1
|
Isidoro-García L, Villalpando DM, Ferrer M. Vasomotor action of androgens in the mesenteric artery of hypertensive rats. Role of perivascular innervation. PLoS One 2021; 16:e0246254. [PMID: 33529222 PMCID: PMC7853503 DOI: 10.1371/journal.pone.0246254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/18/2021] [Indexed: 11/18/2022] Open
Abstract
Androgens may exert cardiovascular protective actions by regulating the release and function of different vascular factors. In addition, testosterone (TES) and its 5-reduced metabolites, 5α- and 5β-dihydrotestosterone (5α- and 5β-DHT) induce vasorelaxant and hypotensive effects. Furthermore, hypertension has been reported to alter the release and function of the neurotransmitters nitric oxide (NO), calcitonin gene-related peptide (CGRP) and noradrenaline (NA). Since the mesenteric arteries possess a dense perivascular innervation and significantly regulate total peripheral vascular resistance, the objective of this study was to analyze the effect of TES, 5α- and 5β-DHT on the neurogenic release and vasomotor function of NO, CGRP and NA. For this purpose, the superior mesenteric artery from male spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats was used to analyze: (i) the effect of androgens (10 nM, incubated for 30 min) on the neurogenic release of NO, CGRP and NA and (ii) the vasoconstrictor-response to NA and the vasodilator responses to the NO donor, sodium nitroprusside (SNP) and exogenous CGRP. The results showed that TES, 5α- or 5β-DHT did not modify the release of NO, CGRP or NA induced by electrical field stimulation (EFS) in the arteries of SHR; however, in the arteries of WKY rats androgens only caused an increase in EFS-induced NO release. Moreover, TES, and especially 5β-DHT, increased the vasodilator response induced by SNP and CGRP in the arteries of SHR. These findings could be contributing to the hypotensive/antihypertensive efficacy of 5β-DHT previously described in conscious SHR and WKY rats, pointing to 5β- DHT as a potential drug for the treatment of hypertension.
Collapse
Affiliation(s)
- Lucía Isidoro-García
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Diva M. Villalpando
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Mercedes Ferrer
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| |
Collapse
|
2
|
Xavier FE. Nitrergic perivascular innervation in health and diseases: Focus on vascular tone regulation. Acta Physiol (Oxf) 2020; 230:e13484. [PMID: 32336027 DOI: 10.1111/apha.13484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
For a long time, the vascular tone was considered to be regulated exclusively by tonic innervation of vasoconstrictor adrenergic nerves. However, accumulating experimental evidence has revealed the existence of nerves mediating vasodilatation, including perivascular nitrergic nerves (PNN), in a wide variety of mammalian species. Functioning of nitrergic vasodilator nerves is evidenced in several territories, including cerebral, mesenteric, pulmonary, renal, penile, uterine and cutaneous arteries. Nitric oxide (NO) is the main neurogenic vasodilator in cerebral arteries and acts as a counter-regulatory mechanism for adrenergic vasoconstriction in other vascular territories. In the penis, NO relaxes the vascular and cavernous smooth muscles leading to penile erection. Furthermore, when interacting with other perivascular nerves, NO can act as a neuromodulator. PNN dysfunction is involved in the genesis and maintenance of vascular disorders associated with arterial and portal hypertension, diabetes, ageing, obesity, cirrhosis and hormonal changes. For example defective nitrergic function contributes to enhanced sympathetic neurotransmission, vasoconstriction and blood pressure in some animal models of hypertension. In diabetic animals and humans, dysfunctional nitrergic neurotransmission in the corpus cavernosum is associated with erectile dysfunction. However, in some vascular beds of hypertensive and diabetic animals, an increased PNN function has been described as a compensatory mechanism to the increased vascular resistance. The present review summarizes current understanding on the role of PNN in control of vascular tone, its alterations under different conditions and the associated mechanisms. The knowledge of these changes can serve to better understand the mechanisms involved in these disorders and help in planning new treatments.
