1
|
DeVuono MV, Venkatesan T, Hillard CJ. Endocannabinoid signaling in stress, nausea, and vomiting. Neurogastroenterol Motil 2025; 37:e14911. [PMID: 39223918 PMCID: PMC11872018 DOI: 10.1111/nmo.14911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Classical antiemetics that target the serotonin system may not be effective in treating certain nausea and vomiting conditions like cyclic vomiting syndrome (CVS) and cannabinoid hyperemesis syndrome (CHS). As a result, there is a need for better therapies to manage the symptoms of these disorders, including nausea, vomiting, and anxiety. Cannabis is often used for its purported antiemetic and anxiolytic effects, given regulation of these processes by the endocannabinoid system (ECS). However, there is considerable evidence that cannabinoids can also produce nausea and vomiting and increase anxiety in certain instances, especially at higher doses. This paradoxical effect of cannabinoids on nausea, vomiting, and anxiety may be due to the dysregulation of the ECS, altering how it maintains these processes and contributing to the pathophysiology of CVS or CHS. PURPOSE The purpose of this review is to highlight the involvement of the ECS in the regulation of stress, nausea, and vomiting. We discuss how prolonged cannabis use, such as in the case of CHS or heightened stress, can dysregulate the ECS and affect its modulation of these functions. The review also examines the evidence for the roles of ECS and stress systems' dysfunction in CVS and CHS to better understand the underlying mechanisms of these conditions.
Collapse
Affiliation(s)
- Marieka V. DeVuono
- Department of Anatomy and Cell BiologySchulich School of Medicine & Dentistry, Western UniversityLondonOntarioCanada
| | - Thangam Venkatesan
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal MedicineThe Ohio State University College of MedicineColumbusOhioUSA
| | - Cecilia J. Hillard
- Department of Pharmacology and Toxicology and Neuroscience Research CenterMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
2
|
Rock EM, Parker LA. The Role of Cannabinoids and the Endocannabinoid System in the Treatment and Regulation of Nausea and Vomiting. Curr Top Behav Neurosci 2024. [PMID: 39739175 DOI: 10.1007/7854_2024_554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Despite using the recommended anti-emetic treatments, control of nausea and vomiting is still an unmet need for cancer patients undergoing chemotherapy treatment. Few properly controlled clinical trials have evaluated the potential of exogenously administered cannabinoids or manipulations of the endogenous cannabinoid (eCB) system to treat nausea and vomiting. In this chapter, we explore the pre-clinical and human clinical trial evidence for the potential of exogenous cannabinoids and manipulations of the eCB system to reduce nausea and vomiting. Although there are limited high-quality human clinical trials, pre-clinical evidence suggests that cannabinoids and manipulations of the eCB system have anti-nausea/anti-emetic potential. The pre-clinical anti-nausea/anti-emetic evidence highlights the need for further evaluation of cannabinoids and manipulations of eCBs and other fatty acid amides in clinical trials.
Collapse
Affiliation(s)
- Erin M Rock
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph, Guelph, ON, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
3
|
Murray CH, Gannon BM, Winsauer PJ, Cooper ZD, Delatte MS. The Development of Cannabinoids as Therapeutic Agents in the United States. Pharmacol Rev 2024; 76:915-955. [PMID: 38849155 PMCID: PMC11331953 DOI: 10.1124/pharmrev.123.001121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Cannabis is one of the oldest and widely used substances in the world. Cannabinoids within the cannabis plant, known as phytocannabinoids, mediate cannabis' effects through interactions with the body's endogenous cannabinoid system. This endogenous system, the endocannabinoid system, has important roles in physical and mental health. These roles point to the potential to develop cannabinoids as therapeutic agents while underscoring the risks related to interfering with the endogenous system during nonmedical use. This scoping narrative review synthesizes the current evidence for both the therapeutic and adverse effects of the major (i.e., Δ9-tetrahydrocannabinol and cannabidiol) and lesser studied minor phytocannabinoids, from nonclinical to clinical research. We pay particular attention to the areas where evidence is well established, including analgesic effects after acute exposures and neurocognitive risks after acute and chronic use. In addition, drug development considerations for cannabinoids as therapeutic agents within the United States are reviewed. The proposed clinical study design considerations encourage methodological standards for greater scientific rigor and reproducibility to ultimately extend our knowledge of the risks and benefits of cannabinoids for patients and providers. SIGNIFICANCE STATEMENT: This work provides a review of prior research related to phytocannabinoids, including therapeutic potential and known risks in the context of drug development within the United States. We also provide study design considerations for future cannabinoid drug development.
