1
|
Amagai Y, Oida K, Matsuda A, Jung K, Kakutani S, Tanaka T, Matsuda K, Jang H, Ahn G, Xia Y, Kawashima H, Shibata H, Matsuda H, Tanaka A. Dihomo-γ-linolenic acid prevents the development of atopic dermatitis through prostaglandin D1 production in NC/Tnd mice. J Dermatol Sci 2015; 79:30-7. [PMID: 25907057 DOI: 10.1016/j.jdermsci.2015.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic and relapsing skin disorder with pruritic skin symptoms. We previously reported that dihomo-γ-linolenic acid (DGLA) prevented the development of AD in NC/Tnd mice, though the mechanism remained unclear. OBJECTIVE We attempted to investigate the mechanism of preventive effect of DGLA on AD development in NC/Tnd mice. METHODS The clinical outcomes of NC/Tnd mice that were given diets containing DGLA, arachidonic acid, or eicosapentaenoic acid were compared. Lipid mediator contents in the skin in each group were also quantified. In addition, release of lipid mediators from RBL-2H3 mast cells treated with either DGLA or prostaglandin D1 (PGD1) was measured. Furthermore, effect of PGD1 on gene expression of thymic stromal lymphopoietin (TSLP) in PAM212 keratinocyte cells was determined. RESULTS Only DGLA containing diet suppressed the development of dermatitis in vivo. By quantifying the 20-carbon fatty acid-derived eicosanoids in the skin, the application of DGLA was found to upregulate PGD1, which correlated with a better outcome in NC/Tnd mice. Moreover, we confirmed that mast cells produced PGD1 after DGLA exposure, thereby exerting a suppressive effect on immunoglobulin E-mediated degranulation. PGD1 also suppressed gene expression of TSLP in keratinocytes. CONCLUSION These results suggest that oral administration of DGLA causes preventive effects on AD development in NC/Tnd mice by regulating the PGD1 supply.
Collapse
Affiliation(s)
- Yosuke Amagai
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kumiko Oida
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Akira Matsuda
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Division of Animal Life Science, Institute of Agriculture, Tokyo, Japan
| | - Kyungsook Jung
- Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Saki Kakutani
- Institute for Health Care Science, Suntory Wellness Ltd., Osaka, Japan
| | - Takao Tanaka
- Institute for Health Care Science, Suntory Wellness Ltd., Osaka, Japan
| | - Kenshiro Matsuda
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hyosun Jang
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ginae Ahn
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yan Xia
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroshi Kawashima
- Institute for Health Care Science, Suntory Wellness Ltd., Osaka, Japan
| | - Hiroshi Shibata
- Institute for Health Care Science, Suntory Wellness Ltd., Osaka, Japan
| | - Hiroshi Matsuda
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan; Laboratory of Veterinary Molecular Pathology and Therapeutics, Division of Animal Life Science, Institute of Agriculture, Tokyo, Japan.
| | - Akane Tanaka
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan; Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| |
Collapse
|
2
|
Schäkel K, Döbel T, Bosselmann I. Future treatment options for atopic dermatitis – Small molecules and beyond. J Dermatol Sci 2014; 73:91-100. [DOI: 10.1016/j.jdermsci.2013.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/12/2013] [Accepted: 11/19/2013] [Indexed: 01/10/2023]
|
3
|
Labrecque P, Roy SJ, Fréchette L, Iorio-Morin C, Gallant MA, Parent JL. Inverse agonist and pharmacochaperone properties of MK-0524 on the prostanoid DP1 receptor. PLoS One 2013; 8:e65767. [PMID: 23762421 PMCID: PMC3677937 DOI: 10.1371/journal.pone.0065767] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 05/01/2013] [Indexed: 01/09/2023] Open
Abstract
Prostaglandin D₂ (PGD₂) acts through two G protein-coupled receptors (GPCRs), the prostanoid DP receptor and CRTH2 also known as DP1 and DP2, respectively. Several previously characterized GPCR antagonists are now classified as inverse agonists and a number of GPCR ligands are known to display pharmacochaperone activity towards a given receptor. Here, we demonstrate that a DP1 specific antagonist, MK-0524 (also known as laropiprant), decreased basal levels of intracellular cAMP produced by DP1, a Gα(s)-coupled receptor, in HEK293 cells. This reduction in cAMP levels was not altered by pertussis toxin treatment, indicating that MK-0524 did not induce coupling of DP1 to Gα(i/o) proteins and that this ligand is a DP1 inverse agonist. Basal ERK1/2 activation by DP1 was not modulated by MK-0524. Interestingly, treatment of HEK293 cells expressing Flag-tagged DP1 with MK-0524 promoted DP1 cell surface expression time-dependently to reach a maximum increase of 50% compared to control after 24 h. In contrast, PGD₂ induced the internalization of 75% of cell surface DP1 after the same time of stimulation. The increase in DP1 cell surface targeting by MK-0524 was inhibited by Brefeldin A, an inhibitor of transport from the endoplasmic reticulum-Golgi to the plasma membrane. Confocal microscopy confirmed that a large population of DP1 remained trapped intracellularly and co-localized with calnexin, an endoplasmic reticulum marker. Redistribution of DP1 from intracellular compartments to the plasma membrane was observed following treatment with MK-0524 for 24 h. Furthermore, MK-0524 promoted the interaction between DP1 and the ANKRD13C protein, which we showed previously to display chaperone-like effects towards the receptor. We thus report that MK-0524 is an inverse agonist and a pharmacochaperone of DP1. Our findings may have important implications during therapeutic treatments with MK-0524 and for the development of new molecules targeting DP1.
