1
|
Hamm P, Driessen MD, Hauptstein N, Kehrein J, Worschech R, Pouyan P, Haag R, Schubert US, Müller TD, Meinel L, Lühmann T. Deciphering Polymer Interactions in Bioconjugates with Different Architectures by Structural Analysis via Time-Resolved Limited Proteolysis Mass Spectrometry. Angew Chem Int Ed Engl 2025; 64:e202415354. [PMID: 39780761 DOI: 10.1002/anie.202415354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Therapeutic proteins are commonly conjugated with polymers to modulate their pharmacokinetics but often lack a description of the polymer-protein interaction. We deployed limited proteolysis mass spectrometry (LiP-MS) to reveal the interaction of polyethylene glycol (PEG) and PEG alternative polymers with interferon-α2a (IFN). Target conjugates were digested with the specific protease trypsin and a "heavy" 15N-IFN wild type (IFN-WT) for time-resolved quantification of the cleavage dynamics. Interactions between IFN-α2a and its high-affinity receptor were detailed by LiP-MS. Then, 10 kDa polymers of PEG, linear polyglycerol (LPG), and poly(2-oxazoline) (POX) with two different cyclooctyne linkers (BCN/DBCO) were used for site-specific bioconjugation to azide functionalized IFN-α2a. Tryptic events at each cleavage site and in different structural environments (loops/helices) were compared. PEG and LPG were similar, and POX showed a reduced interaction profile with the IFN-α2a surface. All-atom molecular dynamics simulations of IFN-DBCO-polymer conjugates revealed distinct and transient (below 50 ns) protein-interaction profiles for PEG, LPG, and POX. Cleavage dynamics of IFN-polymer conjugates from the BCN handle were homogeneous, pointing to a more conserved IFN structure than DBCO-polymer conjugates. In summary, time-resolved LiP-MS for quantification of cleavage events enhances the structural understanding of transient IFN-polymer interactions, which may be extended to other bioconjugate types.
Collapse
Affiliation(s)
- Prisca Hamm
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany
| | - Marc D Driessen
- Department for Oral and Craniomaxillofacial and Plastic Surgery, University Hospital Cologne and Faculty of Medicine, University of Cologne, 50937, Cologne, Germany
- Institute of Molecular Medicine, University of Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Niklas Hauptstein
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany
| | - Josef Kehrein
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany
| | - Rafael Worschech
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany
| | - Paria Pouyan
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Thomas D Müller
- Lehrstuhl für Botanik I, Molekulare Pflanzenphysik und Biophysik, University of Würzburg, 97082, Würzburg, Germany
| | - Lorenz Meinel
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), 97080, Würzburg, Germany
| | - Tessa Lühmann
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
2
|
Hsiao YJ, Hsieh MS, Chang GC, Hsu YC, Wang CY, Chen YM, Chen YL, Yang PC, Yu SL. Tp53 determines the spatial dynamics of M1/M2 tumor-associated macrophages and M1-driven tumoricidal effects. Cell Death Dis 2025; 16:38. [PMID: 39843434 PMCID: PMC11754596 DOI: 10.1038/s41419-025-07346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/28/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
The spatial role of M1 and M2 tumor-associated macrophages (M1/M2 TAMs) in precision medicine remains unclear. EGFR and TP53 are among the most frequently mutated genes in lung adenocarcinoma. We characterized the mutation status and density of M1/M2 TAMs within tumor islets and stroma in 117 lung adenocarcinomas using next-generation sequencing and immunohistochemistry, respectively. Stromal M1 TAMs were positively correlated with disease progression and smoking history. In contrast, islet M1/M2 TAMs were predominantly found in tumors with wild-type TP53 (wtp53) but not associated with EGFR status. The presence of wtp53 was associated with the spatial distribution of M1/M2 TAMs in tumor islets and stroma. Additionally, dominance of islet M1 TAMs and M1-signature were significantly associated with improved survival in patients with wtp53 lung adenocarcinoma, unlike in those with mutant TP53. Conditioned medium from M1 macrophages (M1 CM) induced apoptosis in wtp53 cells through increased p53 accumulation. We found that interferons in M1 CM activate JAK1/TYK2 via IFNARs, leading to enhanced STAT1 expression and Y701 phosphorylation. This activation facilitates p53-STAT1 interactions, reduces the interaction between p53 and MDM2, and subsequently decreases p53 ubiquitination. M1 CM inhibited tumorigenesis, and silencing p53 reduced the anti-tumor efficacy of polyinosinic:polycytidylic acid (poly I:C) in vivo. Furthermore, higher M1-signature was significantly associated with better responses and survival following anti-PD1 treatment in wtp53 melanomas. IFNs/STAT1/p53 signaling was critical for the anti-tumor activity of M1 macrophages. These findings suggest that p53 modulates the spatial balance of M1/M2 TAMs, and the tumoricidal effects of M1 TAMs depend on p53 status. Thus, p53 companion diagnostics could facilitate the development of M1-oriented therapies, which may be particularly beneficial for wtp53 patients when combined with immunotherapy.
