1
|
Sun WT, Xue HM, Hou HT, Chen HX, Wang J, He GW, Yang Q. Homocysteine alters vasoreactivity of human internal mammary artery by affecting the K Ca channel family. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:625. [PMID: 33987323 PMCID: PMC8106027 DOI: 10.21037/atm-20-6821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background Hyperhomocysteinemia is an independent risk factor for atherosclerotic heart disease. We previously demonstrated that disruption of calcium-activated potassium (KCa) channel activity is involved in homocysteine-induced dilatory dysfunction of porcine coronary arteries. Recently we reported that the KCa channel family, including large-, intermediate-, and small-conductance KCa (BKCa, IKCa, and SKCa) subtypes, are abundantly expressed in human internal mammary artery (IMA). In this study, we further investigated whether homocysteine affects the expression and functionality of the KCa channel family in this commonly used graft for coronary artery bypass surgery (CABG). Methods Residual IMA segments obtained from patients undergoing CABG were studied in a myograph for the role of KCa subtypes in both vasorelaxation and vasoconstriction. The expression and distribution of KCa subtypes were detected by Western blot and immunohistochemistry. Results Both the BKCa channel activator NS1619 and the IKCa/SKCa channel activator NS309 evoked significant IMA relaxation. Homocysteine exposure suppressed NS1619-induced relaxation whereas showed no influence on NS309-induced response. Blockade of BKCa but not IKCa and SKCa subtypes significantly suppressed acetylcholine-induced relaxation and enhanced U46619-induced contraction. Homocysteine compromised the vasodilating activity of the BKCa subtype in IMA, associated with a lowered protein level of the BKCa β1-subunit. Homocysteine potentiated the role of IKCa and SKCa subtypes in mediating endothelium-dependent relaxation without affecting the expression of these channels. Conclusions Homocysteine reduces the expression of BKCa β1-subunit and compromises the vasodilating activity of BKCa channels in IMA. Unlike BKCa, IKCa and SKCa subtypes are unessential for IMA vasoregulation, whereas the loss of BKCa functionality in hyperhomocysteinemia enhances the role of IKCa and SKCa subtypes in mediating endothelial dilator function. Targeting BKCa channels may form a strategy to improve the postoperative graft performance in CABG patients with hyperhomocysteinemia who receive IMA grafting.
Collapse
Affiliation(s)
- Wen-Tao Sun
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,School of Medicine, Nankai University, Tianjin, China
| | - Hong-Mei Xue
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,School of Medicine, Nankai University, Tianjin, China.,Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Hai-Tao Hou
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Huan-Xin Chen
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jun Wang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Guo-Wei He
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,School of Pharmacy, Wannan Medical College, Wuhu, China.,Department of Surgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Qin Yang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
2
|
Yan S, Resta TC, Jernigan NL. Vasoconstrictor Mechanisms in Chronic Hypoxia-Induced Pulmonary Hypertension: Role of Oxidant Signaling. Antioxidants (Basel) 2020; 9:E999. [PMID: 33076504 PMCID: PMC7602539 DOI: 10.3390/antiox9100999] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
Elevated resistance of pulmonary circulation after chronic hypoxia exposure leads to pulmonary hypertension. Contributing to this pathological process is enhanced pulmonary vasoconstriction through both calcium-dependent and calcium sensitization mechanisms. Reactive oxygen species (ROS), as a result of increased enzymatic production and/or decreased scavenging, participate in augmentation of pulmonary arterial constriction by potentiating calcium influx as well as activation of myofilament sensitization, therefore mediating the development of pulmonary hypertension. Here, we review the effects of chronic hypoxia on sources of ROS within the pulmonary vasculature including NADPH oxidases, mitochondria, uncoupled endothelial nitric oxide synthase, xanthine oxidase, monoamine oxidases and dysfunctional superoxide dismutases. We also summarize the ROS-induced functional alterations of various Ca2+ and K+ channels involved in regulating Ca2+ influx, and of Rho kinase that is responsible for myofilament Ca2+ sensitivity. A variety of antioxidants have been shown to have beneficial therapeutic effects in animal models of pulmonary hypertension, supporting the role of ROS in the development of pulmonary hypertension. A better understanding of the mechanisms by which ROS enhance vasoconstriction will be useful in evaluating the efficacy of antioxidants for the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
| | | | - Nikki L. Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (S.Y.); (T.C.R.)
