1
|
Castiñeiras Pardines A, López Ginés G, García Orueta G, F Trocóniz I. Development and evaluation of a model characterizing the release characteristics of a new letrozole long-acting injectable formulation. Eur J Pharm Sci 2025; 209:107103. [PMID: 40252852 DOI: 10.1016/j.ejps.2025.107103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Treating a chronic condition such as breast cancer usually requires daily oral drug administration for extended periods of time, which is associated with non-adherence to the prescribed therapy that may cause disease progression. New delivery strategies such as long-acting injectable (LAI) implants have entered the picture in order to solve oral administration drawbacks while improving bioavailability, plasma levels variability or treatment compliance. This has motivated the development of a new polymeric and biodegradable in situ forming long-acting implant of letrozole. This new formulation is provided as a kit of two syringes (one of them containing letrozole and Poly-Lactic Acid, and the other one containing dimethyl sulfoxide as solvent for reconstitution). Once the formulation is reconstituted and injected into the muscle, the solvent diffuses into tissue fluids and the insoluble polymer precipitates, forming a semi-solid implant that traps the API and allows a sustained drug release. In order to optimize both the formulation and the development process, traditional in vitro dissolution assessment and predictive dissolution modelling were conducted to identify which formulation characteristics show an impact on the kinetics of the release, which may provide a first basis to potentially establish an in vitro-in vivo correlation (IVIVC) with both pre-clinical and clinical data in the future. Two dissolution methods (real-time and accelerated) were used to describe the in vitro dissolution profiles of 15 letrozole LAI formulations differing on their Critical Material Attributes (CMAs). The release profiles were best described using the Weibull distribution and estimating the fraction of the dose loss during injection. The first order rate constant of release (KD) was increased by 1.87 times in the case of the accelerated conditions, and was 30 % reduced and increased by 1.34 times in the case of higher and lower viscosity of the formulations, respectively. This work allowed for quantitative characterization of the formulation related characteristics responsible for controlling drug release. It provides a new understanding of the formulation that will serve to guide in the development of a robust formulation and to establish product quality control specifications.
Collapse
Affiliation(s)
- Adriana Castiñeiras Pardines
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain; Laboratorios Farmacéuticos Rovi, S.A., Granada, Spain.
| | | | - Gastón García Orueta
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Iñaki F Trocóniz
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain; IdisNA, Navarra Institute for Health Research, Pamplona, Spain; Institute of Data Science and Artificial Intelligence, DATAI, University of Navarra, Pamplona, Spain
| |
Collapse
|
2
|
Djuris J, Cvijic S, Djekic L. Model-Informed Drug Development: In Silico Assessment of Drug Bioperformance following Oral and Percutaneous Administration. Pharmaceuticals (Basel) 2024; 17:177. [PMID: 38399392 PMCID: PMC10892858 DOI: 10.3390/ph17020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024] Open
Abstract
The pharmaceutical industry has faced significant changes in recent years, primarily influenced by regulatory standards, market competition, and the need to accelerate drug development. Model-informed drug development (MIDD) leverages quantitative computational models to facilitate decision-making processes. This approach sheds light on the complex interplay between the influence of a drug's performance and the resulting clinical outcomes. This comprehensive review aims to explain the mechanisms that control the dissolution and/or release of drugs and their subsequent permeation through biological membranes. Furthermore, the importance of simulating these processes through a variety of in silico models is emphasized. Advanced compartmental absorption models provide an analytical framework to understand the kinetics of transit, dissolution, and absorption associated with orally administered drugs. In contrast, for topical and transdermal drug delivery systems, the prediction of drug permeation is predominantly based on quantitative structure-permeation relationships and molecular dynamics simulations. This review describes a variety of modeling strategies, ranging from mechanistic to empirical equations, and highlights the growing importance of state-of-the-art tools such as artificial intelligence, as well as advanced imaging and spectroscopic techniques.
