1
|
Al Kury LT, Voitychuk OI, Ali RM, Galadari S, Yang KHS, Howarth FC, Shuba YM, Oz M. Effects of endogenous cannabinoid anandamide on excitation-contraction coupling in rat ventricular myocytes. Cell Calcium 2014; 55:104-18. [PMID: 24472666 DOI: 10.1016/j.ceca.2013.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/25/2013] [Accepted: 12/26/2013] [Indexed: 02/08/2023]
Abstract
A role for anandamide (N-arachidonoyl ethanolamide; AEA), a major endocannabinoid, in the cardiovascular system in various pathological conditions has been reported in earlier reports. In the present study, the effects of AEA on contractility, Ca2+ signaling, and action potential (AP) characteristics were investigated in rat ventricular myocytes. Video edge detection was used to measure myocyte shortening. Intracellular Ca2+ was measured in cells loaded with the fluorescent indicator fura-2 AM. AEA (1 μM) caused a significant decrease in the amplitudes of electrically evoked myocyte shortening and Ca2+ transients. However, the amplitudes of caffeine-evoked Ca2+ transients and the rate of recovery of electrically evoked Ca2+ transients following caffeine application were not altered. Biochemical studies in sarcoplasmic reticulum (SR) vesicles from rat ventricles indicated that AEA affected Ca2+ -uptake and Ca2+ -ATPase activity in a biphasic manner. [3H]-ryanodine binding and passive Ca2+ release from SR vesicles were not altered by 10 μM AEA. Whole-cell patch-clamp technique was employed to investigate the effect of AEA on the characteristics of APs. AEA (1 μM) significantly decreased the duration of AP. The effect of AEA on myocyte shortening and AP characteristics was not altered in the presence of pertussis toxin (PTX, 2 μg/ml for 4 h), AM251 and SR141716 (cannabinoid type 1 receptor antagonists; 0.3 μM) or AM630 and SR 144528 (cannabinoid type 2 receptor antagonists; 0.3 μM). The results suggest that AEA depresses ventricular myocyte contractility by decreasing the action potential duration (APD) in a manner independent of CB1 and CB2 receptors.
Collapse
MESH Headings
- Action Potentials/drug effects
- Animals
- Arachidonic Acids/pharmacology
- Caffeine/pharmacology
- Calcium/analysis
- Calcium/metabolism
- Calcium Signaling/drug effects
- Endocannabinoids/pharmacology
- Fura-2/chemistry
- Heart Ventricles/cytology
- In Vitro Techniques
- Indoles/pharmacology
- Male
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/physiology
- Pertussis Toxin/toxicity
- Piperidines/pharmacology
- Polyunsaturated Alkamides/pharmacology
- Pyrazoles/pharmacology
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Sarcoplasmic Reticulum/metabolism
- Transport Vesicles/drug effects
- Transport Vesicles/metabolism
Collapse
Affiliation(s)
- Lina T Al Kury
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Oleg I Voitychuk
- Bogomoletz Institute of Physiology and International Center of Molecular Physiology, National Academy of Sciences of Ukraine, Kyiv-24, Ukraine
| | - Ramiz M Ali
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Sehamuddin Galadari
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Engineering, Chapman University, One University Drive, Orange, CA 92866, USA
| | - Frank Christopher Howarth
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Yaroslav M Shuba
- Bogomoletz Institute of Physiology and International Center of Molecular Physiology, National Academy of Sciences of Ukraine, Kyiv-24, Ukraine
| | - Murat Oz
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Czikora Á, Lizanecz E, Boczán J, Daragó A, Papp Z, Édes I, Tóth A. Vascular metabolism of anandamide to arachidonic acid affects myogenic constriction in response to intraluminal pressure elevation. Life Sci 2012; 90:407-15. [DOI: 10.1016/j.lfs.2011.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 11/03/2011] [Accepted: 12/17/2011] [Indexed: 10/14/2022]
|
3
|
Abstract
PURPOSE The generation of hyperpolarising vasorelaxant endothelial cytochrome P450 epoxygenase (CYP)-derived metabolites of arachidonic may provide beneficial effects for the treatment of cardiovascular diseases in which the bioavailability of NO is impaired. The cannabinoid methanandamide has vasodilatory properties linked to hyperpolarisation. The aim of the present work was to investigate the vasorelaxant effects of methanandamide in rat aorta, focusing on the role of cytochrome P450 pathway. METHODS Changes in isometric tension in response to a cumulative concentration-response curve of methanandamide (1 nM-100 μM) were recorded in aortic rings from male Wistar rats. The involvement of cannabinoid receptors, endothelial nitric oxide (NO)-, prostacyclin- and some hyperpolarising-mediated pathways were investigated. The activation of large-conductance Ca(2+)-activated K(+) (BKCa) channels have also been evaluated. RESULTS Methanandamide provoked an endothelium-dependent vasorelaxation in rat aorta, reaching a maximal effect (Rmax) of 67% ± 2.6%. This vasorelaxation was clearly inhibited by the combination of CB(1) and CB(2) cannabinoid antagonists (Rmax: 21.6% ± 1.3%) and by the combination of guanylate cyclase and CYP inhibitors (Rmax: 16.7% ± 1.1%). The blockade induced separately by guanylate cyclase (31.3% ± 2.8%) or CYP (36.3% ± 6.6%) inhibitors on methanandamide vasorelaxation was not significantly modified by either CB(1) or CB(2) inhibition. BKCa channels inhibition caused a partial and significant inhibition of the methanandamide vasorelaxation (Rmax: 39.9% ± 3.3%). CONCLUSIONS Methanandamide endothelium-dependent vasorelaxation is mediated by CB(1) and CB(2) cannabinoid receptors. The NO- and CYP-mediated pathways contribute in a concurrent manner in this vascular effect. Stimulation of both cannabinoid receptor subtypes is indistinctly linked to NO or CYP routes to cause vasorelaxation.