| |
Collapse
|
3
|
Sun WT, Wang XC, Novakovic A, Wang J, He GW, Yang Q. Protection of dilator function of coronary arteries from homocysteine by tetramethylpyrazine: Role of ER stress in modulation of BK Ca channels. Vascul Pharmacol 2019; 113:27-37. [PMID: 30389615 DOI: 10.1016/j.vph.2018.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/10/2018] [Accepted: 10/27/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVES We recently reported the involvement of ER stress-mediated BKCa channel inhibition in homocysteine-induced coronary dilator dysfunction. In another study, we demonstrated that tetramethylpyrazine (TMP), an active ingredient of the Chinese herb Chuanxiong, possesses potent anti-ER stress capacity. The present study investigated whether TMP protects BKCa channels from homocysteine-induced inhibition and whether suppression of ER stress is a mechanism contributing to the protection. Furthermore, we explored the signaling transduction involved in TMP-conferred protection on BKCa channels. METHODS BKCa channel-mediated relaxation was studied in porcine small coronary arteries. Expressions of BKCa channel subunits, ER stress molecules, and E3 ubiquitin ligases, as well as BKCa ubiquitination were determined in porcine coronary arterial smooth muscle cells (PCASMCs). Whole-cell BKCa currents were recorded. RESULTS Exposure of PCASMCs to homocysteine or the chemical ER stressor tunicamycin increased the expression of ER stress molecules, which was significantly inhibited by TMP. Suppression of ER stress by TMP preserved the BKCa β1 protein level and restored the BKCa current in PCASMCs, concomitant with an improved BKCa-mediated dilatation in coronary arteries. TMP attenuated homocysteine-induced BKCa β1 protein ubiquitination, in which inhibition of ER stress-mediated FoxO3a activation and FoxO3a-dependent atrogin-1 and Murf-1 was involved. CONCLUSIONS Reversal of BKCa channel inhibition via suppressing ER stress-mediated loss of β1 subunits contributes to the protective effect of TMP against homocysteine on coronary dilator function. Inhibition of FoxO3a-dependent ubiquitin ligases is involved in TMP-conferred normalization of BKCa β1 protein level. These results provide new mechanistic insights into the cardiovascular benefits of TMP.
Collapse
Affiliation(s)
- Wen-Tao Sun
- Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Xiang-Chong Wang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Aleksandra Novakovic
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Jun Wang
- Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Guo-Wei He
- Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Qin Yang
- Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China.
| |
Collapse
|
4
|
Hydrogen Sulfide Ameliorates Developmental Impairments of Rat Offspring with Prenatal Hyperhomocysteinemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2746873. [PMID: 30581528 PMCID: PMC6276483 DOI: 10.1155/2018/2746873] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/15/2018] [Accepted: 09/25/2018] [Indexed: 11/17/2022]
Abstract
Maternal high levels of the redox active amino acid homocysteine—called hyperhomocysteinemia (hHCY)—can affect the health state of the progeny. The effects of hydrogen sulfide (H2S) treatment on rats with maternal hHCY remain unknown. In the present study, we characterized the physical development, reflex ontogeny, locomotion and exploratory activity, muscle strength, motor coordination, and brain redox state of pups with maternal hHCY and tested potential beneficial action of the H2S donor—sodium hydrosulfide (NaHS)—on these parameters. Our results indicate a significant decrease in litter size and body weight of pups from dams fed with methionine-rich diet. In hHCY pups, a delay in the formation of sensory-motor reflexes was observed. Locomotor activity tested in the open field by head rearings, crossed squares, and rearings of hHCY pups at all studied ages (P8, P16, and P26) was diminished. Exploratory activity was decreased, and emotionality was higher in rats with hHCY. Prenatal hHCY resulted in reduced muscle strength and motor coordination assessed by the paw grip endurance test and rotarod test. Remarkably, administration of NaHS to pregnant rats with hHCY prevented the observed deleterious effects of high homocysteine on fetus development. In rats with prenatal hHCY, the endogenous generation of H2S brain tissues was lower compared to control and NaHS administration restored the H2S level to control values. Moreover, using redox signaling assays, we found an increased level of malondialdehyde (MDA), the end product of lipid peroxidation, and decreased activity of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the brain tissues of rats of the hHCY group. Notably, NaHS treatment restored the level of MDA and the activity of SOD and GPx. Our data suggest that H2S has neuroprotective/antioxidant effects against homocysteine-induced neurotoxicity providing a potential strategy for the prevention of developmental impairments in newborns.
