1
|
Doustikhah R, Dinarvand S, Tehrani P, Eftekhari Yazdi M, Salehi G. Numerical analysis of oscillating microbubbles coated with a lipid monolayer near a flexible tissue. Comput Methods Biomech Biomed Engin 2025:1-12. [PMID: 40395056 DOI: 10.1080/10255842.2025.2505651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/14/2024] [Accepted: 05/06/2025] [Indexed: 05/22/2025]
Abstract
Over the past two decades, ultrasound has advanced as a non-invasive drug delivery method. However, cavitation may cause cytoskeletal damage and cell death. This study numerically analyzes a compressible lipid-coated bubble near flexible tissue using Lattice Boltzmann and finite element methods. At 200 and 400 KPa ultrasound pressures, results show increased shear stress, boundary deformation, and bubble dynamics. The elastic boundary raises the bubble's resonance frequency. Shear stress rises from 0.09 to 0.61 KPa and 0.11 to 1.1 KPa during compression and expansion. A multi-pseudo-potential LBM improves cavitation modeling, revealing how proximity to cells intensifies pressure effects.
Collapse
Affiliation(s)
- Ramyar Doustikhah
- Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Saeed Dinarvand
- Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Pedram Tehrani
- Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Eftekhari Yazdi
- Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Gholamreza Salehi
- Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Argenziano M, Spagnolo R, Cavalli R. What are the future applications of chitosan nanobubbles in drug delivery? Expert Opin Drug Deliv 2025:1-3. [PMID: 39903218 DOI: 10.1080/17425247.2025.2462761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Affiliation(s)
- Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Rita Spagnolo
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| |
Collapse
|
3
|
Sharma D, Petchiny TN, Czarnota GJ. A Promising Therapeutic Strategy of Combining Acoustically Stimulated Nanobubbles and Existing Cancer Treatments. Cancers (Basel) 2024; 16:3181. [PMID: 39335153 PMCID: PMC11431001 DOI: 10.3390/cancers16183181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, ultrasound-stimulated microbubbles (USMBs) have gained great attention because of their wide theranostic applications. However, due to their micro-size, reaching the targeted site remains a challenge. At present, ultrasound-stimulated nanobubbles (USNBs) have attracted particular interest, and their small size allows them to extravasate easily in the blood vessels penetrating deeper into the tumor vasculature. Incorporating USNBs with existing cancer therapies such as chemotherapy, immunotherapy, and/or radiation therapy in several preclinical models has been demonstrated to have a profound effect on solid tumors. In this review, we provide an understanding of the composition and formation of nanobubbles (NBs), followed by the recent progress of the therapeutic combinatory effect of USNBs and other cancer therapies in cancer treatment.
Collapse
Affiliation(s)
- Deepa Sharma
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada;
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Departments of Medical Biophysics, and Radiation Oncology, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Tera N. Petchiny
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada;
| | - Gregory J. Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada;
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Departments of Medical Biophysics, and Radiation Oncology, University of Toronto, Toronto, ON M4N 3M5, Canada
| |
Collapse
|
4
|
Ma Z, Zhang Y, Zhu Y, Cui M, Liu Y, Duan YY, Fan L, Zhang L. Construction of a Tumor-Targeting Nanobubble with Multiple Scattering Interfaces and its Enhancement of Ultrasound Imaging. Int J Nanomedicine 2024; 19:4651-4665. [PMID: 38799698 PMCID: PMC11128256 DOI: 10.2147/ijn.s462917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Recently, nanobubbles (NBs) have gained significant traction in the field of tumor diagnosis and treatment owing to their distinctive advantages. However, the application of NBs is limited due to their restricted size and singular reflection section, resulting in low ultrasonic reflection. Methods We synthesized a nano-scale ultrasound contrast agent (IR783-SiO2NPs@NB) by encapsulating SiO2 nanoparticles in an IR783-labeled lipid shell using an improved film hydration method. We characterized its physicochemical properties, examined its microscopic morphology, evaluated its stability and cytotoxicity, and assessed its contrast-enhanced ultrasound imaging capability both in vitro and in vivo. Results The results show that IR783-SiO2NPs@NB had a "donut-type" composite microstructure, exhibited uniform particle size distribution (637.2 ± 86.4 nm), demonstrated excellent stability (30 min), high biocompatibility, remarkable tumor specific binding efficiency (99.78%), and an exceptional contrast-enhanced ultrasound imaging capability. Conclusion Our newly developed multiple scattering NBs with tumor targeting capacity have excellent contrast-enhanced imaging capability, and they show relatively long contrast enhancement duration in solid tumors, thus providing a new approach to the structural design of NBs.
