1
|
Haro-Martínez E, Muscolino E, Moral N, Duran J, Fornaguera C. Crossing the blood-brain barrier: nanoparticle-based strategies for neurodegenerative disease therapy. Drug Deliv Transl Res 2025:10.1007/s13346-025-01887-9. [PMID: 40517187 DOI: 10.1007/s13346-025-01887-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2025] [Indexed: 06/16/2025]
Abstract
Neurodegenerative conditions, including Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, and Huntington's disease, represent a critical medical challenge due to their increasing prevalence, severe consequences, and absence of curative treatments. Beyond the need for a deeper understanding of the fundamental mechanisms underlying neurodegeneration, the development of effective treatments is hindered by the blood-brain barrier, which poses a major obstacle to delivering therapeutic agents to the central nervous system. This review provides a comprehensive analysis of the current landscape of nanoparticle-based strategies to overcome the blood-brain barrier and enhance drug delivery for the treatment of neurodegenerative diseases. The nanocarriers reviewed in this work encompass a diverse array of nanoparticles, including polymeric nanoparticles (e.g. micelles and dendrimers), inorganic nanoparticles (e.g. superparamagentic iron oxide nanoparticles, mesoporous silica nanoparticles, gold nanoparticles, selenium and cerium oxide nanoparticles), lipid nanoparticles (e.g. liposomes, solid lipid nanoparticles, nanoemulsions), as well as quantum dots, protein nanoparticles, and hybrid nanocarriers. By examining recent advancements and highlighting future research directions, we aim to shed light on the promising role of nanomedicine in addressing the unmet therapeutic needs of these diseases.
Collapse
Affiliation(s)
- Elena Haro-Martínez
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08017, Barcelona, Spain
| | - Elena Muscolino
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08017, Barcelona, Spain
| | - Núria Moral
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08017, Barcelona, Spain
| | - Jordi Duran
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08017, Barcelona, Spain.
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| | - Cristina Fornaguera
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08017, Barcelona, Spain.
| |
Collapse
|
2
|
Chen J, Zhu Z, Xu Y. Signs of Alzheimer's Disease: Tied to Aging. Int J Mol Sci 2025; 26:4974. [PMID: 40507786 PMCID: PMC12154111 DOI: 10.3390/ijms26114974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2025] [Revised: 05/16/2025] [Accepted: 05/19/2025] [Indexed: 06/16/2025] Open
Abstract
: Alzheimer's disease (AD) is a neurodegenerative disorder closely associated with aging, and its pathogenesis involves the interaction of multidimensional pathophysiologic processes. This review outlines the core mechanisms linking aging and AD. The amyloid cascade hypothesis emphasizes that abnormal deposition of amyloid-β (Aβ) triggers neuronal damage and synaptic dysfunction, which is exacerbated by aging-associated declines in protein clearance. Neuroinflammation, a synergistic pathogenetic factor in AD, is mediated by microglia activation, creating a vicious cycle with Aβ and tau pathology. The cholinergic hypothesis states that the degeneration of cholinergic neurons in the basal forebrain can lead to acetylcholine deficiency, which is directly associated with cognitive decline. Endothelial disorders promote neuroinflammation and metabolic waste accumulation through blood-brain barrier dysfunction and cerebral vascular abnormalities. In addition, glutamate-mediated excitotoxicity and mitochondrial dysfunction (e.g., oxidative stress and energy metabolism imbalance) further lead to neuronal death, and aging-associated declines in mitochondrial autophagy exacerbate such damage. This review also explores the application of animal models that mimic AD and aging in studying these mechanisms and summarizes therapeutic strategies targeting these pathways. Future studies need to integrate multi-targeted therapies and focus on the role of the aging microenvironment in regulating AD pathology in order to develop more effective early diagnosis and treatment options.
Collapse
Affiliation(s)
| | | | - Yuanyuan Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China; (J.C.); (Z.Z.)
