1
|
Klitgaard M, Jacobsen J, Kristensen MN, Berthelsen R, Müllertz A. Characterizing interregional differences in the rheological properties and composition of rat small intestinal mucus. Drug Deliv Transl Res 2024; 14:3309-3320. [PMID: 38526635 PMCID: PMC11445339 DOI: 10.1007/s13346-024-01574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 03/27/2024]
Abstract
The mucus layer in the small intestine is generally regarded as a barrier to drug absorption. However, the mucus layer is a complex system, and presently, only a few studies have been conducted to elucidate its physicochemical properties. The current study hypothesizes that the mucus layer contains solubility-enhancing surfactants and thus might aid the oral absorption of poorly water-soluble drugs. Mucus was sampled from sections of the small intestine of fasted rats to analyze the rheological properties and determine the mucus pH and concentrations of proteins and endogenous surfactants, i.e., bile salts, polar lipids, and neutral lipids. The mucus layer in the two proximal sections of the small intestine exhibited different rheological properties such as higher zero-shear viscosity and lower loss tangent and higher protein concentrations compared to all subsequent sections of the small intestine. The pH of the mucus layer was stable at ~ 6.5 throughout most of the small intestine, but increased to 7.5 in the ileum. The bile salt concentrations increased from the duodenum (16.0 ± 2.2 mM) until the mid jejunum (55.1 ± 9.5 mM), whereas the concentrations of polar lipids and neutral lipids decreased from the duodenum (17.4 ± 2.2 mM and 37.8 ± 1.6 mM, respectively) until the ileum (4.8 ± 0.4 mM and 10.7 ± 1.1 mM, respectively). In conclusion, the mucus layer of the rat small intestine contains endogenous surfactants at levels that might benefit solubilization and absorption of orally administered poorly water-soluble drugs.
Collapse
Affiliation(s)
- Mette Klitgaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Jette Jacobsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Maja Nørgaard Kristensen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Ragna Berthelsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
2
|
Wang CM, Fernez MT, Woolston BM, Carrier RL. Native gastrointestinal mucus: Critical features and techniques for studying interactions with drugs, drug carriers, and bacteria. Adv Drug Deliv Rev 2023; 200:114966. [PMID: 37329985 PMCID: PMC11184232 DOI: 10.1016/j.addr.2023.114966] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Gastrointestinal mucus plays essential roles in modulating interactions between intestinal lumen contents, including orally delivered drug carriers and the gut microbiome, and underlying epithelial and immune tissues and cells. This review is focused on the properties of and methods for studying native gastrointestinal mucus and its interactions with intestinal lumen contents, including drug delivery systems, drugs, and bacteria. The properties of gastrointestinal mucus important to consider in its analysis are first presented, followed by a discussion of different experimental setups used to study gastrointestinal mucus. Applications of native intestinal mucus are then described, including experimental methods used to study mucus as a barrier to drug delivery and interactions with intestinal lumen contents that impact barrier properties. Given the significance of the microbiota in health and disease, its impact on drug delivery and drug metabolism, and the use of probiotics and microbe-based delivery systems, analysis of interactions of bacteria with native intestinal mucus is then reviewed. Specifically, bacteria adhesion to, motility within, and degradation of mucus is discussed. Literature noted is focused largely on applications of native intestinal mucus models as opposed to isolated mucins or reconstituted mucin gels.