Collapse
Affiliation(s)
- Zhengjun Ma
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Yanmei Zhang
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Yupu Zhu
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, Xi’an, People’s Republic of China
| | - Minxuan Cui
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, Xi’an, People’s Republic of China
| | - Yutao Liu
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, Xi’an, People’s Republic of China
| | - Yun-You Duan
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Li Fan
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, Xi’an, People’s Republic of China
| | - Li Zhang
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
5
|
Karlinsky KT, Bismuth M, Aronovich R, Ilovitsh T. Nonlinear Frequency Mixing Ultrasound Imaging of Nanoscale Contrast Agents. IEEE Trans Biomed Eng 2024; 71:866-875. [PMID: 37812544 DOI: 10.1109/tbme.2023.3321743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
OBJECTIVE Nanoscale ultrasound contrast agents show promise as alternatives for diagnostics and therapies due to their enhanced stability and ability to traverse blood vessels. Nonetheless, their reduced size limits echogenicity. This study introduces an enhanced nanobubble frequency mixing ultrasound imaging method, by capitalizing on their nonlinear acoustic response to dual-frequency excitation. METHODS A single broadband transducer (L12-3v) controlled by a programmable ultrasound system was used to transmit a dual-frequency single-cycle wavefront. The frequency mixing effect enabled simultaneous transducer capture of nanobubble-generated sum and difference frequencies in real time without the need for additional hardware or post-processing, by substituting the single-frequency wavefront in a standard contrast harmonic pulse inversion imaging protocol, with the dual-frequency wavefront. RESULTS Optimization experiments were conducted in tissue mimicking phantoms. Among the dual-frequency combinations that were tested, the highest contrast was obtained using 4&8 MHz. The nanobubble contrast improved with increased mechanical index, and achieved a maximal contrast improvement of 8.4 ± 0.5 dB compared to 4 MHz pulse inversion imaging. In imaging of a breast cancer tumor mouse model, after a systemic nanobubble injection, the contrast was improved by 3.4 ± 1.7, 4.8 ± 1.8, and 6.3 ± 1.6 dB for mechanical indices of 0.04, 0.08, and 0.1, respectively. CONCLUSION Nonlinear frequency mixing significantly improved the nanobubble contrast, which facilitated their imaging in-vivo. SIGNIFICANCE This study offers a new avenue to enhance ultrasound imaging utilizing nanobubbles, potentially leading to advancements in other diagnostic applications.
Collapse
|
6
|
Ficiarà E, Molinar C, Gazzin S, Jayanti S, Argenziano M, Nasi L, Casoli F, Albertini F, Ansari SA, Marcantoni A, Tomagra G, Carabelli V, Guiot C, D’Agata F, Cavalli R. Developing Iron Nanochelating Agents: Preliminary Investigation of Effectiveness and Safety for Central Nervous System Applications. Int J Mol Sci 2024; 25:729. [PMID: 38255803 PMCID: PMC10815234 DOI: 10.3390/ijms25020729] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Excessive iron levels are believed to contribute to the development of neurodegenerative disorders by promoting oxidative stress and harmful protein clustering. Novel chelation treatments that can effectively remove excess iron while minimizing negative effects on the nervous system are being explored. This study focuses on the creation and evaluation of innovative nanobubble (NB) formulations, shelled with various polymers such as glycol-chitosan (GC) and glycol-chitosan conjugated with deferoxamine (DFO), to enhance their ability to bind iron. Various methods were used to evaluate their physical and chemical properties, chelation capacity in diverse iron solutions and impact on reactive oxygen species (ROS). Notably, the GC-DFO NBs demonstrated the ability to decrease amyloid-β protein misfolding caused by iron. To assess potential toxicity, in vitro cytotoxicity testing was conducted using organotypic brain cultures from the substantia nigra, revealing no adverse effects at appropriate concentrations. Additionally, the impact of NBs on spontaneous electrical signaling in hippocampal neurons was examined. Our findings suggest a novel nanochelation approach utilizing DFO-conjugated NBs for the removal of excess iron in cerebral regions, potentially preventing neurotoxic effects.
Collapse
Affiliation(s)
- Eleonora Ficiarà
- School of Pharmacy, Center for Neuroscience, University of Camerino, 62032 Camerino, Italy;
| | - Chiara Molinar
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (C.M.); (M.A.); (A.M.); (G.T.); (V.C.); (R.C.)
| | - Silvia Gazzin
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (S.G.); (S.J.)
| | - Sri Jayanti
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (S.G.); (S.J.)