Collapse
Affiliation(s)
- Pascale Labrecque
- Département de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sébastien J. Roy
- Département de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Louis Fréchette
- Département de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Christian Iorio-Morin
- Département de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Maxime A. Gallant
- Département de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-Luc Parent
- Département de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
- * E-mail:
| |
Collapse
|
4
|
Woodward DF, Jones RL, Narumiya S. International Union of Basic and Clinical Pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol Rev 2011; 63:471-538. [PMID: 21752876 DOI: 10.1124/pr.110.003517] [Citation(s) in RCA: 332] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is now more than 15 years since the molecular structures of the major prostanoid receptors were elucidated. Since then, substantial progress has been achieved with respect to distribution and function, signal transduction mechanisms, and the design of agonists and antagonists (http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=58). This review systematically details these advances. More recent developments in prostanoid receptor research are included. The DP(2) receptor, also termed CRTH2, has little structural resemblance to DP(1) and other receptors described in the original prostanoid receptor classification. DP(2) receptors are more closely related to chemoattractant receptors. Prostanoid receptors have also been found to heterodimerize with other prostanoid receptor subtypes and nonprostanoids. This may extend signal transduction pathways and create new ligand recognition sites: prostacyclin/thromboxane A(2) heterodimeric receptors for 8-epi-prostaglandin E(2), wild-type/alternative (alt4) heterodimers for the prostaglandin FP receptor for bimatoprost and the prostamides. It is anticipated that the 15 years of research progress described herein will lead to novel therapeutic entities.
Collapse
Affiliation(s)
- D F Woodward
- Dept. of Biological Sciences RD3-2B, Allergan, Inc., 2525 Dupont Dr., Irvine, CA 92612, USA.
| | | | | |
Collapse
|
5
|
Yamamoto Y, Otani S, Hirai H, Nagata K, Aritake K, Urade Y, Narumiya S, Yokozeki H, Nakamura M, Satoh T. Dual functions of prostaglandin D2 in murine contact hypersensitivity via DP and CRTH2. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:302-14. [PMID: 21703412 DOI: 10.1016/j.ajpath.2011.03.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 02/26/2011] [Accepted: 03/31/2011] [Indexed: 11/17/2022]
Abstract
Prostaglandin D2 (PGD2) exerts its effects through two distinct receptors: the chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) and the D prostanoid (DP) receptor. Our previous study demonstrated that CRTH2 mediates contact hypersensitivity (CHS) in mice. However, the function of DP receptor remains to be fully established. In this study, we examine the pathophysiological roles of PGD2 using DP-deficient (DP(-/-)) and CRTH2/DP-deficient (CRTH2(-/-)/DP(-/-)) mice to elucidate receptor-mediated PGD2 action in CHS. We observed profound exacerbation of CHS in DP(-/-) mice. CRTH2(-/-)/DP(-/-) mice showed similar exacerbation, but to a lesser extent. These symptoms were accompanied by increased production of interferon-γ and IL-17. The increase in IL-17 producing γδ T cells was marked and presumably contributed to the enhanced CHS. DP deficiency promoted the in vivo migration of dendritic cells to regional lymph nodes. A DP agonist added to DCs in vitro was able to inhibit production of IL-12 and IL-1β. Interestingly, production of IL-10 in dendritic cells was elevated via the DP pathway, but it was lowered by the CRTH2 pathway. Collectively, PGD2 signals through CRTH2 to mediate CHS inflammation, and conversely, DP signals to exert inhibitory effects on CHS. Thus, we report opposing functions for PGD2 that depend on receptor usage in allergic reactions.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Movement
- Chemokines
- Cytokines
- Dermatitis, Contact/drug therapy
- Dermatitis, Contact/metabolism
- Dermatitis, Contact/pathology
- Female
- Flow Cytometry
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor/genetics
- Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor/genetics
- Inflammation/drug therapy
- Inflammation/metabolism
- Inflammation/pathology
- Interleukin-10/genetics
- Interleukin-10/metabolism
- Interleukin-12/genetics
- Interleukin-12/metabolism
- Interleukin-17/metabolism
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Prostaglandin D2/therapeutic use
- RNA, Messenger/genetics
- Receptors, Immunologic/physiology
- Receptors, Prostaglandin/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes, Regulatory
Collapse
Affiliation(s)
- Yoshihiro Yamamoto
- Department of Dermatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Dubrac S, Schmuth M, Ebner S. Atopic dermatitis: the role of Langerhans cells in disease pathogenesis. Immunol Cell Biol 2010; 88:400-9. [PMID: 20351749 DOI: 10.1038/icb.2010.33] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The manifestation of atopic dermatitis (AD) results from a complex interaction of environmental factors, skin barrier defects and immunological phenomena. The initial events in AD remain unclear while much progress has been made in identifying the mechanisms leading to the manifestation and maintenance of allergic inflammation. AD pathogenesis can be approached from many different points of view. In this review, we describe findings in mouse models and in humans separately. We focus on recent findings that underscore the importance of Langerhans cells in initial mechanisms of skin inflammation in AD.