Collapse
Affiliation(s)
- Conor H Murray
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Brenda M Gannon
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Peter J Winsauer
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Ziva D Cooper
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Marcus S Delatte
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| |
Collapse
|
4
|
Ullah I, Ayaz M. A re-consideration of neural/receptor mechanisms in chemotherapy-induced nausea and vomiting: current scenario and future perspective. Pharmacol Rep 2023; 75:1126-1137. [PMID: 37584820 DOI: 10.1007/s43440-023-00514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023]
Abstract
The neural mechanisms and the receptors behind the course of chemotherapy-induced nausea and vomiting (CINV) are well described and considered mechanistically multifactorial, whereas the neurobiology of nausea is not completely understood yet. Some of the anti-neoplastic medications like cisplatin result in biphasic vomiting response. The acute phase of vomiting is triggered mainly via the release of serotonin from the enterochromaffin (EC) cells in the gastrointestinal tract (GIT) and results in stimulation of dorsal vagal complex (DVC) of the vomiting center and the vomiting is initiated by downward communication to the gut via vagal efferents. Agonism of 5HT3 receptors is majorly involved in the mediation of the acute phase. Therefore, antagonists at 5HT3 receptors are effective in the management of acute-phase vomiting episodes. Likewise, Dopamine type 2 (D2) receptors, dopamine neurotransmitter, Muscarinic receptors (M3), GLP1 receptors, and histaminergic receptors (H1) are also implicated in the vomiting act as well. In continuation, Cannabinoid type 1 (CB1) receptors are also recommended and included in the guidelines as agonism of presynaptically located CB1 receptors inhibits the release of excitatory neurotransmitters responsible for vomiting initiation. The delayed phase involves the release of "Substance P" in the gut and results in the stimulation of neurokinin-1 (NK1) receptors centrally in the area postrema (AP) and nucleus tractus solitarius (NTS), subsequently the vomiting response. The current understanding is the existence of overlapping mechanisms of neurotransmitters, serotonin, dopamine, and substance P throughout the time course of CINV. Furthermore, the emetic neurotransmitters are released via calcium ion (Ca++)-dependent mechanisms, implicating the molecular targets of intracellular Ca++ signaling in emetic circuitry. The current review entails the neurobiology of nausea and vomiting induced by cancer chemotherapeutic agents and the recent approaches in the management.
Collapse
Affiliation(s)
- Ihsan Ullah
- Department of Pharmacy, Faculty of Sciences, University of Swabi, Anbar, Swabi, 23430, Khyber Pakhtunkhwa, Pakistan.
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), Chakdara, 18000, KP, Pakistan.
| |
Collapse
|
5
|
La Maida N, Di Giorgi A, Pichini S, Busardò FP, Huestis MA. Recent challenges and trends in forensic analysis: Δ9-THC isomers pharmacology, toxicology and analysis. J Pharm Biomed Anal 2022; 220:114987. [PMID: 35985136 DOI: 10.1016/j.jpba.2022.114987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
Δ9-tetrahydrocannabinol (Δ9-THC) isomers, especially Δ8-tetrahydrocannabinol (Δ8-THC), are increasing in foods, beverages, and e-cigarettes liquids. A major factor is passage of the Agriculture Improvement Act (AIA) that removed hemp containing less than 0.3 % Δ9-THC from the definition of "marijuana" or cannabis. CBD-rich hemp flooded the market resulting in excess product that could be subjected to CBD cyclization to produce Δ8-THC. This process utilizes strong acid and yields toxic byproducts that frequently are not removed prior to sale and are currently inadequately studied. Pharmacological activity is qualitatively similar for Δ8-THC and Δ9-THC, but most preclinical studies in mice, rats, and monkeys documented greater ∆9-THC potency. Both isomers caused graded dose-response effects on euphoria, blurred vision, mental confusion and lethargy, although Δ8-THC was at least 25 % less potent. The most common analytical methodologies providing baseline resolution of ∆8-THC and ∆9-THC in non-biological matrices are liquid-chromatography coupled to diode-array detection (LC-DAD or LC-PDA), while liquid chromatography coupled to mass spectrometry is preferred for biological matrices. Other available analytical methods are gas-chromatography-mass spectrometry (GC-MS) and quantitative nuclear magnetic resonance (QNMR). Current knowledge on the pharmacology of ∆8-THC and other ∆9-THC isomers are reviewed to raise awareness of the activity of these isomers in cannabis products, as well as analytical methods to discriminate ∆9-THC qualitatively, and quantitatively and ∆8-THC in biological and non-biological matrices.
