Peitzman ER, Zaidman NA, Maniak PJ, O'Grady SM. Carvedilol binding to β2-adrenergic receptors inhibits CFTR-dependent anion secretion in airway epithelial cells.
Am J Physiol Lung Cell Mol Physiol 2015;
310:L50-8. [PMID:
26566905 DOI:
10.1152/ajplung.00296.2015]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/06/2015] [Indexed: 01/14/2023] Open
Abstract
Carvedilol functions as a nonselective β-adrenergic receptor (AR)/α1-AR antagonist that is used for treatment of hypertension and heart failure. Carvedilol has been shown to function as an inverse agonist, inhibiting G protein activation while stimulating β-arrestin-dependent signaling and inducing receptor desensitization. In the present study, short-circuit current (Isc) measurements using human airway epithelial cells revealed that, unlike β-AR agonists, which increase Isc, carvedilol decreases basal and 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate-stimulated current. The decrease in Isc resulted from inhibition of the cystic fibrosis transmembrane conductance regulator (CFTR). The carvedilol effect was abolished by pretreatment with the β2-AR antagonist ICI-118551, but not the β1-AR antagonist atenolol or the α1-AR antagonist prazosin, indicating that its inhibitory effect on Isc was mediated through interactions with apical β2-ARs. However, the carvedilol effect was blocked by pretreatment with the microtubule-disrupting compound nocodazole. Furthermore, immunocytochemistry experiments and measurements of apical CFTR expression by Western blot analysis of biotinylated membranes revealed a decrease in the level of CFTR protein in monolayers treated with carvedilol but no significant change in monolayers treated with epinephrine. These results demonstrate that carvedilol binding to apical β2-ARs inhibited CFTR current and transepithelial anion secretion by a mechanism involving a decrease in channel expression in the apical membrane.
Collapse