Collapse
Affiliation(s)
- Yi-Jing Hsiao
- Department of Clinical and Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Gee-Chen Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital Taichung, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yin-Chen Hsu
- Department of Clinical and Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Yu Wang
- Department of Clinical and Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yan-Ming Chen
- Department of Clinical and Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Ling Chen
- Department of Clinical and Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sung-Liang Yu
- Department of Clinical and Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.
- Graduate Institute of Pathology, National Taiwan University College of Medicine, Taipei, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
- Graduate Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan.
- Graduate School of Advanced Technology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Gonçalves J, Caliceti P. Optimizing Pharmacological and Immunological Properties of Therapeutic Proteins Through PEGylation: Investigating Key Parameters and Their Impact. Drug Des Devel Ther 2024; 18:5041-5062. [PMID: 39529843 PMCID: PMC11552514 DOI: 10.2147/dddt.s481420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/06/2024] [Indexed: 11/16/2024] Open
Abstract
Protein PEGylation represents a significant technological advancement in the development of protein-based therapeutics and is widely used to reduce immunogenicity, enhance pharmacokinetics, and/or improve stability. The improved pharmacokinetic profile of PEGylated proteins compared with the native protein results in sustained versus fluctuating plasma concentrations and carries the potential of less frequent administration. However, attachment of PEG to therapeutic proteins can alter their structural conformation, which exposes new epitopes to the immune system. The design of PEGylated proteins thus needs to balance the intended benefits with the potential risks associated with the immunogenicity of the PEG moiety itself or resulting from alterations in the conformation of the therapeutic protein. In recent years, advancements in protein PEGylation chemistry have offered the capability to target PEG attachment to specific amino acids to create more stable and bioactive therapies. The biophysical and biopharmaceutical features of PEGylated proteins can vary based on polymer size, shape, density, and conjugation site, and the immunogenicity of the conjugate can be further impacted by the properties of the therapeutic protein itself and the characteristics of the patient. It is important to note that not all patients will develop an immune response toward the PEG moiety, and not all immune responses are clinically meaningful. A comprehensive understanding of the factors that influence immunogenic responses to PEGylated proteins is important to optimize their therapeutic benefits. This article reviews the design and optimization of PEGylation strategies to enhance the clinical performance of protein-based therapeutics while minimizing immunogenic responses to the PEG moiety or PEGylated proteins.
Collapse
Affiliation(s)
- João Gonçalves
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Shi W, Liu N, Lu H. Advancements and challenges in immunocytokines: A new arsenal against cancer. Acta Pharm Sin B 2024; 14:4649-4664. [PMID: 39664443 PMCID: PMC11628837 DOI: 10.1016/j.apsb.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/20/2024] [Accepted: 07/27/2024] [Indexed: 12/13/2024] Open
Abstract
Immunocytokines, employing targeted antibodies to concentrate cytokines at tumor sites, have shown potential advantages such as prolonged cytokine half-lives, mitigated adverse effects, and synergistic antitumor efficacy from both antibody and cytokine components. First, we present an in-depth analysis of the advancements of immunocytokines evaluated in preclinical and clinical applications. Notably, anti-PD-1-based immunocytokines can redirect cytokines to intratumoral CD8+ T cells and reinvigorate them to elicit robust antitumor immune responses. Then, we focus on their molecular structures and action mechanisms, striving to elucidate the correlations between diverse molecular structures and their antitumor efficacy. Moreover, our exploration extends to the realm of novel cytokines, including IL-10, IL-18, and IL-24, unraveling their potential in the construction of immunocytokines. However, safety concerns remain substantial barriers to immunocytokines' development. To address this challenge, we explore potential strategies, such as cytokine engineering and prodrug design, which can foster next-generation immunocytokines development. Overall, this review concentrates on the design of molecular structures in immunocytokines, underscoring the direction and focus of ongoing efforts to improve safety profiles while maximizing therapeutic efficacy.