Collapse
Affiliation(s)
- Jelena Djuris
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (S.C.); (L.D.)
| | | | | |
Collapse
|
3
|
Chen G, Zhu Y, Wang Q, Bai Y, Ma S, Wang J, Zhao M, Zou M, Cheng G. The development of a novel simultaneous in vitro dissolution - in situ perfusion system as a potential tool for studying the absorption of solid oral formulation in rat. Eur J Pharm Sci 2023; 191:106601. [PMID: 37783379 DOI: 10.1016/j.ejps.2023.106601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/03/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
The aim of this work is to develop a novel simultaneous in vitro dissolution - in situ perfusion system (SDPS) as a potential tool to evaluate the in vivo performance of solid oral formulation in rat. The innovative nitrendipine (NTD) tablet of Bayotensin mite® made in Germany was used as reference listed drug (RLD), and five generic products from Chinese market were compared with RLD using the in vitro dissolution test method specified by the orange book and the SDPS method developed in this study. Four self-prepared NTD tablets with different proportions of microcrystalline cellulose/starch were employed to investigate the discriminatory ability of the SDPS for formulation. In addition, the predictivity of the SDPS in relation to data from in vivo pharmaceutics studies was evaluated. The 45-min dissolution test and multiple-pH dissolution profiles of generic product 1 and 2 have no difference compared with the RLD, but their dissolution profiles from the SDPS showed statistically significant differences. A biexponential formula successfully described the concentration profiles of self-prepared formulations in SDPS experiments. The kdis (0.08 ± 0.01 ∼ 0.2 ± 0.03 min-1) and ka (about 2.30 × 10-3 min-1) values calculated by the formulas of F1-F3 suggested that the used excipients had no effect on the intestinal absorption of NTD, and it might be the property of active pharmaceutical ingredient that led to the difference among the generics. Furthermore, the in vivo rat pharmacokinetics study results of F1-F3 showed a good correlation (R2 = 0.99) with the SDPS data. In summary, the SDPS is a promising tool to detect the unexpected quality changes of pharmaceutical products in weakly regulated markets, facilitate formulation screening, and potentially reduce animal testing for estimating the in vivo absorption behavior of solid oral formulations. The absorption performance of generic drugs in vivo should be further investigated.
Collapse
Affiliation(s)
- Guo Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Yumeng Zhu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Qiaoqiao Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Yifeng Bai
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Siyuan Ma
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Jingfeng Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Minqian Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Meijuan Zou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Gang Cheng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
4
|
Sirvi A, Debaje S, Guleria K, Sangamwar AT. Critical aspects involved in lipid dispersion and digestion: Emphasis on in vitro models and factors influencing lipolysis of oral lipid based formulations. Adv Colloid Interface Sci 2023; 321:103028. [PMID: 39491077 DOI: 10.1016/j.cis.2023.103028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 11/05/2024]
Abstract
Understanding the mechanisms underlying the dispersion and digestion process is vital in the development of oral lipid-based formulations (LBFs). In vitro lipolysis models mimic the digestion process in the stomach and intestine to explore the fundamental mechanism of supersaturation, solubilization, and precipitation of drugs within the LBFs. The lipid digestion is controlled by the in vitro experimental conditions, and constitution of the lipid formulations. Hence, there is a continuous upgradation in the digestion models to best extrapolate the in vivo conditions. This review covers the recent developments in digestion models with media compositions and lipid formulation components. Key findings from recent studies that thoroughly examined the relation between the digestion, solubilization, and permeation of oral LBFs in the presence of bile-lipid aggregates are presented. These developments are foremost to build the in vitro-in vivo correlation of the drugs for regulatory considerations.
Collapse
Affiliation(s)
- Arvind Sirvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Shubham Debaje
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Kajal Guleria
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India.