Collapse
|
4
|
Herradón E, Martín MI, López-Miranda V. Characterization of the vasorelaxant mechanisms of the endocannabinoid anandamide in rat aorta. Br J Pharmacol 2007; 152:699-708. [PMID: 17704831 PMCID: PMC2190007 DOI: 10.1038/sj.bjp.0707404] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Studies in isolated preparations of vascular tissue (mainly resistance vessels) provide evidence that anandamide exerts vasorelaxation. The aim of the present work was to further characterize the mechanisms involved in the vascular response induced by anandamide in a conduit vessel, rat aorta. EXPERIMENTAL APPROACH Isometric tension changes in response to a cumulative concentration-response curve of anandamide (1 nM-100 micro M) were recorded in aortic rings from male Wistar rats. The involvement of a number of factors in this relaxation was investigated including endothelium-derived vasorelaxant products, cannabinoid and vanilloid receptors (transient potential vanilloid receptor-1 (TRPV1)), release of calcitonin gene-related peptide (CGRP), anandamide metabolism and the membrane transporter for anandamide. KEY RESULTS Anandamide caused a significant concentration-dependent vasorelaxation in rat aorta. This vasorelaxation was significantly inhibited by Pertussis toxin, by a non-CB1/non-CB2 cannabinoid receptor antagonist, by endothelial denudation, by inhibition of nitric oxide synthesis or inhibition of prostanoid synthesis via cyclooxygenase-2 (COX-2), by blockade of prostaglandin receptors EP4 and by a fatty acid amino hydrolase inhibitor. Antagonists for CB1, CB2, TRPV1 or CGRP receptors, an inhibitor of the release of endothelium-derived hyperpolarizing factor, and an inhibitor of anandamide transport did not modify the vascular response to anandamide. CONCLUSIONS AND IMPLICATIONS Our results demonstrate, for the first time, the involvement of the non-CB1/non-CB2 cannabinoid receptor and an anandamide-arachidonic acid-COX-2 derived metabolite (which acts on EP4 receptors) in the endothelial vasorelaxation caused by anandamide in rat aorta.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/physiology
- Apamin/pharmacology
- Arachidonic Acids/pharmacology
- Benzamides/pharmacology
- Calcitonin Gene-Related Peptide/pharmacology
- Camphanes/pharmacology
- Cannabinoid Receptor Modulators/pharmacology
- Capsaicin/analogs & derivatives
- Capsaicin/pharmacology
- Carbamates/pharmacology
- Charybdotoxin/pharmacology
- Dose-Response Relationship, Drug
- Endocannabinoids
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- In Vitro Techniques
- Indomethacin/pharmacology
- Isoindoles/pharmacology
- Male
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide/antagonists & inhibitors
- Nitric Oxide/biosynthesis
- Peptide Fragments/pharmacology
- Piperidines/pharmacology
- Polyunsaturated Alkamides/pharmacology
- Pyrazoles/administration & dosage
- Pyrazoles/pharmacology
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Rimonabant
- Sulfonamides/pharmacology
- Vasodilation/drug effects
- Vasodilation/physiology
Collapse
Affiliation(s)
- E Herradón
- Área de Farmacología, Dpto. Ciencias de la Salud III, Facultad Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón Madrid, Spain
| | - M I Martín
- Área de Farmacología, Dpto. Ciencias de la Salud III, Facultad Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón Madrid, Spain
| | - V López-Miranda
- Área de Farmacología, Dpto. Ciencias de la Salud III, Facultad Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón Madrid, Spain
- Author for correspondence:
| |
Collapse
|
5
|
Yang J, Dhawan V, Morrish DW, Kaufman S. Bimodal effects of chronically administered neurokinin B (NKB) on in vivo and in vitro cardiovascular responses in female rats. ACTA ACUST UNITED AC 2007; 143:136-42. [PMID: 17573134 DOI: 10.1016/j.regpep.2007.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 04/10/2007] [Accepted: 05/05/2007] [Indexed: 10/23/2022]
Abstract