Collapse
Affiliation(s)
- Wenqiang Shi
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huili Lu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Mitsunaga K, Bagot M, Ram-Wolff C, Guenova E, von Gugelberg C, Hodak E, Amitay-Laish I, Papadavid E, Jonak C, Porkert S, Scarisbrick J, Applewaite R, Beylot-Barry M, Nicolay J, Quaglino P, Sanches JA, Cury-Martins J, Lora-Pablos D, Ortiz P. Real-world study of pegylated interferon α-2a to treat mycosis fungoides/Sézary syndrome using time to next treatment as a measure of clinical benefit: an EORTC CLTG study. Br J Dermatol 2024; 191:419-427. [PMID: 38596857 DOI: 10.1093/bjd/ljae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Mycosis fungoides (MF) and Sézary syndrome (SS) are chronic malignant diseases that typically necessitate diverse strategies to achieve remission. Systemic interferon (IFN)-α (subtypes 2a and 2b) has been used to treat MF/SS since 1984; however, its production was recently stopped. The recombinant pegylated (PEG) form of IFN-α-2a remains the only alternative IFN treatment, although it has not been approved for use in MF/SS. OBJECTIVES To assess the effectiveness and safety of PEG-IFN-α-2a in monotherapy and in combination with other treatments using time to next treatment (TTNT) as a measure of clinical therapeutic benefit in a real-world setting. METHODS We conducted an international, multicentre retrospective study of patients with MF and SS (of any stage) treated with PEG-IFN-α-2a from July 2012 to February 2022. Patients were included across 11 centres in 10 countries. The primary endpoints were to determine the TTNT of PEG-IFN-α-2a and adverse events (AEs) in MF/SS. RESULTS In total, 105 patients were included [mean (SD) age 61 (13.1) years]; 42 (40.0%) had stage IA-IIA and 63 (60.0%) had stage IIB-IVB disease. PEG-IFN-α-2a was combined with other therapies in 67 (63.8%) patients, most commonly with extracorporeal photopheresis (36%) and bexarotene (22%). Patients with stage I-IIA disease achieved an overall response rate (ORR) of 57%; the ORR in those with stage IIB-IVB disease was 51%. Combination treatment resulted in a median TTNT of 10.4 months (range 0.6-50.7) vs. 7.0 months (range 0.7-52.4) for those who received monotherapy (P < 0.01). Overall, the mean (SD) TTNT was 9.2 (10.6) months and the ORR was 53.3% (n = 56). A complete response was seen in 13% of patients and a partial response in 40%. AEs were described in 68.6% (n = 72) of patients. Flu-like symptoms (n = 28; 26.7%), lymphopenia (n = 24; 22.9%) and elevated liver function (n = 10; 9.5%) were the most frequently reported. Grade 3-4 AEs were reported in 23 (21.9%) patients, mostly related to myelosuppression. CONCLUSIONS PEG-IFN-α-2a for MF/SS resulted in an ORR of 53.3% and a mean (SD) TTNT of 9.2 (10.6) months. Combination regimens were superior to monotherapy and doses of 180 µg PEG-IFN-α-2a weekly were related to a higher ORR.
