgent need and foremost challenge faced by clinicians. Therefore, antimicrobial photodynamic therapy (aPDT) has been intensely pursued as an alternative therapy for bacterial infections. aPDT leads to the generation of reactive oxygen species (ROS) that destroy bacterial cells in the presence of a photosensitizer, visible light and oxygen. Here, we elucidated a possibility of its clinical application by reducing the treatment time and exposing curcumin to 20 J/cm2 of blue laser light, which corresponds to only 52 s to counteract vancomycin resistant Staphylococcus aureus (VRSA) both in vitro and in vivo. To understand the mechanism of action, the generation of total reactive oxygen species (ROS) was quantified by 2'-7'-dichlorofluorescein diacetate (DCFH-DA) and the type of phototoxicity was confirmed by fluorescence spectroscopic analysis. The data showed more production of singlet oxygen, indicating type-II phototoxicity. Different anti-biofilm assays (crystal violet and congo red assays) and microscopic studies were performed at sub-MIC concentration of curcumin followed by treatment with laser light against preformed biofilm of VRSA. The result showed significant reduction in the preformed biofilm formation. Finally, its therapeutic potential was validated in skin abrasion wistar rat model. The result showed significant inhibition of bacterial growth. Furthermore, immunomodulatory analysis with rat serum was performed. A significant reduction in expression of proinflammatory cytokines TNF-α and IL-6 were observed. Hence, we conclude that curcumin mediated aPDT with 20 J/cm2 of blue laser treatment (for 52 s) could be used against multi-drug resistant bacterial infections and preformed biofilm formation as a potential therapeutic approach.
Collapse
Affiliation(s)
- Farheen Akhtar
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India.
| | - Lama Misba
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Kafil Akhtar
- Department of Pathology, JNMC, A.M.U., Aligarh, India
| | - Asif Ali
- Department of Biochemistry, F/o Medicine, JNMC A.M.U., Aligarh, India
| |
Collapse
|
18
|
Li Z, Pan W, Shi E, Bai L, Liu H, Li C, Wang Y, Deng J, Wang Y. A Multifunctional Nanosystem Based on Bacterial Cell-Penetrating Photosensitizer for Fighting Periodontitis Via Combining Photodynamic and Antibiotic Therapies. ACS Biomater Sci Eng 2021; 7:772-786. [PMID: 33411504 DOI: 10.1021/acsbiomaterials.0c01638] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photodynamic therapy (PDT), an emerging approach that involves photosensitizers, light, and molecular oxygen, has shown promise for fighting periodontitis. However, PDT does not always acquire the desired therapeutic outcomes since some photosensitizers have strong hydrophobic properties and are difficult to absorb efficiently by periodontal pathogenic bacteria. Here, a hydrophobic photosensitizer chlorin e6 (Ce6) was hydrophilically modified via conjugation with TAT peptide, a cationic cell-penetrating peptide, to improve its solubility and enhance its bacterial adsorption by promoting its interaction with the negatively charged cell walls and penetration through the cell membranes. The obtained TAT-Ce6 conjugate (TAT-Ce6) was used to prepare self-assembled nanoparticles (NPs) for loading tinidazole (TDZ), a clinically used antibiotic agent, thus hoping to achieve synergistic antiperiodontitis effects through combining PDT and antibiotic therapy. Compared to free Ce6, TAT-Ce6 nanoparticles (TAT-Ce6 NPs) had greatly enhanced adsorption and penetration abilities for periodontal pathogen bacteria and also exhibited significantly increased PDT efficiencies in both periodontal pathogen bacteria and monocyte macrophages. Upon 635 nm laser irradiation, TDZ-loaded TAT-Ce6 (TAT-Ce6/TDZ) NPs exerted remarkable synergistic antiperiodontitis effects of PDT and antibiotic therapy, reflecting in the effective killing of periodontal pathogenic bacteria in vitro and the reduced adsorption of alveolar bone in the Sprague-Dawley rat model of periodontitis. Altogether, this study develops a novel photosensitizer that can be efficiently absorbed by the periodontal pathogenic bacteria and also provides a potent combination strategy of PDT with antibiotic therapy for clinical periodontitis treatment.
Collapse
Affiliation(s)
- Zhiyuan Li
- School of Dentistry & Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Wei Pan
- School of Dentistry & Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Enyu Shi
- School of Dentistry & Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Liya Bai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Hui Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Changyi Li
- School of Dentistry & Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Yinsong Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Jiayin Deng
- School of Dentistry & Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Yue Wang
- School of Dentistry & Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, P. R. China
| |
Collapse
|