Collapse
Affiliation(s)
- Nunzia La Maida
- Unit of Forensic Toxicology, Department of Anatomical, Histological, Forensic, and Orthopedic Sciences, Università la Sapienza, V. Le Regina Elena 366, 00161 Rome, Italy
| | - Alessandro Di Giorgi
- Department of Excellence of Biomedical Science and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 10/a, 60124, Ancona, Italy
| | - Simona Pichini
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, V. Le Regina Elena 299, 00161 Rome, Italy
| | - Francesco Paolo Busardò
- Department of Excellence of Biomedical Science and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 10/a, 60124, Ancona, Italy.
| | - Marilyn A Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
6
|
Vijayan M, Joseph S, James E, Dutta D. A review on radiation induced nausea and vomiting: "Current management strategies and prominence of radio sensitizers". J Oncol Pharm Pract 2021; 27:1061-1072. [PMID: 33947288 DOI: 10.1177/10781552211011539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Radiations dissipated are high energy waves used mostly as treatment intervention in controlling the unwanted multiplication of cell. About 60%-65% of cancer treatment requires radiation therapy and 40%-80% of radiation therapy causes RINV which are true troublemakers. Radiation therapy (RT) is targeted therapy mostly used to treat early stages of tumour and prevent their reoccurrence. They mainly destroy the genetic material (DNA) of cancerous cells to avoid their unwanted growth and division. The RINV affects the management and quality of life of patients which further reduces the patient outcome. RINV depends on RT related factors (dose, fractionation, irradiation volume, RT techniques) and patient related factors like (gender, health conditions, age, concurrent chemotherapy, psychological state, and tumour stage). RT is an active area of research and there is only limited progress in tackling the RINV crisis. Advanced technological methods are adopted that led to better understanding of total lethal doses. Radiation therapy also affects the immunity system that leads to radiation induced immune responses and inflammation. Radio sensitizers are used to sensitize the tumour cells to radiations that further prevent the normal cell damage from radiation exposure. There is a need for future studies and researches to re-evaluate the data available from previous trials in RINV to make better effective antiemetic regimen. The article focuses on radiation therapy induced nausea and vomiting along with their mechanism of action and treatment strategies in order to have a remarkable patient care.
Collapse
Affiliation(s)
- Meenu Vijayan
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Sherin Joseph
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Emmanuel James
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Debnarayan Dutta
- Department of Radiation Oncology, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
7
|
Vaughn SE, Strawn JR, Poweleit EA, Sarangdhar M, Ramsey LB. The Impact of Marijuana on Antidepressant Treatment in Adolescents: Clinical and Pharmacologic Considerations. J Pers Med 2021; 11:jpm11070615. [PMID: 34209709 PMCID: PMC8307883 DOI: 10.3390/jpm11070615] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
The neuropharmacology of marijuana, including its effects on selective serotonin reuptake inhibitor (SSRI)/antidepressant metabolism and the subsequent response and tolerability in youth, has received limited attention. We sought to (1) review clinically relevant pharmacokinetic (PK) and pharmacodynamic (PD) interactions between cannabinoids and selected SSRIs, (2) use PK models to examine the impact of cannabinoids on SSRI exposure (area under curve (AUC)) and maximum concentration (CMAX) in adolescents, and (3) examine the frequency of adverse events reported when SSRIs and cannabinoids are used concomitantly. Cannabinoid metabolism, interactions with SSRIs, impact on relevant PK/PD pathways and known drug–drug interactions were reviewed. Then, the impact of tetrahydrocannabinol (THC) and cannabidiol (CBD) on exposure (AUC24) and CMAX for escitalopram and sertraline was modeled using pediatric PK data. Using data from the Food and Drug Administration Adverse Events Reporting System (FAERS), the relationship between CBD and CYP2C19-metabolized SSRIs and side effects was examined. Cannabis and CBD inhibit cytochrome activity, alter serotonergic transmission, and modulate SSRI response. In PK models, CBD and/or THC increases sertraline and es/citalopram concentrations in adolescents, and coadministration of CBD and CYP2C19-metabolized SSRIs increases the risk of cough, diarrhea, dizziness, and fatigue. Given the significant SSRI–cannabinoid interactions, clinicians should discuss THC and CBD use in youth prescribed SSRIs and be aware of the impact of initiating, stopping, or decreasing cannabinoid use as this may significantly affect es/citalopram and sertraline exposure.