Collapse
Affiliation(s)
- Keila Mitsunaga
- Department of Dermatology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Martine Bagot
- Department of Dermatology, Université Paris Cité, Saint-Louis Hospital, Paris, France
| | - Caroline Ram-Wolff
- Department of Dermatology, Université Paris Cité, Saint-Louis Hospital, Paris, France
| | - Emmanuella Guenova
- Department of Dermatology, University Hospital Zurich and Faculty of Medicine, Zurich, Switzerland
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Christina von Gugelberg
- Department of Dermatology, University Hospital Zurich and Faculty of Medicine, Zurich, Switzerland
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Emmilia Hodak
- Division of Dermatology, Rabin Medical Center - Beilinson Hospital, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Iris Amitay-Laish
- Division of Dermatology, Rabin Medical Center - Beilinson Hospital, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Evangelia Papadavid
- 2nd Department of Dermatology and Venereology, National and Kapodistrian University of Athens, 'Attikon' University General Hospital, Athens, Greece
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Stefanie Porkert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | | | - Marie Beylot-Barry
- Department of Dermatology, Bordeaux University Hospital Center, Bordeaux, France
| | - Jan Nicolay
- Department of Dermatology, Universitätsmedizin Mannheim, Mannheim, Germany
| | - Pietro Quaglino
- Department of Medical Science, University of Turin Medical School, Turin, Italy
| | | | | | - David Lora-Pablos
- Scientific Support Unit (i+12), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Pablo Ortiz
- Department of Dermatology, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
6
|
Osgood AO, Singha Roy SJ, Koo D, Gu R, Chatterjee A. A Genetically Encoded Photocaged Cysteine for Facile Site-Specific Introduction of Conjugation-Ready Thiol Residues in Antibodies. Bioconjug Chem 2024; 35:457-464. [PMID: 38548654 PMCID: PMC11789925 DOI: 10.1021/acs.bioconjchem.3c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Antibody-drug conjugates (ADCs) have emerged as a powerful class of anticancer therapeutics that enable the selective delivery of toxic payloads into target cells. There is increasing appreciation for the importance of synthesizing such ADCs in a defined manner where the payload is attached at specific permissive sites on the antibody with a defined drug to antibody ratio. Additionally, the ability to systematically alter the site of attachment is important to fine-tune the therapeutic properties of the ADC. Engineered cysteine residues have been used to achieve such site-specific programmable attachment of drug molecules onto antibodies. However, engineered cysteine residues on antibodies often get "disulfide-capped" during secretion and require reductive regeneration prior to conjugation. This reductive step also reduces structurally important disulfide bonds in the antibody itself, which must be regenerated through oxidation. This multistep, cumbersome process reduces the efficiency of conjugation and presents logistical challenges. Additionally, certain engineered cysteine sites are resistant to reductive regeneration, limiting their utility and the overall scope of this conjugation strategy. In this work, we utilize a genetically encoded photocaged cysteine residue that can be site-specifically installed into the antibody. This photocaged amino acid can be efficiently decaged using light, revealing a free cysteine residue available for conjugation without disrupting the antibody structure. We show that this ncAA can be incorporated at several positions within full-length recombinant trastuzumab and decaged efficiently. We further used this method to generate a functional ADC site-specifically modified with monomethyl auristatin F (MMAF).
Collapse
Affiliation(s)
- Arianna O. Osgood
- Department of Chemistry, Boston College, 2609 Beacon Street, 201 Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, United States
| | - Soumya Jyoti Singha Roy
- Department of Chemistry, Boston College, 2609 Beacon Street, 201 Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, United States
| | - David Koo
- Department of Chemistry, Boston College, 2609 Beacon Street, 201 Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, United States
| | - Renpeng Gu
- Department of Chemistry, Boston College, 2609 Beacon Street, 201 Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, United States
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, 201 Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
7
|
Cain MD, Klein NR, Jiang X, Salimi H, Wu Q, Miller MJ, Klimstra WB, Klein RS. Post-exposure intranasal IFNα suppresses replication and neuroinvasion of Venezuelan Equine Encephalitis virus within olfactory sensory neurons. J Neuroinflammation 2024; 21:24. [PMID: 38233868 PMCID: PMC10792865 DOI: 10.1186/s12974-023-02960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Venezuelan Equine Encephalitis virus (VEEV) may enter the central nervous system (CNS) within olfactory sensory neurons (OSN) that originate in the nasal cavity after intranasal exposure. While it is known that VEEV has evolved several mechanisms to inhibit type I interferon (IFN) signaling within infected cells, whether this inhibits virologic control during neuroinvasion along OSN has not been studied. METHODS We utilized an established murine model of intranasal infection with VEEV and a repository of scRNAseq data from IFN-treated OSN to assess the cellular targets and IFN signaling responses after VEEV exposure. RESULTS We found that immature OSN, which express higher levels of the VEEV receptor LDLRAD3 than mature OSN, are the first cells infected by VEEV. Despite rapid VEEV neuroinvasion after intranasal exposure, olfactory neuroepithelium (ONE) and olfactory bulb (OB) IFN responses, as assessed by evaluation of expression of interferon signaling genes (ISG), are delayed for up to 48 h during VEEV neuroinvasion, representing a potential therapeutic window. Indeed, a single intranasal dose of recombinant IFNα triggers early ISG expression in both the nasal cavity and OB. When administered at the time of or early after infection, IFNα treatment delayed onset of sequelae associated with encephalitis and extended survival by several days. VEEV replication after IFN treatment was also transiently suppressed in the ONE, which inhibited subsequent invasion into the CNS. CONCLUSIONS Our results demonstrate a critical and promising first evaluation of intranasal IFNα for the treatment of human encephalitic alphavirus exposures.