The in vivo cardiovascular effects of acutely administered neurokinin B (NKB) have been attributed both to direct effects on vascular tone and to indirect effects on central neuroendocrine control of the circulation. We proposed: 1) that a modest long-term increase in plasma NKB levels would decrease mean arterial pressure (MAP) due to attenuated peripheral vascular tone, and 2) that chronic high-dose NKB would increase MAP, due to increased sympathetic outflow which would override the peripheral vasodilation. We examined the in vivo and in vitro cardiovascular effects of chronic peripheral NKB. Low- (1.8 nmol/h) or high- (20 nmol/h) dose NKB was infused into conscious female rats bearing telemetric pressure transducers. MAP, heart rate (HR) and the pressor responses to I.V. phenylephrine (PE, 8 microg) and angiotensin II (Ang II, 150 ng) were measured. Concentration-response curves of small mesenteric arteries were constructed to PE using wire myography. Low-dose NKB reduced basal MAP (88+/-2 mm Hg to 83+/-2 mm Hg), did not affect resting HR, reduced the pressor responses to PE, and attenuated the maximal constriction of mesenteric arteries to PE and KCl. By contrast, high-dose NKB increased basal MAP (86+/-1 mm Hg to 89+/-1 mm Hg), increased HR (350+/-3 beats/min to 371+/-3 beats/min), increased the pressor responses to Ang II and, contrary to our hypothesis, increased the maximum contractile responses of mesenteric arteries to PE and KCl. The cardiovascular effects of NKB are thus dose-dependent: whereas chronic low-dose NKB directly modulates vascular tone to reduce blood pressure, chronic high-dose NKB induces an increase in blood pressure through both central (indirect) and peripheral (direct) pathways.
Collapse
Affiliation(s)
- Jing Yang
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
6
|
Wheal AJ, Bennett T, Randall MD, Gardiner SM. Effects of chronic nitric oxide synthase inhibition on the cardiovascular responses to cannabinoids in vivo and in vitro. Br J Pharmacol 2007; 150:662-71. [PMID: 17245361 PMCID: PMC2043496 DOI: 10.1038/sj.bjp.0707136] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 11/09/2006] [Accepted: 11/28/2006] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Since the vasorelaxant potency of the endocannabinoid anandamide is enhanced in perfused mesenteric vascular beds from rats made hypertensive by chronic inhibition of NO synthase (L-NAME in drinking water), we hypothesized that in vivo, anandamide-induced vasodilatation would be similarly enhanced in L-NAME-treated animals. EXPERIMENTAL APPROACH Male Sprague-Dawley rats were given L-NAME in drinking water (7.5 mg kg(-1) day(-1)) for 4 weeks. Relaxant effects of anandamide were measured in perfused mesenteric vascular beds and in isolated small mesenteric arteries. Renal, mesenteric and hindquarters haemodynamic responses to anandamide, methanandamide, the synthetic cannabinoid agonist WIN-55212-2 and the cannabinoid receptor antagonist AM251 were assessed in conscious, chronically-instrumented rats. KEY RESULTS Vasorelaxant responses to anandamide were enhanced in the perfused mesentery but not in isolated mesenteric resistance vessels. In vivo, anandamide caused vasodilatation only in the hindquarters vascular bed and only in control rats. Methanandamide caused a late-onset (40 min after administration) tachycardia, mesenteric and hindquarters vasoconstriction, and renal vasodilatation, which did not differ between control and L-NAME-treated rats. AM251 had no effect on resting blood pressure in control or L-NAME-treated rats and WIN55212-2 caused pressor and renal and mesenteric vasoconstrictor responses, with hindquarters vasodilatation in both groups of animals. CONCLUSIONS AND IMPLICATIONS The results provide no in vivo evidence for enhanced vasodilator responses to cannabinoids, or up-regulation of endocannabinoids or their receptor activity, following chronic NO synthase inhibition.