Collapse
|
5
|
Dopico AM, Bukiya AN, Jaggar JH. Calcium- and voltage-gated BK channels in vascular smooth muscle. Pflugers Arch 2018; 470:1271-1289. [PMID: 29748711 DOI: 10.1007/s00424-018-2151-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 04/27/2018] [Indexed: 02/04/2023]
Abstract
Ion channels in vascular smooth muscle regulate myogenic tone and vessel contractility. In particular, activation of calcium- and voltage-gated potassium channels of large conductance (BK channels) results in outward current that shifts the membrane potential toward more negative values, triggering a negative feed-back loop on depolarization-induced calcium influx and SM contraction. In this short review, we first present the molecular basis of vascular smooth muscle BK channels and the role of subunit composition and trafficking in the regulation of myogenic tone and vascular contractility. BK channel modulation by endogenous signaling molecules, and paracrine and endocrine mediators follows. Lastly, we describe the functional changes in smooth muscle BK channels that contribute to, or are triggered by, common physiological conditions and pathologies, including obesity, diabetes, and systemic hypertension.
Collapse
Affiliation(s)
- Alex M Dopico
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, 71 South Manassas St., Memphis, TN, 38163, USA.
| | - Anna N Bukiya
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, 71 South Manassas St., Memphis, TN, 38163, USA
| | - Jonathan H Jaggar
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
6
|
Mandaviya PR, Aïssi D, Dekkers KF, Joehanes R, Kasela S, Truong V, Stolk L, Heemst DV, Ikram MA, Lindemans J, Slagboom PE, Trégouët DA, Uitterlinden AG, Wei C, Wells P, Gagnon F, van Greevenbroek MM, Heijmans BT, Milani L, Morange PE, van Meurs JB, Heil SG. Homocysteine levels associate with subtle changes in leukocyte DNA methylation: an epigenome-wide analysis. Epigenomics 2017; 9:1403-1422. [PMID: 28990796 DOI: 10.2217/epi-2017-0038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM Homocysteine (Hcy) is a sensitive marker of one-carbon metabolism. Higher Hcy levels have been associated with global DNA hypomethylation. We investigated the association between plasma Hcy and epigenome-wide DNA methylation in leukocytes. METHODS Methylation was measured using Illumina 450 k arrays in 2035 individuals from six cohorts. Hcy-associated differentially methylated positions and regions were identified using meta-analysis. RESULTS Three differentially methylated positions cg21607669 (SLC27A1), cg26382848 (AJUBA) and cg10701000 (KCNMA1) at chromosome 19, 14 and 10, respectively, were significantly associated with Hcy. In addition, we identified 68 Hcy-associated differentially methylated regions, the most significant of which was a 1.8-kb spanning domain (TNXB/ATF6B) at chromosome 6. CONCLUSION We identified novel epigenetic loci associated with Hcy levels, of which specific role needs to be further validated.
