1
|
Bouchet S, Tang R, Fava F, Legrand O, Bauvois B. The CNGRC-GG-D(KLAKLAK)2 peptide induces a caspase-independent, Ca2+-dependent death in human leukemic myeloid cells by targeting surface aminopeptidase N/CD13. Oncotarget 2017; 7:19445-67. [PMID: 26655501 PMCID: PMC4991394 DOI: 10.18632/oncotarget.6523] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/16/2015] [Indexed: 02/06/2023] Open
Abstract
The CD13 antigen's binding site for the Asn-Gly-Arg (NGR) motif enables NGR-containing chemotherapeutic drugs to be delivered to CD13-positive tumours. Human CD13-positive acute myeloid leukemia (AML) cells proliferate abnormally and escape death. Here, we show that the CNGRC-GG-D(KLAKLAK)2 peptide induces death in AML cell lines (U937, THP-1, NB4, HL-60) and primary blood cells from AML patients. Cell death was characterized as a caspase-independent mechanism, without DNA fragmentation, but phosphatidylserine externalization and membrane disruption. Our results demonstrate in U937 cells that (i) the NGR-peptide triggers the loss of mitochondrial potential(ΔΨm) and generates superoxide anion (O2-), (ii) N-acetyl-L-cysteine (NAC) and extra/intracellular Ca2+ chelators (BAPTA) prevent both O2- production and cell death, (iii) the Ca2+-channel blocker nifedipine prevents cell death (indicating that Ca2+ influx is the initial death trigger), and (iv) BAPTA, but not NAC, prevents ΔΨm loss (suggesting O2- is a mitochondrial downstream effector). AML cell lines and primary blasts responding to the lethal action of NGR-peptide express promatrix metalloproteinase-12 (proMMP-12) and its substrate progranulin (an 88 kDa cell survival factor). A cell-free assay highlighted proMMP-12 activation by O2-. Accordingly, NGR-peptide's downregulation of 88 kDa progranulin protein was prevented by BAPTA and NAC. Conversely, AML blast resistance to NGR-peptide is associated with the expression of a distinct, 105 kDa progranulin isoform. These results indicate that CNGRC-GG-D(KLAKLAK)2 induces death in AML cells through the Ca2+-mitochondria-O2.-pathway, and support the link between proMMP-12 activation and progranulin cleavage during cell death. Our findings may have implications for the understanding of tumour biology and treatment.
Collapse
Affiliation(s)
- Sandrine Bouchet
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Universités UPMC Paris 06, Université Paris Descartes Sorbonne Paris Cité, Paris, France.,Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Ruoping Tang
- Centre de Recherche de Saint-Antoine, INSERM UMRS 938, Service d'Hématologie, Hôpital St Antoine, Paris, France.,Sorbonne Universités UPMC Paris 06, Paris, France
| | - Fanny Fava
- Centre de Recherche de Saint-Antoine, INSERM UMRS 938, Service d'Hématologie, Hôpital St Antoine, Paris, France.,Sorbonne Universités UPMC Paris 06, Paris, France
| | - Ollivier Legrand
- Centre de Recherche de Saint-Antoine, INSERM UMRS 938, Service d'Hématologie, Hôpital St Antoine, Paris, France.,Sorbonne Universités UPMC Paris 06, Paris, France
| | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Universités UPMC Paris 06, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| |
Collapse
|
2
|
Solevåg AL, Schmölzer GM, O'Reilly M, Lu M, Lee TF, Hornberger LK, Nakstad B, Cheung PY. Myocardial perfusion and oxidative stress after 21% vs. 100% oxygen ventilation and uninterrupted chest compressions in severely asphyxiated piglets. Resuscitation 2016; 106:7-13. [PMID: 27344929 DOI: 10.1016/j.resuscitation.2016.06.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/17/2016] [Accepted: 06/14/2016] [Indexed: 11/19/2022]
Abstract
AIM Despite the minimal evidence, neonatal resuscitation guidelines recommend using 100% oxygen when chest compressions (CC) are needed. Uninterrupted CC in adult cardiopulmonary resuscitation (CPR) may improve CPR hemodynamics. We aimed to examine 21% oxygen (air) vs. 100% oxygen in 3:1 CC:ventilation (C:V) CPR or continuous CC with asynchronous ventilation (CCaV) in asphyxiated newborn piglets following cardiac arrest. METHODS Piglets (1-3 days old) were progressively asphyxiated until cardiac arrest and randomized to 4 experimental groups (n=8 each): air and 3:1 C:V CPR, 100% oxygen and 3:1 C:V CPR, air and CCaV, or 100% oxygen and CCaV. Time to return of spontaneous circulation (ROSC), mortality, and clinical and biochemical parameters were compared between groups. We used echocardiography to measure left ventricular (LV) stroke volume at baseline, at 30min and 4h after ROSC. Left common carotid artery blood pressure was measured continuously. RESULTS Time to ROSC (heart rate ≥100min(-1)) ranged from 75 to 592s and mortality 50-75%, with no differences between groups. Resuscitation with air was associated with higher LV stroke volume after ROSC and less myocardial oxidative stress compared to 100% oxygen groups. CCaV was associated with lower mean arterial blood pressure after ROSC and higher myocardial lactate than those of 3:1 C:V CPR. CONCLUSION In neonatal asphyxia-induced cardiac arrest, using air during CC may reduce myocardial oxidative stress and improve cardiac function compared to 100% oxygen. Although overall recovery may be similar, CCaV may impair tissue perfusion compared to 3:1 C:V CPR.