Collapse
Affiliation(s)
- Fabiano E. Xavier
- Departamento de Fisiologia e Farmacologia Centro de Biociências Universidade Federal de Pernambuco Recife Brazil
| |
Collapse
|
3
|
The toxic effects of monosodium glutamate (MSG) - The involvement of nitric oxide, prostanoids and potassium channels in the reactivity of thoracic arteries in MSG-obese rats. Toxicol Appl Pharmacol 2018; 359:62-69. [PMID: 30244120 DOI: 10.1016/j.taap.2018.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/28/2018] [Accepted: 09/15/2018] [Indexed: 12/30/2022]
Abstract
We investigated the potential effects of monosodium glutamate (MSG)-induced obesity with regards to nitric oxide and prostanoid production, as well as potassium channel function, in rat thoracic arteries. Newborn male Wistar rats were injected intraperitoneally with typically reported MSG (4.0 mg/g) once daily for 4 consecutive days. At 90 days postnatal, the rats were sacrificed and the thoracic aortas were evaluated for vascular responses and for prostanoid production. Nitric oxide was studied with calcium ionophore (A23187), acetylcholine (ACh) and sodium nitroprusside (SNP). The release of prostanoids was measured under basal and ACh-stimulated conditions, and the vasomotor effect of exogenous thromboxane A2 mimetic, U46619 was assessed. Potassium channel activities were analyzed using an NS1619 opener for BKCa channels and pinacidil for KATP channels. Arteries from MSG-obese rats exhibited a reduced maximal contraction to potassium chloride and hyper-responsiveness to U46619, suggesting that MSG also alters the responsiveness of vascular smooth muscles. The endothelium-dependent relaxation to ACh and A23817 was attenuated, suggesting low nitric oxide bioavailability. The hypersensitivity of arteries to an exogenous nitric oxide donor, SNP, occurred. The secondary contraction to A23817 was augmented, suggesting increased activation of the prostanoid receptor. The prostanoid release was increased in both basal- and acetylcholine-stimulated rings. In addition, down-regulation of KATP and BKCa channels influenced hyperpolarizing mechanisms. Our findings suggest that increased prostanoid production and hypersensitivity to thromboxane A2 together with down-regulation of potassium channels and low nitric oxide bioavailability may contribute to the increase in blood pressure found in adult MSG-obese male rats.
Collapse
|
4
|
Sastre E, Caracuel L, Prieto I, Llévenes P, Aller MÁ, Arias J, Balfagón G, Blanco-Rivero J. Decompensated liver cirrhosis and neural regulation of mesenteric vascular tone in rats: role of sympathetic, nitrergic and sensory innervations. Sci Rep 2016; 6:31076. [PMID: 27484028 PMCID: PMC4971476 DOI: 10.1038/srep31076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/14/2016] [Indexed: 02/08/2023] Open
Abstract
We evaluated the possible alterations produced by liver cholestasis (LC), a model of decompensated liver cirrhosis in sympathetic, sensory and nitrergic nerve function in rat superior mesenteric arteries (SMA). The vasoconstrictor response to electrical field stimulation (EFS) was greater in LC animals. Alpha-adrenoceptor antagonist phentolamine and P2 purinoceptor antagonist suramin decreased this response in LC animals more than in control animals. Both non-specific nitric oxide synthase (NOS) L-NAME and calcitonin gene related peptide (CGRP) (8-37) increased the vasoconstrictor response to EFS more strongly in LC than in control segments. Vasomotor responses to noradrenaline (NA) or CGRP were greater in LC segments, while NO analogue DEA-NO induced a similar vasodilation in both experimental groups. The release of NA was not modified, while those of ATP, nitrite and CGRP were increased in segments from LC. Alpha 1 adrenoceptor, Rho kinase (ROCK) 1 and 2 and total myosin phosphatase (MYPT) expressions were not modified, while alpha 2B adrenoceptor, nNOS expression and nNOS and MYPT phosphorylation were increased by LC. Together, these alterations might counteract the increased splanchnic vasodilation observed in the last phases of decompensated liver cirrhosis.