Collapse
Affiliation(s)
- Chia-Ming Wang
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Matthew T Fernez
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Benjamin M Woolston
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Rebecca L Carrier
- Department of Bioengineering, Northeastern University, Boston, MA, USA; Department of Chemical Engineering, Northeastern University, Boston, MA, USA; Department of Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
3
|
Effects of prophylactic antibiotics administration on barrier properties of intestinal mucosa and mucus from preterm born piglets. Drug Deliv Transl Res 2023; 13:1456-1469. [PMID: 36884193 DOI: 10.1007/s13346-023-01309-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 03/09/2023]
Abstract
Early intervention and short-duration treatments with antibiotics in premature infants are reported to reduce the incidence of necrotizing enterocolitis (NEC), a terrible disease with severe inflammation and impaired intestinal barrier properties. Yet, it is unclear how antibiotics exposure, as well as route of administration used for dosing, can minimize the risk of NEC. With this study, we aimed to investigate if and how administration of antibiotics may affect the barrier properties of intestinal mucosa and mucus. We compared how parenteral (PAR) and a combination of enteral and parenteral (ENT+PAR) ampicillin and gentamicin given to preterm born piglets within 48 h after birth affected both barrier and physical properties of ex vivo small intestinal mucosa and mucus. Permeation of the markers mannitol, metoprolol, and fluorescein-isothiocyanate dextran of 4 kDa (FD4) and 70 kDa (FD70) through the mucosa and mucus was evaluated. For all markers, permeation through the mucosa and mucus collected from PAR piglets tended to be reduced when compared to that observed using untreated piglets. In contrast, permeation through the mucosa and mucus collected from ENT+PAR piglets tended to be similar to that observed for untreated piglets. Additionally, rheological measurements on the mucus from PAR piglets and ENT+PAR piglets displayed a decreased G' and G'/G" ratio and decreased viscosity at 0.4 s-1 as well as lower stress stability compared to the mucus from untreated piglets.
Collapse
|
4
|
Tollemeto M, Huang Z, Christensen JB, Mørck Nielsen H, Rønholt S. Mucoadhesive Dendrons Conjugated to Mesoporous Silica Nanoparticles as a Drug Delivery Approach for Orally Administered Biopharmaceuticals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8798-8810. [PMID: 36749788 PMCID: PMC9951175 DOI: 10.1021/acsami.2c16502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Biological drugs are increasingly important for patients and industry due to their application in the treatment of common and potentially life-threatening diseases such as diabetes, cancer, and obesity. While most marketed biopharmaceuticals today are injectables, the potential of mucoadhesive delivery systems based on dendron-coated mesoporous silica nanoparticles for oral delivery of biological drugs is explored in this project. We hypothesize that specifically designed dendrons can be employed as mucoadhesive excipients and used to decorate the surface of nanoparticles with properties to embed a drug molecule. We initially tested a novel synthesis method for the preparation of dendrons, which was successfully validated by the chemical characterization of the compounds. The interaction between dendrons and mucin was studied through isothermal titration calorimetry and quartz crystal microbalance with dissipation monitoring and proved to be spontaneous and thermodynamically favorable. Dendrons were conjugated onto 244.4 nm mesoporous silica nanoparticles and characterized for chemical composition, size, and surface charge, which all showed a successful conjugation. Finally, dynamic light scattering was used to study the interaction between nanoparticles and porcine gastric mucin, whereas the interaction between nanoparticles and porcine intestinal mucus was characterized by rheological measurements. This study shows a deeper biophysical understanding of the interaction between nanoparticles and mucin or native porcine intestinal mucus, further leveraging the current understanding of how dendrons can be used as excipients to interact with mucin. This will provide knowledge for the potential development of a new generation of mucoadhesive nanoformulations for the oral delivery of biopharmaceuticals.
Collapse
Affiliation(s)
- Matteo Tollemeto
- Department
of Chemistry, University of Copenhagen, Thovaldsensvej 40, DK-1871 Frederiksberg, Denmark
- Center
for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery),
Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Zheng Huang
- Center
for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery),
Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Jørn B. Christensen
- Department
of Chemistry, University of Copenhagen, Thovaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Hanne Mørck Nielsen
- Center
for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery),
Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Stine Rønholt
- Center
for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery),
Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
5
|
Barmpatsalou V, Rodler A, Jacobson M, Karlsson EML, Pedersen BL, Bergström CAS. Development and validation of a porcine artificial colonic mucus model reflecting the properties of native colonic mucus in pigs. Eur J Pharm Sci 2023; 181:106361. [PMID: 36528165 DOI: 10.1016/j.ejps.2022.106361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Colonic mucus plays a key role in colonic drug absorption. Mucus permeation assays could therefore provide useful insights and support rational formulation development in the early stages of drug development. However, the collection of native colonic mucus from animal sources is labor-intensive, does not yield amounts that allow for routine experimentation, and raises ethical concerns. In the present study, we developed an in vitro porcine artificial colonic mucus model based on the characterization of native colonic mucus. The structural properties of the artificial colonic mucus were validated against the native secretion for their ability to capture key diffusion patterns of macromolecules in native mucus. Moreover, the artificial colonic mucus could be stored under common laboratory conditions, without compromising its barrier properties. In conclusion, the porcine artificial colonic mucus model can be considered a biorelevant way to study the diffusion behavior of drug candidates in colonic mucus. It is a cost-efficient screening tool easily incorporated into the early stages of drug development and it contributes to the implementation of the 3Rs (refinement, reduction, and replacement of animals) in the drug development process.