Collapse
Affiliation(s)
- Anne Lee Solevåg
- Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, Canada; Department of Pediatrics, University of Alberta, Edmonton, Canada; Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway.
| | - Georg M Schmölzer
- Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, Canada; Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Megan O'Reilly
- Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, Canada; Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Min Lu
- Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, Canada; Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Tze-Fun Lee
- Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, Canada; Department of Pediatrics, University of Alberta, Edmonton, Canada
| | | | - Britt Nakstad
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Po-Yin Cheung
- Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, Canada; Department of Pediatrics, University of Alberta, Edmonton, Canada
| |
Collapse
|
3
|
Hainsworth AH, Yeo NE, Weekman EM, Wilcock DM. Homocysteine, hyperhomocysteinemia and vascular contributions to cognitive impairment and dementia (VCID). Biochim Biophys Acta Mol Basis Dis 2015; 1862:1008-17. [PMID: 26689889 DOI: 10.1016/j.bbadis.2015.11.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/27/2015] [Accepted: 11/29/2015] [Indexed: 11/29/2022]
Abstract
Homocysteine is produced physiologically in all cells, and is present in plasma of healthy individuals (plasma [HCy]: 3-10μM). While rare genetic mutations (CBS, MTHFR) cause severe hyperhomocysteinemia ([HCy]: 100-200μM), mild-moderate hyperhomocysteinemia ([HCy]: 10-100μM) is common in older people, and is an independent risk factor for stroke and cognitive impairment. As B-vitamin supplementation (B6, B12 and folate) has well-validated homocysteine-lowering efficacy, this may be a readily-modifiable risk factor in vascular contributions to cognitive impairment and dementia (VCID). Here we review the biochemical and cellular actions of HCy related to VCID. Neuronal actions of HCy were at concentrations above the clinically-relevant range. Effects of HCy <100μM were primarily vascular, including myocyte proliferation, vessel wall fibrosis, impaired nitric oxide signalling, superoxide generation and pro-coagulant actions. HCy-lowering clinical trials relevant to VCID are discussed. Extensive clinical and preclinical data support HCy as a mediator for VCID. In our view further trials of combined B-vitamin supplementation are called for, incorporating lessons from previous trials and from recent experimental work. To maximise likelihood of treatment effect, a future trial should: supply a high-dose, combination supplement (B6, B12 and folate); target the at-risk age range; and target cohorts with low baseline B-vitamin status. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
Affiliation(s)
- Atticus H Hainsworth
- Cardiovascular and Cell Sciences Research Centre, St Georges University of London, London SW17 0RE, UK.
| | - Natalie E Yeo
- Cardiovascular and Cell Sciences Research Centre, St Georges University of London, London SW17 0RE, UK
| | - Erica M Weekman
- Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40536, USA
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40536, USA.