Collapse
Affiliation(s)
- Pooja R Mandaviya
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dylan Aïssi
- Sorbonne Universités, UPMC Univ. Paris 06, INSERM, UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris, France.,ICAN Institute for Cardiometabolism & Nutrition, Paris, France
| | - Koen F Dekkers
- Molecular Epidemiology Section, Department of Medical Statistics & Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Roby Joehanes
- Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, MA, USA
| | - Silva Kasela
- Estonian Genome Center, University of Tartu, Tartu, Estonia.,Institute of Molecular & Cell Biology, University of Tartu, Tartu, Estonia
| | - Vinh Truong
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Lisette Stolk
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Diana van Heemst
- Department of Gerontology & Geriatrics Section, Leiden University Medical Center, Leiden, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan Lindemans
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - P Eline Slagboom
- Molecular Epidemiology Section, Department of Medical Statistics & Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - David-Alexandre Trégouët
- Sorbonne Universités, UPMC Univ. Paris 06, INSERM, UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris, France.,ICAN Institute for Cardiometabolism & Nutrition, Paris, France
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Chen Wei
- Department of Epidemiology, Tulane University, New Orleans, LA, USA
| | - Phil Wells
- Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Canada
| | - France Gagnon
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Marleen Mj van Greevenbroek
- Department of Internal Medicine & School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology Section, Department of Medical Statistics & Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Lili Milani
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Pierre-Emmanuel Morange
- Laboratory of Haematology, La Timone Hospital, Marseille, France.,Institut National pour la Santé et la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR_S) 1062, Nutrition Obesity & Risk of Thrombosis, Aix-Marseille University, Marseille, France
| | - Joyce Bj van Meurs
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sandra G Heil
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
7
|
Sun WT, Wang XC, Mak SK, He GW, Liu XC, Underwood MJ, Yang Q. Activation of PERK branch of ER stress mediates homocysteine-induced BK Ca channel dysfunction in coronary artery via FoxO3a-dependent regulation of atrogin-1. Oncotarget 2017; 8:51462-51477. [PMID: 28881660 PMCID: PMC5584261 DOI: 10.18632/oncotarget.17721] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/07/2017] [Indexed: 11/25/2022] Open
Abstract
The molecular mechanism of endoplasmic reticulum (ER) stress in vascular pathophysiology remains inadequately understood. We studied the role of ER stress in homocysteine-induced impairment of coronary dilator function, with uncovering the molecular basis of the effect of ER stress on smooth muscle large-conductance Ca2+-activated K+ (BKCa) channels. The vasodilatory function of BKCa channels was studied in a myograph using endothelium-denuded porcine small coronary arteries. Primary cultured porcine coronary artery smooth muscle cells were used for mRNA and protein measurements and current recording of BKCa channels. Homocysteine inhibited vasorelaxant response to the BKCachannel opener NS1619, lowered BKCa β1 subunit protein level and suppressed BKCa current. Inhibition of ER stress restored BKCa β1 protein level and NS1619-evoked vasorelaxation. Selective blockade of the PKR-like ER kinase (PERK) yielded similarly efficient restoration of BKCa β1, preserving BKCa current and BKCa-mediated vasorelaxation. The restoration of BKCa β1 by PERK inhibition was associated with reduced atrogin-1 expression and decreased nuclear localization of forkhead box O transcription factor 3a (FoxO3a). Silencing of atrogin-1 prevented homocysteine-induced BKCa β1 loss and silencing of FoxO3a prevented atrogin-1 upregulation induced by homocysteine, accompanied by preservation of BKCa β1 protein level and BKCa current. ER stress mediates homocysteine-induced BKCa channel inhibition in coronary arteries. Activation of FoxO3a by PERK branch underlies the ER stress-mediated BKCa inhibition through a mechanism involving ubiquitin ligase-enhanced degradation of the channel β1 subunit.
Collapse
Affiliation(s)
- Wen-Tao Sun
- Division of Cardiology, Department of Medicine and Therapeutics, Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiang-Chong Wang
- Division of Cardiology, Department of Medicine and Therapeutics, Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Shiu-Kwong Mak
- Division of Cardiology, Department of Medicine and Therapeutics, Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Guo-Wei He
- TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Xiao-Cheng Liu
- TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Malcolm John Underwood
- Division of Cardiothoracic Surgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Qin Yang
- Division of Cardiology, Department of Medicine and Therapeutics, Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| |
Collapse
|
8
|
Gaifullina AS, Yakovlev AV, Mustafina AN, Weiger TM, Hermann A, Sitdikova GF. Homocysteine augments BK channel activity and decreases exocytosis of secretory granules in rat GH3 cells. FEBS Lett 2016; 590:3375-3384. [PMID: 27586872 DOI: 10.1002/1873-3468.12381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/22/2016] [Accepted: 08/28/2016] [Indexed: 01/28/2023]
Abstract
In this study, we investigated the effects of L-homocysteine (Hcy) on maxi calcium-activated potassium (BK) channels and on exocytosis of secretory granules in GH3 rat pituitary-derived cells. A major finding of our study indicates that short-term application of Hcy increased the open probability of oxidized BK channels in inside-out recordings. Whole-cell recordings show that extracellular Hcy also augmented BK currents during long-term application. Furthermore, Hcy decreased the exocytosis of secretory granules. This decrease was partially prevented by the BK channel inhibitor paxilline and fully prevented by N-acetylcysteine, a reactive oxygen species scavenger. Taken together, our data show that elevation of cellular Hcy level induces oxidative stress, increases BK channel activity, and decreases exocytosis of secretory granules. These findings may provide insight into some of the developmental impairments and neurotoxicity associated with Hyperhomocysteinemia (HHcy), a disease arising due to abnormally elevated levels of Hcy in the plasma.