| |
Collapse
|
3
|
Mostafa M, Abdel-Kader R, Hanafi R. Novel GC MS/MS method for bioanalysis of pyrroloquinoline quinone, a potential cognitive enhancer in mice brains. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1256:124559. [PMID: 40121937 DOI: 10.1016/j.jchromb.2025.124559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/04/2025] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
Phenolic compounds have neuroprotective effect in diseases of cognitive impairment. Pyrroloquinoline quinone (PQQ), an aromatic water-soluble quinone enhances cognitive function in-vivo as previously demonstrated by our research group. In an attempt to comprehend the mechanism of action, development of a bioanalytical method for PQQ in brain matrix was essential to investigate blood-brain barrier (BBB) permeability for the drug and/or its metabolites. This study documents a novel fast GCMS/MS method for bioanalysis of PQQ in mice brains following a novel derivatization reaction of this drug. A simple extraction methodology using a single solvent highlights sustainability and greenness of our sample preparation protocol. Method validation and quantitative analysis of PQQ as an intact molecule in mice brain homogenates was done using novel qualifier and quantifier ions of the silylated drug for the first time. We report BBB permeation to PQQ in an induced neuroinflammation mouse model in addition to its sulfate metabolite following intraperitoneal injection. Interestingly, PQQ was detected in brains of control mice on standard diet containing soybeans. In silico prediction suggests the involvement of P-gp in active transport of PQQ across BBB where the drug appears to be is an excellent substrate and inhibitor. Pharmacokinetic analysis in brain revealed tmax as 2 h. Our optimized extraction method, as well as the GC-MS/MS method can be used to quantify levels of PQQ in various matrices opening the door to many other studies on this polyphenol. Moreover, we recommend the use of PQQ as a co-treatment in cognitive impairment diseases.
Collapse
Affiliation(s)
- Mai Mostafa
- Pharmaceutical Chemistry department, German University in Cairo, Egypt
| | - Reham Abdel-Kader
- Pharmacology and Toxicology Department, German University in Cairo, Egypt
| | - Rasha Hanafi
- Pharmaceutical Chemistry department, German University in Cairo, Egypt.
| |
Collapse
|
4
|
Buck AC, Maarman GJ, Dube A, Bardien S. Mitochondria targeted nanoparticles for the treatment of mitochondrial dysfunction-associated brain disorders. Front Bioeng Biotechnol 2025; 13:1563701. [PMID: 40144395 PMCID: PMC11937128 DOI: 10.3389/fbioe.2025.1563701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Mitochondria play a significant role in several cellular activities and their function in health and disease has become an important area of research. Since the brain is a high-energy-demanding organ, it is particularly vulnerable to mitochondrial dysfunction. This has been implicated in several brain disorders including neurodegenerative, psychiatric and neurological disorders, e.g., Parkinson's disease and schizophrenia. Significant efforts are underway to develop mitochondria-targeting pharmaceutical interventions. However, the complex mitochondrial membrane network restricts the entry of therapeutic compounds into the mitochondrial matrix. Nanoparticles (NPs) present a novel solution to this limitation, while also increasing the stability of the therapeutic moieties and improving their bioavailability. This article provides a detailed overview of studies that have investigated the treatment of mitochondrial dysfunction in brain disorders using either targeted or non-targeted NPs as drug delivery systems. All the NPs showed improved mitochondrial functioning including a reduction in reactive oxygen species (ROS) production, an improvement in overall mitochondrial respiration and a reversal of toxin-induced mitochondrial damage. However, the mitochondrial-targeted NPs showed an advantage over the non-targeted NPs as they were able to improve or rescue mitochondrial dynamics and biogenesis, and they required a lower concentration of the in vivo therapeutic dosage of the drug load to show an effect. Consequently, mitochondria-targeted NPs are a promising therapeutic approach. Future studies should exploit advances in nanotechnology, neuroscience and chemistry to design NPs that can cross the blood-brain barrier and selectively target dysfunctional mitochondria, to improve treatment outcomes.
Collapse
Affiliation(s)
- Amy Claire Buck
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerald J. Maarman
- Centre for Cardio-Metabolic Disease in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Admire Dube
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Stellenbosch University Genomics of Brain Disorders Research Unit, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
5
|
Mosalam EM, Abdel-Bar HM, Elberri AI, Abdallah MS, Zidan AAA, Batakoushy HA, Abo Mansour HE. Enhanced neuroprotective effect of verapamil-loaded hyaluronic acid modified carbon quantum dots in an in-vitro model of amyloid-induced Alzheimer's disease. Int J Biol Macromol 2024; 275:133742. [PMID: 38986998 DOI: 10.1016/j.ijbiomac.2024.133742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
This study aims to investigate the molecular mechanisms and the neuroprotective effect of hyaluronic acid modified verapamil-loaded carbon quantum dots (VRH-loaded HA-CQDs) against an in-vitro Alzheimer's disease model induced by amyloid beta (Aβ) in SH-SY5Y and Neuro 2a neuroblastoma cells. Briefly, different HA-CQDs were prepared using hydrothermal method and optimized by Box-Behnken design to maximize quantum yield and minimize particle size. Serum stable negatively charged VRH-loaded HA-CQDs was successfully prepared by admixing the optimized HA-CQDs and VRH with association efficiency and loading capacity of 81.25 ± 3.65 % and 5.11 ± 0.81 %, respectively. Cells were pretreated with VRH solution or loaded-HA-CQDs followed by exposure to Aβ. Compared to the control group, amyloidosis led to reduction in cellular proliferation, mitochondrial membrane potential, expression of cytochrome P450, cytochrome c oxidase, CREB-regulated transcriptional coactivator 3, and mitotic index, along with marked increase in reactive oxygen species (ROS) and inflammatory cytokines. Pretreatment with VRH, either free or loaded HA-CQDs, enhanced cell survival, mitochondrial membrane potential, mitotic index, and gene expression. It also reduced inflammation and ROS. However, VRH-loaded HA-CQDs exhibited superior effectiveness in the measured parameters. These findings suggest that VRH-loaded HA-CQDs have enhanced therapeutic potential compared to free VRH in mitigating amyloidosis negative features.