Collapse
Affiliation(s)
- Vicky Barmpatsalou
- The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Box 580, SE-751 23, Uppsala, Sweden
| | - Agnes Rodler
- The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Box 580, SE-751 23, Uppsala, Sweden; The Swedish Drug Delivery Center, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23, Uppsala, Sweden
| | - Magdalena Jacobson
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Box 7054, SE-750 07, Uppsala, Sweden
| | - Eva Marie-Louise Karlsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Betty Lomstein Pedersen
- Product Development & Drug Delivery, Global Pharmaceutical R&D, Ferring Pharmaceuticals A/S, Amager Strandvej 405, Kastrup 2770, Denmark
| | | |
Collapse
|
6
|
Mortensen JS, Bohr SSR, Harloff-Helleberg S, Hatzakis NS, Saaby L, Nielsen HM. Physical and barrier changes in gastrointestinal mucus induced by the permeation enhancer sodium 8-[(2-hydroxybenzoyl)amino]octanoate (SNAC). J Control Release 2022; 352:163-178. [PMID: 36314534 DOI: 10.1016/j.jconrel.2022.09.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022]
Abstract
Drug delivery systems (DDS) for oral delivery of peptide drugs contain excipients that facilitate and enhance absorption. However, little knowledge exists on how DDS excipients such as permeation enhancers interact with the gastrointestinal mucus barrier. This study aimed to investigate interactions of the permeation enhancer sodium 8-[(2-hydroxybenzoyl)amino]octanoate (SNAC) with ex vivo porcine intestinal mucus (PIM), ex vivo porcine gastric mucus (PGM), as well as with in vitro biosimilar mucus (BM) by profiling their physical and barrier properties upon exposure to SNAC. Bulk mucus permeability studies using the peptides cyclosporine A and vancomycin, ovalbumin as a model protein, as well as fluorescein-isothiocyanate dextrans (FDs) of different molecular weights and different surface charges were conducted in parallel to mucus retention force studies using a texture analyzer, rheological studies, cryo-scanning electron microscopy (cryo-SEM), and single particle tracking of fluorescence-labelled nanoparticles to investigate the effects of the SNAC-mucus interaction. The exposure of SNAC to PIM increased the mucus retention force, storage modulus, viscosity, increased nanoparticle confinement within PIM as well as decreased the permeation of cyclosporine A and ovalbumin through PIM. Surprisingly, the viscosity of PGM and the permeation of cyclosporine A and ovalbumin through PGM was unaffected by the presence of SNAC, thus the effect of SNAC depended on the regional site that mucus was collected from. In the absence of SNAC, the permeation of different molecular weight and differently charged FDs through PIM was comparable to that through BM. However, while bulk permeation of neither of the FDs through PIM was affected by SNAC, the presence of SNAC decreased the permeation of FD4 and increased the permeation of FD150 kDa through BM. Additionally, and in contrast to observations in PIM, nanoparticle confinement within BM remained unaffected by the presence of SNAC. In conclusion, the present study showed that SNAC altered the physical and barrier properties of PIM, but not of PGM. The effects of SNAC in PIM were not observed in the BM in vitro model. Altogether, the study highlights the need for further understanding how permeation enhancers influence the mucus barrier and illustrates that the selected mucus model for such studies should be chosen with care.
Collapse
Affiliation(s)
- J S Mortensen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - S S-R Bohr
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Department of Chemistry, Nano-Science Center, Faculty of Science, University of Copenhagen, Bülowsvej 17, DK-1870 Frederiksberg, Denmark
| | - S Harloff-Helleberg
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - N S Hatzakis
- Department of Chemistry, Nano-Science Center, Faculty of Science, University of Copenhagen, Bülowsvej 17, DK-1870 Frederiksberg, Denmark; Novo Nordisk Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - L Saaby
- CNS Drug Delivery and Barrier Modelling, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Bioneer A/S, Kogle Alle 2, DK-2970 Hørsholm, Denmark
| | - H M Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|