Collapse
Affiliation(s)
- Esther Sastre
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, España.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, España
| | - Laura Caracuel
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, España.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, España
| | - Isabel Prieto
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, España.,Departamento de Cirugía General y Digestiva, Hospital la Paz, Madrid, España
| | - Pablo Llévenes
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, España
| | - M Ángeles Aller
- Cátedra de Cirugía, Facultad de Medicina, Universidad Complutense de Madrid, España
| | - Jaime Arias
- Cátedra de Cirugía, Facultad de Medicina, Universidad Complutense de Madrid, España
| | - Gloria Balfagón
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, España.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, España
| | - Javier Blanco-Rivero
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, España.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, España
| |
Collapse
|
5
|
Cabral PHB, de Morais Campos R, Fonteles MC, Santos CF, Leal Cardoso JH, do Nascimento NRF. Effects of the essential oil of Croton zehntneri and its major components, anethole and estragole, on the rat corpora cavernosa. Life Sci 2014; 112:74-81. [PMID: 25084123 DOI: 10.1016/j.lfs.2014.07.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 07/10/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
Abstract
AIMS The effects of the essential oil of Croton zehntneri (EOCz) and its major components anethole, estragole and methyl eugenol were evaluated in phenylephrine precontracted rat corpora cavernosa (RCC). MAIN METHODS RCC strips were mounted in 5 ml organ baths for isometric recordings of tension, precontracted with 10 μM phenylephrine and exposed to test drugs. KEY FINDINGS All major compounds relaxed RCC. The order of potency was estragole>anethole>methyl eugenol. The maximal relaxation to EOCz and methyl eugenol was 62.67% (IC50 of 1.67 μM) and 45.8% (IC50 of 1.7 μM), respectively. Estragole relaxed RCC with an IC50 of 0.6 μM (maximal relaxation-76.6%). The maximal relaxation to estragole was significantly reduced by L-NAME (43.46%-IC50 of 1.4 μM), ODQ (53.11%-IC50 of 0.83 μM) and indomethacin (24.41%-IC50 of 1.3 μM). On the other hand, anethole relaxed RCC by 66.73% (IC50 of 0.96 μM) and this relaxation was blunted by indomethacin (35.65%-IC50 of 1.6 μM). Both estragole and anethole increased the relaxation achieved upon electrical stimulation. Both compounds increased the levels of cAMP (estragole by 3-fold and anethole by 2-fold when compared to controls). Estragole also increased the levels of cGMP (0.5-fold). SIGNIFICANCE The higher potency of these compounds to relax corpora cavernosa smooth muscle may form the pharmacological basis for the use of such substances as leading compounds in the search of alternative treatments of erectile dysfunction.
Collapse
Affiliation(s)
- Pedro Henrique Bezerra Cabral
- Ceará State University, Superior Institute of Biomedicine, Laboratory of Renal and Cardiovascular Pharmacology, Fortaleza, Ceará, Brazil
| | - Rafael de Morais Campos
- Ceará State University, Superior Institute of Biomedicine, Laboratory of Renal and Cardiovascular Pharmacology, Fortaleza, Ceará, Brazil
| | - Manassés Claudino Fonteles
- Ceará State University, Superior Institute of Biomedicine, Laboratory of Renal and Cardiovascular Pharmacology, Fortaleza, Ceará, Brazil
| | - Cláudia Ferreira Santos
- Ceará State University, Superior Institute of Biomedicine, Laboratory of Renal and Cardiovascular Pharmacology, Fortaleza, Ceará, Brazil
| | | | | |
Collapse
|
6
|