Collapse
Affiliation(s)
- Aisylu S Gaifullina
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Russia
| | - Aleksey V Yakovlev
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Russia
| | - Alsu N Mustafina
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Russia
| | - Thomas M Weiger
- Department of Cell Biology and Physiology, University of Salzburg, Austria
| | - Anton Hermann
- Department of Cell Biology and Physiology, University of Salzburg, Austria
| | - Guzel F Sitdikova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Russia.
| |
Collapse
|
9
|
Lee YS, Lee SJ, Seo KW, Bae JU, Park SY, Kim CD. Homocysteine induces COX-2 expression in macrophages through ROS generated by NMDA receptor-calcium signaling pathways. Free Radic Res 2013; 47:422-31. [PMID: 23485152 DOI: 10.3109/10715762.2013.784965] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Homocysteine (Hcy) at elevated levels is a putative risk factor for many cardiovascular disorders including atherosclerosis. In the present study, we investigated the effect of Hcy on the expression of cyclooxygenase (COX)-2 in murine macrophages and the mechanisms involved. Hcy increased the expression of COX-2 mRNA and protein in dose- and time-dependent manners, but did not affect COX-1 expression. Hcy-induced COX-2 expression was attenuated not only by the calcium chelators, EGTA and BAPTA-AM, but also by an antioxidant, N-acetylcysteine. Calcium chelators also attenuated Hcy-induced reactive oxygen species (ROS) production in macrophages, indicating that Hcy-induced COX-2 expression might be mediated through ROS generated by calcium-dependent signaling pathways. In another series of experiments, Hcy increased the intracellular concentration of calcium in a dose-dependent manner, which was attenuated by MK-801, an N-methyl-D-aspartate (NMDA) receptor inhibitor, but not by bicuculline, a gamma-aminobutyric acid receptor inhibitor. Molecular inhibition of NMDA receptor using small interfering RNA also attenuated Hcy-induced increases in intracellular calcium. Furthermore, both ROS production and Hcy-induced COX-2 expression were also inhibited by MK-801 as well as by molecular inhibition of NMDA receptor. Taken together, these findings suggest that Hcy enhances COX-2 expression in murine macrophages by ROS generated via NMDA receptor-mediated calcium signaling pathways.
Collapse
Affiliation(s)
- Y S Lee
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Korea
| | | | | | | | | | | |
Collapse
|
10
|
Zhang C, Yi F, Xia M, Boini KM, Zhu Q, Laperle LA, Abais JM, Brimson CA, Li PL. NMDA receptor-mediated activation of NADPH oxidase and glomerulosclerosis in hyperhomocysteinemic rats. Antioxid Redox Signal 2010; 13:975-86. [PMID: 20406136 PMCID: PMC2959176 DOI: 10.1089/ars.2010.3091] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study investigated the role of NMDA receptor in hyperhomocyteinemia (hHcys)-induced NADPH oxidase (Nox) activation and glomerulosclerosis. Sprague-Dawley rats were fed a folate-free (FF) diet to produce hHcys, and a NMDA receptor antagonist, MK-801, was administrated. Rats fed the FF diet exhibited significantly increased plasma homocysteine levels, upregulated NMDA receptor expression, enhanced Nox activity and Nox-dependent O(2)(.-) production in the glomeruli, which were accompanied by remarkable glomerulosclerosis. MK-801 treatment significantly inhibited Nox-dependent O(2)(.-) production induced by hHcys and reduced glomerular damage index as compared with vehicle-treated hHcys rats. Correspondingly, glomerular deposition of extracellular matrix components in hHcys rats was ameliorated by the administration of MK-801. Additionally, hHcys induced an increase in tissue inhibitor of metalloproteinase-1 (TIMP-1) expression and a decrease in matrix metalloproteinase (MMP)-1 and MMP-9 activities, all of which were abolished by MK-801 treatment. In vitro studies showed that homocysteine increased Nox-dependent O(2)(.