| |
Collapse
|
5
|
Supersaturation and Precipitation Applicated in Drug Delivery Systems: Development Strategies and Evaluation Approaches. Molecules 2023; 28:molecules28052212. [PMID: 36903470 PMCID: PMC10005129 DOI: 10.3390/molecules28052212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Supersaturation is a promising strategy to improve gastrointestinal absorption of poorly water-soluble drugs. Supersaturation is a metastable state and therefore dissolved drugs often quickly precipitate again. Precipitation inhibitors can prolong the metastable state. Supersaturating drug delivery systems (SDDS) are commonly formulated with precipitation inhibitors, hence the supersaturation is effectively prolonged for absorption, leading to improved bioavailability. This review summarizes the theory of and systemic insight into supersaturation, with the emphasis on biopharmaceutical aspects. Supersaturation research has developed from the generation of supersaturation (pH-shift, prodrug and SDDS) and the inhibition of precipitation (the mechanism of precipitation, the character of precipitation inhibitors and screening precipitation inhibitors). Then, the evaluation approaches to SDDS are discussed, including in vitro, in vivo and in silico studies and in vitro-in vivo correlations. In vitro aspects involve biorelevant medium, biomimetic apparatus and characterization instruments; in vivo aspects involve oral absorption, intestinal perfusion and intestinal content aspiration and in silico aspects involve molecular dynamics simulation and pharmacokinetic simulation. More physiological data of in vitro studies should be taken into account to simulate the in vivo environment. The supersaturation theory should be further completed, especially with regard to physiological conditions.
Collapse
|
6
|
Carvedilol Precipitation Inhibition by the Incorporation of Polymeric Precipitation Inhibitors Using a Stable Amorphous Solid Dispersion Approach: Formulation, Characterization, and In Vitro In Vivo Evaluation. Polymers (Basel) 2022; 14:polym14224977. [PMID: 36433104 PMCID: PMC9697141 DOI: 10.3390/polym14224977] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
An amorphous solid dispersion (ASD) of carvedilol (CVL) was prepared via the solvent evaporation method, using cellulose derivatives as polymeric precipitation inhibitors (PPIs). The prepared ASDs existed in the amorphous phase, as revealed by X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM). The Fourier-transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) results confirmed the compatibility between CVL and the polymers used. The ASDs characteristics were evaluated, with no change in viscosity, a pH of 6.8, a polydispersity index of 0.169, a particle size of 423-450 nm, and a zeta potential of 3.80 mV. Crystal growth inhibition was assessed for 180 min via an infusion precipitation study in simulated intestinal fluid (SIF). The interactions between the drug and polymers were established in great detail, using nuclear magnetic resonance (NMR) spectroscopy, nuclear Overhauser effect spectroscopy (NOESY), and Raman spectroscopy studies. Dielectric analysis was employed to determine the drug-polymer interactions between ion pairs and to understand ion transport behavior. In vivo oral kinetics and irritation studies performed on Wistar rats have demonstrated promising biocompatibility, stability, and the enhanced bioavailability of CVL. Collectively, the stable ASDs of CVL were developed using cellulose polymers as PPIs that would inhibit drug precipitation in the gastrointestinal tract and would aid in achieving higher in vivo drug stability and bioavailability.
Collapse
|
7
|
Quantitative assessment of disintegration rate is important for predicting the oral absorption of solid dosage forms containing poorly soluble weak base drugs. Eur J Pharm Biopharm 2022; 180:23-32. [PMID: 36154905 DOI: 10.1016/j.ejpb.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/02/2022] [Accepted: 09/18/2022] [Indexed: 11/20/2022]
Abstract
This study aimed to develop a novel in silico modeling and simulation that considers the disintegration rate in the stomach to predict the in vivo performance of oral solid dosage forms with slow disintegration rates containing poorly soluble weak base drugs. Oxatomide and manidipine hydrochloride were used as model drugs. First, the in vitro disintegration rate and dissolution rate were determined in biorelevant media that simulate the gastrointestinal fluids in fasted humans using a USP apparatus II paddle dissolution tester. Next, the oral absorption of the dosage forms was predicted using the novel simulation model coupled with not only the dissolution rate but also the estimated disintegration rate. As the in vitro disintegration time was 45 min or longer for both drugs in Fasted State Simulated Gastric Fluid, the disintegration rate of these dosage forms was considered slow as immediate release (IR) tablets. While the predicted and observed pharmacokinetic profiles of both drugs were comparable using the new model, the conventional model, which did not consider the disintegration step, underestimated the oral absorption of both drugs. Thus, our novel simulation model coupled with the disintegration rate estimated from in vitro tests is promising for predicting the in vivo performance of oral solid dosage forms with slow disintegration rates containing poorly soluble weak base drugs.
Collapse
|