Collapse
Affiliation(s)
- Matthew D Cain
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - N Rubin Klein
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoping Jiang
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hamid Salimi
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Qingping Wu
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark J Miller
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - William B Klimstra
- Department of Immunology and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robyn S Klein
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA.
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Departments of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Departments of Neurosciences, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
8
|
Lühmann T, Meinel L. Special Issue on Bioconjugates. ACS Biomater Sci Eng 2024; 10:1-2. [PMID: 38186359 DOI: 10.1021/acsbiomaterials.3c01830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
|
9
|
Gutmann M, Reinhardt D, Seidensticker C, Raschig M, Hahn L, Moscaroli A, Behe M, Meinel L, Lühmann T. Matrix Metalloproteinase-Responsive Delivery of PEGylated Fibroblast Growth Factor 2. ACS Biomater Sci Eng 2024; 10:156-165. [PMID: 37988287 DOI: 10.1021/acsbiomaterials.3c01511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Attachment of polyethylene glycol (PEG) chains is a common, well-studied, and Food and Drug Administration-approved method to address the pharmacokinetic challenges of therapeutic proteins. Occasionally, PEGylation impairs the activity of pharmacodynamics (PD). To overcome this problem, disease-relevant cleavable linkers between the polymer and the therapeutic protein can unleash full PD by de-PEGylating the protein at its target site. In this study, we engineered a matrix metalloproteinase (MMP)-responsive fibroblast growth factor 2 (FGF-2) mutant that was site-specifically extended with a PEG polymer chain. Using bioinspired strategies, the bioconjugate was designed to release the native protein at the desired structure/environment with preservation of the proliferative capacity in vitro on NIH3T3 cells. In vivo, hepatic exposure was diminished but not its renal distribution over time compared to unconjugated FGF-2. By releasing the growth factor from the PEG polymer in response to MMP cleavage, restored FGF-2 may enter hard-to-reach tissues and activate cell surface receptors or nuclear targets.
Collapse
Affiliation(s)
- Marcus Gutmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, DE-97074 Würzburg, Germany
| | - Debora Reinhardt
- Institute of Pharmacy and Food Chemistry, University of Würzburg, DE-97074 Würzburg, Germany
| | - Christian Seidensticker
- Medizinische Klinik und Poliklinik Für Innere Medizin II, Klinikum Rechts der Isar der TU München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Martina Raschig
- Institute of Pharmacy and Food Chemistry, University of Würzburg, DE-97074 Würzburg, Germany
| | - Lukas Hahn
- Institute of Pharmacy and Food Chemistry, University of Würzburg, DE-97074 Würzburg, Germany
| | - Alessandra Moscaroli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Martin Behe
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, DE-97074 Würzburg, Germany
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), DE-97080 Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, DE-97074 Würzburg, Germany
| |
Collapse
|
10
|
Kehrein J, Sotriffer C. Molecular Dynamics Simulations for Rationalizing Polymer Bioconjugation Strategies: Challenges, Recent Developments, and Future Opportunities. ACS Biomater Sci Eng 2024; 10:51-74. [PMID: 37466304 DOI: 10.1021/acsbiomaterials.3c00636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The covalent modification of proteins with polymers is a well-established method for improving the pharmacokinetic properties of therapeutically valuable biologics. The conjugated polymer chains of the resulting hybrid represent highly flexible macromolecular structures. As the dynamics of such systems remain rather elusive for established experimental techniques from the field of protein structure elucidation, molecular dynamics simulations have proven as a valuable tool for studying such conjugates at an atomistic level, thereby complementing experimental studies. With a focus on new developments, this review aims to provide researchers from the polymer bioconjugation field with a concise and up to date overview of such approaches. After introducing basic principles of molecular dynamics simulations, as well as methods for and potential pitfalls in modeling bioconjugates, the review illustrates how these computational techniques have contributed to the understanding of bioconjugates and bioconjugation strategies in the recent past and how they may lead to a more rational design of novel bioconjugates in the future.