-) generation in rat mesangial cells, which was blocked by MK-801. Pretreatment with MK-801 also reversed homocysteine-induced decrease in MMP-1 activity and increase in TIMP-1 expression. These results support the view that the NMDA receptor may mediate Nox activation in the kidney during hHcys and thereby play a critical role in the development of hHcys-induced glomerulosclerosis.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dickhout JG, Sood SK, Austin RC. Role of endoplasmic reticulum calcium disequilibria in the mechanism of homocysteine-induced ER stress. Antioxid Redox Signal 2007; 9:1863-73. [PMID: 17937580 DOI: 10.1089/ars.2007.1780] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Our laboratory demonstrated that hyperhomocysteinemia accelerates atherosclerosis in mouse models through ER stress and activation of the unfolded protein response (UPR). In this study, we tested the hypothesis that homocysteine-induced ER stress may arise from ER-Ca(2+) disequilibria. We found that homocysteine-induced cytosolic Ca(2+) transients in T24/83 cells and human aortic smooth muscle cells (HASMCs). These calcium effects occurred at concentrations of homocysteine in the external medium (1-5 mM) that increase intracellular homocysteine in these cell types. Prolonged homocysteine treatment (5 h) at these exogenous concentrations reduced ER-Ca(2+) emptying evoked by thapsigargin. However, these homocysteine-induced effects on ER-Ca(2+) emptying were of a much smaller magnitude than those evoked by A23187 or thapsigargin (ER stressors known to induce ER stress through ER-Ca(2+) depletion). T24/83 cells stably overexpressing the Ca(2+)-binding ER chaperone GRP78 showed diminished cytosolic Ca(2+) transients induced by homocysteine and reduced ER-Ca(2+) emptying evoked by thapsigargin. Prevention of the homocysteine-induced UPR by cycloheximide pretreatment normalized GRP78 expression and ER-Ca(2+) emptying evoked by thapsigargin. These results are inconsistent with a mechanism of ER stress induction by homocysteine through ER-Ca(2+) depletion.
Collapse
Affiliation(s)
- Jeffrey G Dickhout
- Department of Pathology and Molecular Medicine, McMaster University, and the Henderson Research Centre, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
12
|
Cai B, Gong D, Pan Z, Liu Y, Qian H, Zhang Y, Jiao J, Lu Y, Yang B. Large-conductance Ca2+-activated K+ currents blocked and impaired by homocysteine in human and rat mesenteric artery smooth muscle cells. Life Sci 2007; 80:2060-6. [PMID: 17434538 DOI: 10.1016/j.lfs.2007.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 03/06/2007] [Accepted: 03/07/2007] [Indexed: 10/23/2022]
Abstract
Plenty of evidence suggests that increased blood levels of homocysteine (Hcy) are an independent risk factor for the development of vascular diseases, but the underlying mechanisms are not well understood. It is well known that the larger conductance Ca(2+)-activated K(+) channels (BK(Ca)) play an essential role in vascular function, so the present study was conducted to determine direct effects of Hcy on BK(Ca) channel properties of smooth muscle cells. Whole-cell patch-clamp recordings were made in mesenteric artery smooth muscle cells isolated from normal rat and patients to investigate effects of 5, 50 and 500 microM Hcy on BK(Ca), the main current mediating vascular responses in these cells. In human artery smooth muscle cells, maximum BK(Ca) density (measured at +60 mV) was inhibited by about 24% (n=6, P<0.05). In rat artery smooth muscle cells, maximum BK(Ca) density was decreased by approximately 27% in the presence of 50 microM Hcy (n=8, P<0.05). In addition, when rat artery smooth muscle cells was treated with 50 microM Hcy for 24 h, maximum BK(Ca) density decreased by 58% (n=5, P<0.05). These data suggest that Hcy significantly inhibited BK(Ca) currents in isolated human and rat artery smooth muscle cells. BK(Ca) reduced and impaired by elevated Hcy levels might contribute to abnormal vascular diseases.
Collapse
Affiliation(s)
- Benzhi Cai
- Department of Pharmacology, Harbin Medical University, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|