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (C.M.); (M.A.); (A.M.); (G.T.); (V.C.); (R.C.)
| | - Lucia Nasi
- Institute of Materials for Electronics and Magnetism (IMEM) CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (L.N.); (F.C.); (F.A.)
| | - Francesca Casoli
- Institute of Materials for Electronics and Magnetism (IMEM) CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (L.N.); (F.C.); (F.A.)
| | - Franca Albertini
- Institute of Materials for Electronics and Magnetism (IMEM) CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (L.N.); (F.C.); (F.A.)
| | - Shoeb Anwar Ansari
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (S.A.A.); (C.G.)
| | - Andrea Marcantoni
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (C.M.); (M.A.); (A.M.); (G.T.); (V.C.); (R.C.)
| | - Giulia Tomagra
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (C.M.); (M.A.); (A.M.); (G.T.); (V.C.); (R.C.)
| | - Valentina Carabelli
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (C.M.); (M.A.); (A.M.); (G.T.); (V.C.); (R.C.)
| | - Caterina Guiot
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (S.A.A.); (C.G.)
| | - Federico D’Agata
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (S.A.A.); (C.G.)
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (C.M.); (M.A.); (A.M.); (G.T.); (V.C.); (R.C.)
| |
Collapse
|
7
|
Man VH, He X, Wang J. Stable Cavitation Interferes with Aβ 16-22 Oligomerization. J Chem Inf Model 2022; 62:3885-3895. [PMID: 35920625 DOI: 10.1021/acs.jcim.2c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultrasound and microbubbles are used for many medical applications nowadays. Scanning ultrasound can remove amyloid-β (Aβ) aggregates in the mouse brain and restores memory in an Alzheimer's disease mouse model. In vitro studies showed that amyloid fibrils are fragmented due to the ultrasound-induced bubble inertial cavitation, and ultrasonic pulses accelerate the depolymerization of Aβ fibrils into monomers at 1 μM of concentration. Under applied ultrasound, microbubbles can be in a stable oscillating state or unstable inertial cavitation state. The latter occurs when ultrasound causes a dramatic change of bubble sizes above a certain acoustic pressure. We have developed and implemented a nonequilibrium molecular dynamics simulation algorithm to the AMBER package, to facilitate the investigation of the molecular mechanism of Aβ oligomerization under stable cavitation. Our results indicated that stable cavitation not only inhibited oligomeric formation, but also prevented the formation of β-rich oligomers. The network analysis of state transitions revealed that stable cavitation altered the oligomerization pathways of Aβ16-22 peptides. Our simulation tool may be applied to optimize the experimental conditions to achieve the best therapeutical effect.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
8
|
Fan CH, Ho YJ, Lin CW, Wu N, Chiang PH, Yeh CK. State-of-the-art of ultrasound-triggered drug delivery from ultrasound-responsive drug carriers. Expert Opin Drug Deliv 2022; 19:997-1009. [PMID: 35930441 DOI: 10.1080/17425247.2022.2110585] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The development of new tools to locally and non-invasively transferring therapeutic substances at the desired site in deep living tissue has been a long sought-after goal within the drug delivery field. Among the established methods, ultrasound (US) with US-responsive carriers holds great promise and demonstrates on-demand delivery of a variety of functional substances with spatial precision of several millimeters in deep-seated tissues in animal models and humans. These properties have motivated several explorations of US with US responsive carriers as a modality for neuromodulation and the treatment of various diseases, such as stroke and cancer. AREAS COVERED This article briefly discussed three specific mechanisms that enhance in vivo drug delivery via US with US-responsive carriers: 1) permeabilizing cellular membrane, 2) increasing the permeability of vessels, and 3) promoting cellular endocytotic uptake. Besides, a series of US-responsive drug carriers are discussed, with an emphasis on the relation between structural feature and therapeutic outcome. EXPERT OPINION This article summarized current development for each of US-responsive drug carrier, focusing on the routes of enhancing delivery and applications. The mechanisms of interaction between US-responsive carriers and US energy, such as cavitation, hyperthermia, and reactive oxygen species, as well as how these interactions can improve drug delivery into target cell/tissue. It can be expected that there are serval efforts to further identification of US-responsive particles, design of novel US waveform sequence, and survey of optimal combination between US parameters and US-responsive carriers for better controlling the spatiotemporal drug release profile, stability, and safety in vivo. The authors believe these will provide novel tools for precisely designing treatment strategies and significantly benefit the clinical management of several diseases.
Collapse
Affiliation(s)
- Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ju Ho
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chia-Wei Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Nan Wu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Hua Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|