Collapse
Affiliation(s)
- Josef Kehrein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| |
Collapse
|
11
|
van Stevendaal MME, Hazegh Nikroo A, Mason AF, Jansen J, Yewdall NA, van Hest JCM. Regulating Chemokine-Receptor Interactions through the Site-Specific Bioorthogonal Conjugation of Photoresponsive DNA Strands. Bioconjug Chem 2023; 34:2089-2095. [PMID: 37856672 PMCID: PMC10655040 DOI: 10.1021/acs.bioconjchem.3c00390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/30/2023] [Indexed: 10/21/2023]
Abstract
Oligonucleotide conjugation has emerged as a versatile molecular tool for regulating protein activity. A state-of-the-art labeling strategy includes the site-specific conjugation of DNA, by employing bioorthogonal groups genetically incorporated in proteins through unnatural amino acids (UAAs). The incorporation of UAAs in chemokines has to date, however, remained underexplored, probably due to their sometimes poor stability following recombinant expression. In this work, we designed a fluorescent stromal-derived factor-1β (SDF-1β) chemokine fusion protein with a bioorthogonal functionality amenable for click reactions. Using amber stop codon suppression, p-azido-L-phenylalanine was site-specifically incorporated in the fluorescent N-terminal fusion partner, superfolder green fluorescent protein (sfGFP). Conjugation to single-stranded DNAs (ssDNA), modified with a photocleavable spacer and a reactive bicyclononyne moiety, was performed to create a DNA-caged species that blocked the receptor binding ability. This inhibition was completely reversible by means of photocleavage of the ssDNA strands. The results described herein provide a versatile new direction for spatiotemporally regulating chemokine-receptor interactions, which is promising for tissue engineering purposes.
Collapse
Affiliation(s)
- Marleen
H. M. E. van Stevendaal
- Laboratory
of Bio-Organic Chemistry, Department of Biomedical Engineering, Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Arjan Hazegh Nikroo
- Laboratory
of Bio-Organic Chemistry, Department of Biomedical Engineering, Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Alexander F. Mason
- School
of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jitske Jansen
- Department
of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - N. Amy Yewdall
- School
of Biological Sciences, University of Canterbury, 8041 Christchurch, New Zealand
| | - Jan C. M. van Hest
- Laboratory
of Bio-Organic Chemistry, Department of Biomedical Engineering, Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
12
|
Cain MD, Klein NR, Jiang X, Klein RS. Post-exposure intranasal IFNα suppresses replication and neuroinvasion of Venezuelan Equine Encephalitis virus within olfactory sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547169. [PMID: 37425867 PMCID: PMC10327097 DOI: 10.1101/2023.06.30.547169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Venezuelan Equine Encephalitis virus (VEEV) may enter the central nervous system (CNS) within olfactory sensory neurons (OSN) that originate in the nasal cavity after intranasal exposure. While it is known that VEEV has evolved several mechanisms to inhibit type I interferon (IFN) signaling within infected cells, whether this inhibits virologic control during neuroinvasion along OSN has not been studied. Here, we utilized an established murine model of intranasal infection with VEEV to assess the cellular targets and IFN signaling responses after VEEV exposure. We found that immature OSN, which express higher levels of the VEEV receptor LDLRAD3 than mature OSN, are the first cells infected by VEEV. Despite rapid VEEV neuroinvasion after intranasal exposure, olfactory neuroepithelium (ONE) and olfactory bulb (OB) IFN responses, as assessed by evaluation of expression of interferon signaling genes (ISG), are delayed for up to 48 hours during VEEV neuroinvasion, representing a potential therapeutic window. Indeed, a single intranasal dose of recombinant IFNα triggers early ISG expression in both the nasal cavity and OB. When administered at the time of or early after infection, IFNα treatment delayed onset of sequelae associated with encephalitis and extended survival by several days. VEEV replication after IFN treatment was also transiently suppressed in the ONE, which inhibited subsequent invasion into the CNS. Our results demonstrate a critical and promising first evaluation of intranasal IFNα for the treatment of human encephalitic alphavirus exposures.