| |
Collapse
|
4
|
Collagen synthesis promoting pullulan–PEI–ascorbic acid conjugate as an efficient anti-cancer gene delivery vector. Carbohydr Polym 2015; 126:52-61. [DOI: 10.1016/j.carbpol.2015.03.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 02/21/2015] [Accepted: 03/09/2015] [Indexed: 11/20/2022]
|
5
|
Nassar M, Hiraishi N, Shimokawa H, Tamura Y, Otsuki M, Kasugai S, Ohya K, Tagami J. The inhibition effect of non-protein thiols on dentinal matrix metalloproteinase activity and HEMA cytotoxicity. J Dent 2014; 42:312-8. [DOI: 10.1016/j.jdent.2013.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 10/15/2013] [Accepted: 11/28/2013] [Indexed: 10/25/2022] Open
|
6
|
EMARA MARWAN, ALLALUNIS-TURNER JOAN. Effect of hypoxia on angiogenesis related factors in glioblastoma cells. Oncol Rep 2014; 31:1947-53. [DOI: 10.3892/or.2014.3037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/21/2014] [Indexed: 11/05/2022] Open
|
7
|
Sevin G, Ozsarlak-Sozer G, Keles D, Gokce G, Reel B, Ozgur HH, Oktay G, Kerry Z. Taurine inhibits increased MMP-2 expression in a model of oxidative stress induced by glutathione depletion in rabbit heart. Eur J Pharmacol 2013; 706:98-106. [DOI: 10.1016/j.ejphar.2013.02.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/21/2013] [Accepted: 02/24/2013] [Indexed: 10/27/2022]
|
8
|
In vitro screening of NADPH oxidase inhibitors and in vivo effects of L-leucinethiol on experimental autoimmune encephalomyelitis-induced mice. J Neurol Sci 2012; 318:36-44. [PMID: 22554692 DOI: 10.1016/j.jns.2012.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 04/03/2012] [Accepted: 04/05/2012] [Indexed: 11/22/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE), a Th1 polarized demyelinating disease of the central nervous system, shares many pathological and clinical similarities with multiple sclerosis (MS). The objectives of this study were i) to evaluate the suppressive effects of L-leucinethiol (LeuSH), a metalloprotease inhibitor on EAE-induced mice and ii) to study the effects of LeuSH on matrix metalloproteinase-9 (MMP-9), NADPH oxidase and cytokines (IFN-γ, IL-5 and IL-10) in tissues and plasma of EAE mice as a measure of potential markers associated with EAE disease. C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein (MOG35-55) peptide in complete Freund's adjuvant to induce EAE. A significant difference was observed in body weights and clinical signs of LeuSH (8 mg/kg) administered EAE-induced mice compared to control mice. The findings of this study include alterations in the enzymatic expression of MMP-9, NADPH oxidase and cytokine levels in the brain, spinal cord, spleen, thymus and plasma of inhibitor-treated EAE mice as well as EAE-induced mice. The enzyme activities of NADPH oxidase were inhibited by LeuSH. From these results, it can be considered that LeuSH acts as one of the antigen candidates in ameliorating the clinical symptoms of EAE disease in mice.
Collapse
|
9
|
Caruso R, Caselli C, Boroni C, Campolo J, Milazzo F, Cabiati M, Russo C, Parolini M, Giannessi D, Frigerio M, Parodi O. Relationship Between Myocardial Redox State and Matrix Metalloproteinase Activity in Patients on Left Ventricular Assist Device Support. Circ J 2011; 75:2387-96. [DOI: 10.1253/circj.cj-11-0118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raffaele Caruso
- CNR Clinical Physiology Institute, Cardiovascular Department, Niguarda Cà Granda Hospital Milan
| | | | - Chiara Boroni
- CNR Clinical Physiology Institute, Cardiovascular Department, Niguarda Cà Granda Hospital Milan
| | - Jonica Campolo
- CNR Clinical Physiology Institute, Cardiovascular Department, Niguarda Cà Granda Hospital Milan
| | | | | | - Claudio Russo
- Cardiovascular Department, Niguarda Cà Granda Hospital
| | - Marina Parolini
- CNR Clinical Physiology Institute, Cardiovascular Department, Niguarda Cà Granda Hospital Milan
| | | | | | - Oberdan Parodi
- CNR Clinical Physiology Institute, Cardiovascular Department, Niguarda Cà Granda Hospital Milan
- Cardiovascular Department, Niguarda Cà Granda Hospital
| |
Collapse
|
10
|
Emara M, Obaid L, Johnson S, Bigam DL, Cheung PY. Angiostatins decrease in the kidney of newborn piglets after hypoxia-reoxygenation. Eur J Pharmacol 2010; 644:203-8. [PMID: 20621087 DOI: 10.1016/j.ejphar.2010.06.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 06/11/2010] [Accepted: 06/24/2010] [Indexed: 02/06/2023]
Abstract
Little is known about the expression of kidney angiostatin in the hypoxia and reoxygenation of neonates. In this study, we compared the effect of 21% and 100% reoxygenation on kidney levels of angiostatin and its related factors in newborn piglets subjected to hypoxia-reoxygenation. Newborn piglets were subjected to 2h hypoxia followed by 1h of reoxygenation with either 21% or 100% oxygen and observed for 4days. There were 3 isoforms (38, 43 and 50kDa) of angiostatins identified in the kidney tissue of newborn piglets with the 38kDa being the major isoform (~60%). The 38kDa, but not 43 and 50kDa, angiostatin isoform correlated significantly with the levels of total angiostatin and plasminogen (r=0.95 and r=0.58, respectively). On day 4 of recovery in 100% hypoxic-reoxygenated group, there were decreases in kidney tissue levels of plasminogen, total angiostatin, angiostatin (38 and 43kDa, but not 50kDa), whereas no significant changes were found in the 21% hypoxic-reoxygenated group when compared to the sham-operated piglets with no hypoxia-reoxygenation. Both 21% and 100% hypoxic-reoxygenated groups did not show significant changes in kidney tissue levels of 50kDa angiostatin, MMP-2, MMP-9 and HIF-1alpha. In comparison to 21% oxygen, neonatal resuscitation with 100% oxygen decreased the kidney tissue levels of plasminogen and angiostatin that may play a role in neonatal kidney injury and altered renal development in adulthood.