Collapse
Affiliation(s)
- Esraa M Mosalam
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, 32511 Shebin EL-Kom, Menoufia, Egypt.
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City (USC), 32897 Sadat City, Egypt.
| | - Aya Ibrahim Elberri
- Genetic Engineering and Molecular Biology Division, Department of Zoology, Faculty of Science, Menoufia University, 32511 Shebin El-Kom, Menoufia, Egypt.
| | - Mahmoud S Abdallah
- Clinical Pharmacy Department, Faculty of Pharmacy, University of Sadat City (USC), 32897 Sadat City, Egypt; Department of Pharm D, Faculty of Pharmacy, Jadara University, Irbid, Jordan.
| | | | - Hany A Batakoushy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Menoufia University, 32511 Shebin EL-Kom, Menoufia, Egypt.
| | - Hend E Abo Mansour
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, 32511 Shebin EL-Kom, Menoufia, Egypt.
| |
Collapse
|
6
|
Kou L, Wang Y, Li J, Zou W, Jin Z, Yin S, Chi X, Sun Y, Wu J, Wang T, Xia Y. Mitochondria-lysosome-extracellular vesicles axis and nanotheranostics in neurodegenerative diseases. Exp Neurol 2024; 376:114757. [PMID: 38508481 DOI: 10.1016/j.expneurol.2024.114757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
The intricate functional interactions between mitochondria and lysosomes play a pivotal role in maintaining cellular homeostasis and proper cellular functions. This dynamic interplay involves the exchange of molecules and signaling, impacting cellular metabolism, mitophagy, organellar dynamics, and cellular responses to stress. Dysregulation of these processes has been implicated in various neurodegenerative diseases. Additionally, mitochondrial-lysosomal crosstalk regulates the exosome release in neurons and glial cells. Under stress conditions, neurons and glial cells exhibit mitochondrial dysfunction and a fragmented network, which further leads to lysosomal dysfunction, thereby inhibiting autophagic flux and enhancing exosome release. This comprehensive review synthesizes current knowledge on mitochondrial regulation of cell death, organelle dynamics, and vesicle trafficking, emphasizing their significant contributions to neurodegenerative diseases. Furthermore, we explore the emerging field of nanomedicine in the management of neurodegenerative diseases. The review provides readers with an insightful overview of nano strategies that are currently advancing the mitochondrial-lysosome-extracellular vesicle axis as a therapeutic approach for mitigating neurodegenerative diseases.
Collapse
Affiliation(s)
- Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yiming Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenkai Zou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zongjie Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaosa Chi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiawei Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
7
|
Nayak V, Patra S, Rout S, Jena AB, Sharma R, Pattanaik KP, Singh J, Pandey SS, Singh RP, Majhi S, Singh KR, Kerry RG. Regulation of neuroinflammation in Alzheimer's disease via nanoparticle-loaded phytocompounds with anti-inflammatory and autophagy-inducing properties. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155150. [PMID: 37944239 DOI: 10.1016/j.phymed.2023.155150] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/23/2023] [Accepted: 10/14/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by neuroinflammation linked to amyloid β (Aβ) aggregation and phosphorylated tau (τ) protein in neurofibrillary tangles (NFTs). Key elements in Aβ production and NFT assembly, like γ-secretase and p38 mitogen-activated protein kinase (p38MAPK), contribute to neuroinflammation. In addition, impaired proteosomal and autophagic pathways increase Aβ and τ aggregation, leading to neuronal damage. Conventional neuroinflammation drugs have limitations due to unidirectional therapeutic approaches and challenges in crossing the Blood-Brain Barrier (BBB). Clinical trials for non-steroidal anti-inflammatory drugs (NSAIDs) and other therapeutics remain uncertain. Novel strategies addressing the complex pathogenesis and BBB translocation are needed to effectively tackle AD-related neuroinflammation. PURPOSE The current scenario demands for a much-sophisticated theranostic measures which could be achieved via customized engineering and designing of novel nanotherapeutics. As, these therapeutics functions as a double edge sword, having the efficiency of unambiguous targeting, multiple drug delivery and ability to cross BBB proficiently. METHODS Inclusion criteria involve selecting recent, English-language studies from the past decade (2013-2023) that explore the regulation of neuroinflammation in neuroinflammation, Alzheimer's disease, amyloid β, tau protein, nanoparticles, autophagy, and phytocompounds. Various study types, including clinical trials, experiments, and reviews, were considered. Exclusion criteria comprised non-relevant publication types, studies unrelated to Alzheimer's disease or phytocompounds, those with methodological flaws, duplicates, and studies with inaccessible data. RESULTS In this study, polymeric nanoparticles loaded with specific phytocompounds and coated with an antibody targeting the transferrin receptor (anti-TfR) present on BBB. Thereafter, the engineered nanoparticles with the ability to efficiently traverse the BBB and interact with target molecules within the brain, could induce autophagy, a cellular process crucial for neuronal health, and exhibit potent anti-inflammatory effects. Henceforth, the proposed combination of desired phytocompounds, polymeric nanoparticles, and anti-TfR coating presents a promising approach for targeted drug delivery to the brain, with potential implications in neuroinflammatory conditions such as Alzheimer's disease.
