Martínez-Laorden E, Navarro-Zaragoza J, Milanés MV, Laorden ML, Almela P. Cardiac Protective Role of Heat Shock Protein 27 in the Stress Induced by Drugs of Abuse.
Int J Mol Sci 2020;
21:E3623. [PMID:
32455528 PMCID:
PMC7279295 DOI:
10.3390/ijms21103623]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 11/16/2022] Open
Abstract
Heat shock proteins (HSP) are induced after different stress situations. Some of these proteins, particularly HSP-27, function as markers to indicate cellular stress or damage and protect the heart during addictive processes. Morphine withdrawal induces an enhancement of sympathetic activity in parallel with an increased HSP-27 expression and phosphorylation, indicating a severe situation of stress. HSP-27 can interact with different intracellular signaling pathways. Propranolol and SL-327 were able to antagonize the activation of hypothalamic-pituitary adrenal (HPA) axis and the phosphorylation of HSP-27 observed during morphine withdrawal. Therefore, β-adrenergic receptors and the extracellular signal-regulated kinase (ERK) pathway would be involved in HPA axis activity, and consequently, in HSP-27 activation. Finally, selective blockade of corticotrophin releasing factor (CRF)-1 receptor and the genetic deletion of CRF1 receptors antagonize cardiac adaptive changes. These changes are increased noradrenaline (NA) turnover, HPA axis activation and decreased HSP-27 expression and phosphorylation. This suggests a link between the HPA axis and HSP-27. On the other hand, morphine withdrawal increases µ-calpain expression, which in turn degrades cardiac troponin T (cTnT). This fact, together with a co-localization between cTnT and HSP-27, suggests that this chaperone avoids the degradation of cTnT by µ-calpain, correcting the cardiac contractility abnormalities observed during addictive processes. The aim of our research is to review the possible role of HSP-27 in the cardiac changes observed during morphine withdrawal and to understand the mechanisms implicated in its cardiac protective functions.
Collapse