Collapse
Affiliation(s)
- Marwan Emara
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | | | |
Collapse
|
11
|
Koch S, Volkmar CM, Kolb-Bachofen V, Korth HG, Kirsch M, Horn AHC, Sticht H, Pallua N, Suschek CV. A new redox-dependent mechanism of MMP-1 activity control comprising reduced low-molecular-weight thiols and oxidizing radicals. J Mol Med (Berl) 2008; 87:261-72. [PMID: 19034402 DOI: 10.1007/s00109-008-0420-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 10/15/2008] [Accepted: 11/06/2008] [Indexed: 01/03/2023]
Abstract
Matrix metalloproteinases (MMPs), a family of zinc-dependent proteinases, participate in remodeling and degradation of the extracellular matrix proteins. The activity of MMPs is thought to be predominately posttranslationally regulated via proteolytic activation of precursor zymogens or via their naturally occurring endogenous inhibitors. Here, using recombinant MMP-1, we investigated new redox-dependent mechanisms of proteinase activity regulation by low-molecular-weight thiols. We find that glutathione (GSH), cysteine, homocysteine, and N-acetylcysteine at physiological concentrations competitively reduce MMP-1 activity up to 75% with an efficiency of cysteine > or = GSH > homocysteine > N-acetylcysteine. In contrast, S-derivatized thiols completely lack this inhibitory activity. Interestingly, the competitive GSH-mediated inhibition of MMP-1-activity can be fully reversed abrogated by oxidizing radicals like (*)NO(2) or Trolox radicals, here generated by UVA irradiation of nitrite or Trolox, two relevant agents in human skin physiology. This redox-dependent reactivation of the inactive GSH-MMP-1-complex comprises GSH oxidation and is significantly inhibited in the presence of ascorbic acid, an effective (*)NO(2) and Trolox radical scavenger. We here offer a new concept of redox-sensitive control of MMP-1 activity based on the inhibitory effect of reduced thiols and reactivation by a mechanism comprising derivatization or oxidation of the MMP-1-bound inhibitory-acting thiol.
Collapse
Affiliation(s)
- Sabine Koch
- Institute of Biomedicine/Biochemistry, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Viappiani S, Nicolescu AC, Holt A, Sawicki G, Crawford BD, León H, van Mulligen T, Schulz R. Activation and modulation of 72kDa matrix metalloproteinase-2 by peroxynitrite and glutathione. Biochem Pharmacol 2008; 77:826-34. [PMID: 19046943 DOI: 10.1016/j.bcp.2008.11.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 11/03/2008] [Accepted: 11/04/2008] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinase-2 (MMP-2) has emerged as a key protease in various pathologies associated with oxidative stress, including myocardial ischemia-reperfusion, heart failure or inflammation. Peroxynitrite (ONOO(-)), an important effector of oxidative stress, was reported to activate some full length MMP zymogens, particularly in the presence of glutathione (GSH), but whether this occurs for MMP-2 is unknown. Treating MMP-2 zymogen with ONOO(-) resulted in a concentration-dependent regulation of MMP-2, with 0.3-1 microM ONOO(-) increasing and 30-100 microM ONOO(-) attenuating enzyme activity. The enzyme's V(max) was also significantly increased by 1 microM ONOO(-). Comparable responses to ONOO(-) treatment were observed using the intracellular target of MMP-2, troponin I (TnI). GSH at 100 microM attenuated the effects of ONOO(-) on MMP-2. Mass spectrometry revealed that ONOO(-) can oxidize and, in the presence of GSH, S-glutathiolate the MMP-2 zymogen or a synthetic peptide containing the cysteine-switch motif in the enzyme's autoinhibitory domain. These results suggest that ONOO(-) and GSH can modulate the activity of 72 kDa MMP-2 by modifying the cysteine residue in the autoinhibitory domain of the zymogen, a process that may be relevant to pathophysiological conditions associated with increased oxidative stress.
Collapse
Affiliation(s)
- Serena Viappiani
- Cardiovascular Research Group, Departments of Pediatrics and Pharmacology, University of Alberta, Edmonton, AB T6G2S2, Canada
| | | | | | | | | | | | | | | |
Collapse
|