Collapse
Affiliation(s)
- Sandrine Dubrac
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | |
Collapse
|
7
|
Shimura C, Satoh T, Igawa K, Aritake K, Urade Y, Nakamura M, Yokozeki H. Dendritic cells express hematopoietic prostaglandin D synthase and function as a source of prostaglandin D2 in the skin. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:227-37. [PMID: 20008150 DOI: 10.2353/ajpath.2010.090111] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prostaglandin D2 (PGD2), an arachidonic acid metabolite, has been implicated in allergic responses. A major source of PGD2 in the skin is mast cells that express hematopoietic PGD synthase (H-PGDS). In this study, we show the expression of H-PGDS in human dendritic cells (DCs) and the regulatory mechanisms by which DCs produce PGD2. We detected H-PGDS in epidermal Langerhans cells, dermal DCs, plasmacytoid DCs, and myeloid DCs. Monocyte-derived DCs rapidly secreted PGD2 when stimulated with the calcium ionophore A23187. More importantly, pretreatment of monocyte-derived DCs with PMA (phorbol 12-myrisate 13-acetate) synergistically enhanced the rapid PGD2 secretion induced by A23187, whereas PMA alone did not induce PGD2 secretion. Lipopolysaccharide (LPS) reduced H-PGDS expression, but interferon-gamma followed by LPS induced significant PGD2 production in a delayed time course at 6 hours. This effect was associated with inhibition of LPS-induced H-PGDS reduction. Interestingly, an irritant compound, SDS, also induced a rapid PGD2 release. PGD2 synergistically enhanced CCL22/macrophage-derived chemokine synthesis in interferon-gamma-treated human keratinocytes. In addition, bone marrow-derived DCs from wild-type mice stimulated lymph node cells to produce higher amounts of interleukin-17 than did DCs from mice lacking the H-PGDS gene. Thus, DCs could be an important source of skin PGD2 and may mediate or regulate skin inflammation by releasing PGD2 in response to various stimuli, contributing to the innate and/or acquired immune responses.
Collapse
Affiliation(s)
- Chieko Shimura
- Department of Dermatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Matsubara T, Aoki N, Hino S, Okajima T, Nadano D, Matsuda T. Serum and monoclonal immunoglobulin E antibodies from NC/Nga mice with severe atopic-like dermatitis recognize an auto-antigen, histone H3. Clin Exp Allergy 2009; 39:579-90. [PMID: 19226275 DOI: 10.1111/j.1365-2222.2008.03174.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND NC/Nga mice are known to show a spontaneous outbreak of atopic-like dermatitis accompanied by a marked elevation in serum IgE levels when reared in a conventional environment. The specific effects of such a strong serum IgE response on the development of the dermatitis and specific antigens recognized by the IgE antibodies are still uncertain. OBJECTIVE AND METHODS To characterize the IgE of NC/Nga mice, we established IgE-secreting hybridoma clones from spleen cells of NC/Nga mice spontaneously developing dermatitis and identified variable-region genes and specific antigens of the IgE monoclonal antibodies (mAbs). Serum polyclonal IgE, as well as IgG1 and IgG2a, specific for the identified antigen were also analysed. RESULTS Four IgE-producing hybridoma clones were established. Variable-region nucleotide sequences of the IgE mAbs showed that these clones did not necessarily share common germline gene segments (V, D or J) for each variable region, and several somatic mutations had occurred in the V gene segments. Through antigen screening, histone H3 was identified to be an auto-antigen recognized by three of the four IgE mAbs. Serum IgE as well as IgG1 specific for histone H3 were almost undetectable in 6-week-old mice, but rapidly increased by 10-12 weeks of age. This age-dependent increase in the serum anti-histone H3 IgE was roughly in parallel with the onset of dermatitis, and slightly preceding total IgE elevation. The serum-specific IgE level correlated well with a dermatitis-severity score of each mouse at 12-16 weeks of age, and weakly with the severity of ear erosion of each mouse over 28 weeks of age. Furthermore, immunologically detectable histone-H3 antigens were observed in skin tissue sections from the dermatitis sites. CONCLUSION In NC/Nga mice, anti-histone H3 auto-antibodies may contribute, at least in part, to the considerably elevated serum IgE and might play some roles in the development and exacerbation of dermatitis.
Collapse
Affiliation(s)
- T Matsubara
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|