Collapse
Affiliation(s)
- Matthew D. Cain
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - N. Rubin Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoping Jiang
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Robyn S. Klein
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurosciences, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
13
|
Hauptstein N, Dirauf M, Wittwer K, Cinar G, Siering O, Raschig M, Lühmann T, Scherf-Clavel O, Sawatsky B, Nischang I, Schubert US, Pfaller CK, Meinel L. PEtOxylated Interferon-α2a Bioconjugates Addressing H1N1 Influenza A Virus Infection. Biomacromolecules 2022; 23:3593-3601. [PMID: 35904477 DOI: 10.1021/acs.biomac.2c00358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Influenza A viruses (IAV), including the pandemic 2009 (pdm09) H1N1 or avian influenza H5N1 virus, may advance into more pathogenic, potentially antiviral drug-resistant strains (including loss of susceptibility against oseltamivir). Such IAV strains fuel the risk of future global outbreaks, to which this study responds by re-engineering Interferon-α2a (IFN-α2a) bioconjugates into influenza therapeutics. Type-I interferons such as IFN-α2a play an essential role in influenza infection and may prevent serious disease courses. We site-specifically conjugated a genetically engineered IFN-α2a mutant to poly(2-ethyl-2-oxazoline)s (PEtOx) of different molecular weights by strain-promoted azide-alkyne cyclo-addition. The promising pharmacokinetic profile of the 25 kDa PEtOx bioconjugate in mice echoed an efficacy in IAV-infected ferrets. One intraperitoneal administration of this bioconjugate, but not the marketed IFN-α2a bioconjugate, changed the disease course similar to oseltamivir, given orally twice every study day. PEtOxylated IFN-α2a bioconjugates may expand our therapeutic arsenal against future influenza pandemics, particularly in light of rising first-line antiviral drug resistance to IAV.
Collapse
Affiliation(s)
- Niklas Hauptstein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Michael Dirauf
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Kevin Wittwer
- Paul-Ehrlich-Institute, Division of Veterinary Medicine, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Gizem Cinar
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Oliver Siering
- Paul-Ehrlich-Institute, Division of Veterinary Medicine, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Martina Raschig
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Oliver Scherf-Clavel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Bevan Sawatsky
- Paul-Ehrlich-Institute, Division of Veterinary Medicine, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Christian K Pfaller
- Paul-Ehrlich-Institute, Division of Veterinary Medicine, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.,Helmholtz Institute for RNA-Based Infection Research (HIRI), Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| |
Collapse
|
14
|
Hauptstein N, Pouyan P, Wittwer K, Cinar G, Scherf-Clavel O, Raschig M, Licha K, Lühmann T, Nischang I, Schubert US, Pfaller CK, Haag R, Meinel L. Polymer selection impacts the pharmaceutical profile of site-specifically conjugated Interferon-α2a. J Control Release 2022; 348:881-892. [PMID: 35764249 DOI: 10.1016/j.jconrel.2022.05.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/12/2022] [Accepted: 05/15/2022] [Indexed: 12/15/2022]
Abstract
Conjugation of poly(ethylene glycol) (PEG) to biologics is a successful strategy to favorably impact the pharmacokinetics and efficacy of the resulting bioconjugate. We compare bioconjugates synthesized by strain-promoted azide-alkyne cycloaddition (SPAAC) using PEG and linear polyglycerol (LPG) of about 20 kDa or 40 kDa, respectively, with an azido functionalized human Interferon-α2a (IFN-α2a) mutant. Site-specific PEGylation and LPGylation resulted in IFN-α2a bioconjugates with improved in vitro potency compared to commercial Pegasys. LPGylated bioconjugates had faster disposition kinetics despite comparable hydrodynamic radii to their PEGylated analogues. Overall exposure of the PEGylated IFN-α2a with a 40 kDa polymer exceeded Pegasys, which, in return, was similar to the 40 kDa LPGylated conjugates. The study points to an expanded polymer design space through which the selected polymer class may result in a different distribution of the studied bioconjugates.
Collapse
Affiliation(s)
- Niklas Hauptstein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Paria Pouyan
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Kevin Wittwer
- Paul-Ehrlich-Institute, Division of Veterinary Medicine, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Gizem Cinar
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Oliver Scherf-Clavel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martina Raschig
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kai Licha
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Christian K Pfaller
- Paul-Ehrlich-Institute, Division of Veterinary Medicine, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Helmholtz Institute for RNA-Based Infection Research (HIRI), 97080 Würzburg, Germany.
| |
Collapse
|