Collapse
Affiliation(s)
- A J Wheal
- Centre for Integrated Systems Biology & Medicine, School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre Nottingham, UK
| | - T Bennett
- Centre for Integrated Systems Biology & Medicine, School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre Nottingham, UK
| | - M D Randall
- Centre for Integrated Systems Biology & Medicine, School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre Nottingham, UK
| | - S M Gardiner
- Centre for Integrated Systems Biology & Medicine, School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre Nottingham, UK
| |
Collapse
|
7
|
Dannert MT, Alsasua A, Herradon E, Martín MI, López-Miranda V. Vasorelaxant effect of Win 55,212-2 in rat aorta: New mechanisms involved. Vascul Pharmacol 2007; 46:16-23. [PMID: 16860612 DOI: 10.1016/j.vph.2006.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 05/22/2006] [Accepted: 06/09/2006] [Indexed: 10/24/2022]
Abstract
R(+)-[2,3-dihydro-5-methyl-3-[(moroholinyl)methyl] pyrrolo [1,2,3-de]-1,4benzoxazinyl]-1(1-naphthalenyl) methanone mesylate (Win 55,212-2) is a synthetic cannabinoid classically classified as a potent CB(1) and CB(2) agonist with high stereoselectivity and a slight preference for CB(2) cannabinoid receptors. Its vascular actions are not always explained by its binding to these cannabinoid receptors and new targets are being proposed. The aim of this study was to further assess the vascular actions of Win 55,212-2. Isometric tension changes in response to a cumulative concentration-response curve of Win 55,212-2 (10(-9) M-10(-4) M) were recorded in aortic rings from male Wistar rats. The involvement of the endothelium, cannabinoid receptors, vanilloid receptors, and the release of calcitonin gene related peptide (CGRP) was tested. Win 55,212-2 caused a concentration-dependent vasorelaxation in rat aorta. This vascular effect was significantly inhibited by endothelial denudation, inhibition of nitric oxide synthesis, a CB(1) receptor antagonist, a transient receptor potential vanilloid-1 antagonist, capsaicin desensibilization, and a CGRP receptor antagonist (P<0.001). CB(2) and non-CB(1)/non-CB(2) receptor antagonists only caused a slight inhibitory effect in vasorelaxation to Win 55,212-2. The present findings indicate that endothelium and nitric oxide-dependent vasorelaxation induced by Win 55,212-2 mainly involves vanilloid receptors while CB(1), CB(2) and nonCB(1)/nonCB(2) cannabinoid receptors have a minor participation in its vascular effect.
Collapse
Affiliation(s)
- M T Dannert
- Universidad Complutense de Madrid, Facultad de Medicina, Dpto Farmacología, Avda Complutense s/n 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
8
|
Underdown NJ, Hiley CR, Ford WR. Anandamide reduces infarct size in rat isolated hearts subjected to ischaemia-reperfusion by a novel cannabinoid mechanism. Br J Pharmacol 2006; 146:809-16. [PMID: 16158067 PMCID: PMC1751211 DOI: 10.1038/sj.bjp.0706391] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Although the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide share a similar pharmacology, 2-AG reportedly limits myocardial ischaemia-reperfusion injury whereas anandamide does not. We therefore investigated whether or not anandamide reduces infarct size and which, if any, of the known cannabinoid-signalling pathways are involved. Rat isolated perfused hearts were subjected to global, no-flow ischaemia (30 min) and reperfusion (1 h). Agonists were present from 5 min before ischaemia until the end of reperfusion. Antagonists, where used, were present throughout the protocol. Recovery of left ventricular developed pressure and coronary flow was incomplete in control hearts and not significantly affected by any drug treatment. In vehicle-treated hearts, 26+/-3% (n=13) of the left ventricle was infarcted at the end of reperfusion. Infarction of the left ventricle was significantly reduced after 1 microM anandamide (10+/-1%, n=7) or 1 microM methanandamide (12+/-4%, n=6) but not 1 microM HU210. Neither ACPA (1 microM; CB1 receptor agonist) nor JWH133 (1 microM; CB2 receptor agonist), individually or combined significantly affected infarct size. Anandamide (1 microM) did not reduce infarct size in the presence of the CB1 receptor antagonist rimonabant (SR141716A, 1 microM) or the CB2 receptor antagonist, SR144528 (1 microM). Despite sensitivity to CB1 and CB2 receptor antagonists, the infarct-limiting action of anandamide was not mimicked by agonists selective for CB1 or CB2 receptors suggesting the involvement of a novel cannabinoid site of action.
Collapse
Affiliation(s)
- Nichola J Underdown
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3XF
| | - C Robin Hiley
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD
| | - William R Ford
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3XF
- Author for correspondence:
| |
Collapse
|