Collapse
Affiliation(s)
- Vinayak Nayak
- ICAR- National Institute on Foot and Mouth Disease-International Centre for Foot and Mouth Disease, Arugul, Bhubaneswar, Odisha (752050), India
| | - Sushmita Patra
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra (410210), India
| | - Shrushti Rout
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha (751004), India
| | - Atala Bihari Jena
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (02115), United States of America
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh (221005), India
| | - Kali Prasad Pattanaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh (221005), India
| | - Shyam S Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu (8080196), Japan
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Sanatan Majhi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (02115), United States of America
| | - Kshitij Rb Singh
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu (8080196), Japan.
| | - Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha (751004), India.
| |
Collapse
|
8
|
Song N, Sun S, Chen K, Wang Y, Wang H, Meng J, Guo M, Zhang XD, Zhang R. Emerging nanotechnology for Alzheimer's disease: From detection to treatment. J Control Release 2023; 360:392-417. [PMID: 37414222 DOI: 10.1016/j.jconrel.2023.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Alzheimer's disease (AD), one of the most common chronic neurodegenerative diseases, is characterized by memory impairment, synaptic dysfunction, and character mutations. The pathological features of AD are Aβ accumulation, tau protein enrichment, oxidative stress, and immune inflammation. Since the pathogenesis of AD is complicated and ambiguous, it is still challenging to achieve early detection and timely treatment of AD. Due to the unique physical, electrical, magnetic, and optical properties of nanoparticles (NPs), nanotechnology has shown great potential for detecting and treating AD. This review provides an overview of the latest developments in AD detection via nanotechnology based on NPs with electrochemical sensing, optical sensing, and imaging techniques. Meanwhile, we highlight the important advances in nanotechnology-based AD treatment through targeting disease biomarkers, stem-cell therapy and immunotherapy. Furthermore, we summarize the current challenges and present a promising prospect for nanotechnology-based AD diagnosis and intervention.
Collapse
Affiliation(s)
- Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Ke Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yang Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jian Meng
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Ruiping Zhang
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
9
|
Lehmann DJ, Elshorbagy A, Hurley MJ. Many Paths to Alzheimer's Disease: A Unifying Hypothesis Integrating Biological, Chemical, and Physical Risk Factors. J Alzheimers Dis 2023; 95:1371-1382. [PMID: 37694367 DOI: 10.3233/jad-230295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Sporadic Alzheimer's disease (AD) is a complex, multifactorial disease. We should therefore expect to find many factors involved in its causation. The known neuropathology seen at autopsy in patients dying with AD is not consistently seen in all patients with AD and is sometimes seen in patients without dementia. This suggests that patients follow different paths to AD, with different people having slightly different combinations of predisposing physical, chemical and biologic risk factors, and varying neuropathology. This review summarizes what is known of the biologic and chemical predisposing factors and features in AD. We postulate that, underlying the neuropathology of AD is a progressive failure of neurons, with advancing age or other morbidity, to rid themselves of entropy, i.e., the disordered state resulting from brain metabolism. Understanding the diverse causes of AD may allow the development of new therapies targeted at blocking the paths that lead to dementia in each subset of patients.
Collapse
Affiliation(s)
- Donald J Lehmann
- Oxford Project to Investigate Memory and Ageing (OPTIMA), Department of Pharmacology, University of Oxford, Oxford, UK
| | - Amany Elshorbagy
- Department of Pharmacology, University of Oxford, Oxford, UK
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Michael J Hurley
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|