Blanco-Rivero J, Márquez-Rodas I, Sastre E, Cogolludo A, Pérez-Vizcaíno F, del Campo L, Nava MP, Balfagón G. Cirrhosis decreases vasoconstrictor response to electrical field stimulation in rat mesenteric artery: role of calcitonin gene-related peptide. Exp Physiol 2010; 96:275-86. [PMID: 21148625 DOI: 10.1113/expphysiol.2010.055822] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Our study determines alterations in the vasoconstrictor response elicited by electric field stimulation (EFS) in mesenteric arteries from cirrhotic rats treated with CCl(4), and how calcitonin gene-related peptide (CGRP) participates in this response. Vasoconstriction induced by EFS was analysed in the absence and presence of the CGRP receptor antagonist CGRP(8-37) in arterial segments from control and cirrhotic rats. The vasodilator response to exogenous CGRP was tested in both groups of rats, and the interference of the guanylate cyclase inhibitor ODQ or the K(ATP) channel blocker glibenclamide was analysed only in segments from cirrhotic rats. The vasodilator response to the K(ATP) channel opener pinacidil and to 8-bromo-cyclic GMP was tested. The K(ATP) currents were recorded using the patch-clamp technique. Expression of receptor activity-modifying protein 1 (RAMP1), calcitonin receptor-like receptor, Kir 6.1 and sulfonylurea receptor 2B (SUR2B) was also analysed. Release of CGRP and cGMP was measured. The EFS-elicited vasoconstriction was less in segments from cirrhotic rats. The presence of CGRP(8-37) increased the EFS-induced response only in segments from cirrhotic rats. The CGRP-induced vasodilatation was greater in segments from cirrhotic rats, and was inhibited by ODQ or glibenclamide. Both pinacidil and 8-bromo-cyclic GMP induced a stronger vasodilator response in segments from cirrhotic rats. Pinacidil induced greater K(ATP) currents in cirrhotic myocytes. Expression of RAMP1, calcitonin receptor-like receptor, Kir 6.1 and SUR2B was not modified by liver cirrhosis. Liver cirrhosis increased CGRP release, but did not modify cGMP formation. The decreased vasoconstrictor response to EFS in cirrhosis is mediated by increased vasodilator response to CGRP, as well as increased K(ATP) channel gating. This effect of CGRP may play a role in the splanchnic vasodilatation present in liver cirrhosis.
Collapse
Affiliation(s)
- Javier Blanco-Rivero
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Martorell A, Sagredo A, Aras-López R, Balfagón G, Ferrer M. Ovariectomy increases the formation of prostanoids and modulates their role in acetylcholine-induced relaxation and nitric oxide release in the rat aorta. Cardiovasc Res 2009; 84:300-8. [PMID: 19567483 DOI: 10.1093/cvr/cvp214] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AIMS This study examines the effect of ovarian function on thromboxane A(2) (TXA(2)), prostaglandin (PG) I(2), PGF(2alpha), and PGE(2) release as well as the role of these substances in nitric oxide (NO) release and acetylcholine (ACh)-mediated relaxation. METHODS AND RESULTS Aortic segments from ovariectomized and control female Sprague-Dawley rats were used. Cyclooxygenase (COX-1 and COX-2) expression was studied. ACh-induced relaxation was analysed in the absence and presence of the COX-2 inhibitor NS-398, the TXA(2) synthesis inhibitor furegrelate, the PGI(2) synthesis inhibitor tranylcypromine (TCP), or the thromboxane-prostanoid receptor antagonist SQ-29548. TXA(2), PGI(2), PGF(2alpha), and PGE(2) release was measured, and the vasomotor effect of exogenous TXA(2), PGI(2,) PGF(2alpha), and PGE(2) was assessed. Basal and ACh-induced NO release in the absence and presence of NS-398, furegrelate, TCP, or TCP plus furegrelate was studied. Ovariectomy did not alter or increased COX-1 or COX-2 expression, respectively. NS-398 decreased, and furegrelate did not change, the ACh-induced relaxation in arteries from both groups. SQ29,548 decreased the ACh-induced relaxation only in aortas from ovariectomized rats. TCP decreased the ACh-induced relaxation in both groups, and furegrelate or SQ29,548 totally restored that response only in aortas from control rats. Ovariectomy increased the ACh-induced TXA(2), PGI(2), and PGE(2) release and the contractile responses induced by exogenous TXA(2), PGF(2alpha), or PGE(2), while it decreased the PGI(2)-induced vasodilator response. In aortas from control rats, NS-398 did not alter the ACh-induced NO release, and furegrelate, TCP, or TCP plus furegrelate increased that release. In arteries from ovariectomized rats, NS-398, furegrelate, TCP, or TCP plus furegrelate decreased the ACh-induced NO release. CONCLUSION Despite the prevalence of vasoconstrictor prostanoids derived from COX-2 in aortas from ovariectomized rats, the ACh-induced relaxation is maintained, probably as consequence of the positive regulation that prostanoids exert on eNOS activity.
Collapse
Affiliation(s)
- Aina Martorell
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|