Collapse
Affiliation(s)
- Samuel E. Vaughn
- Division of Child and Adolescent Psychiatry, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
- Correspondence: ; Tel.: +1-513-636-4788
| | - Jeffrey R. Strawn
- Division of Child and Adolescent Psychiatry, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45219, USA
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Ethan A. Poweleit
- Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA; (E.A.P.); (M.S.)
- Division of Research in Patient Services, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Mayur Sarangdhar
- Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA; (E.A.P.); (M.S.)
- Department of Biomedical Informatics, College of Medicine, University of Cincinnati, Cincinnati, OH 45219, USA
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Laura B. Ramsey
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
- Division of Research in Patient Services, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
8
|
Zhong W, Chebolu S, Darmani NA. Central and peripheral emetic loci contribute to vomiting evoked by the Akt inhibitor MK-2206 in the least shrew model of emesis. Eur J Pharmacol 2021; 900:174065. [PMID: 33775646 PMCID: PMC8085164 DOI: 10.1016/j.ejphar.2021.174065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
Akt (protein kinase B) signaling is frequently activated in diverse cancers. Akt inhibitors such as perifosine and MK-2206 have been evaluated as potential cancer chemotherapeutics. Although both drugs are generally well tolerated, among their most common side-effects vomiting is a major concern. Here we investigated whether these Akt inhibitors evoke emesis in the least shrew model of vomiting. Indeed, both perifosine and MK-2206 induced vomiting with maximal efficacies of 90% at 50 mg/kg (i.p.) and 100% at 10 mg/kg (i.p.), respectively. MK-2206 (10 mg/kg, i.p.) increased c-Fos immunoreactivity both centrally in the shrew brainstem dorsal vagal complex (DVC) emetic nuclei, and peripherally in the jejunum. MK-2206 also evoked phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) in both the DVC emetic nuclei and the enteric nervous system in the jejunum. The ERK1/2 inhibitor U0126 suppressed MK-2206-induced emesis dose-dependently. We then evaluated the suppressive efficacy of diverse antiemetics against MK-2206-evoked vomiting including antagonists/inhibitors of the: L-type Ca2+ channel (nifedipine at 2.5 mg/kg, subcutaneously (s.c.)); glycogen synthase kinase 3 (GSK-3) (AR-A014418 at 10 mg/kg and SB216763 at 0.25 mg/kg, i.p.); 5-hydroxytryptamine 5-HT3 receptor (palonosetron at 0.5 mg/kg, s.c.); substance P neurokinin NK1 receptor (netupitant at 10 mg/kg, i.p.) and dopamine D2/3 receptor (sulpride at 8 mg/kg, s.c.). All tested antagonists/blockers attenuated emetic parameters to varying degrees. In sum, this is the first study to demonstrate how pharmacological inhibition of Akt evokes vomiting via both central and peripheral mechanisms, a process which involves multiple emetic receptors.
Collapse
Affiliation(s)
- Weixia Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA, 91766, USA
| | - Seetha Chebolu
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA, 91766, USA
| | - Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA, 91766, USA.
| |
Collapse
|
9
|
Oultram JMJ, Pegler JL, Bowser TA, Ney LJ, Eamens AL, Grof CPL. Cannabis sativa: Interdisciplinary Strategies and Avenues for Medical and Commercial Progression Outside of CBD and THC. Biomedicines 2021; 9:biomedicines9030234. [PMID: 33652704 PMCID: PMC7996784 DOI: 10.3390/biomedicines9030234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Cannabis sativa (Cannabis) is one of the world’s most well-known, yet maligned plant species. However, significant recent research is starting to unveil the potential of Cannabis to produce secondary compounds that may offer a suite of medical benefits, elevating this unique plant species from its illicit narcotic status into a genuine biopharmaceutical. This review summarises the lengthy history of Cannabis and details the molecular pathways that underpin the production of key secondary metabolites that may confer medical efficacy. We also provide an up-to-date summary of the molecular targets and potential of the relatively unknown minor compounds offered by the Cannabis plant. Furthermore, we detail the recent advances in plant science, as well as synthetic biology, and the pharmacology surrounding Cannabis. Given the relative infancy of Cannabis research, we go on to highlight the parallels to previous research conducted in another medically relevant and versatile plant, Papaver somniferum (opium poppy), as an indicator of the possible future direction of Cannabis plant biology. Overall, this review highlights the future directions of cannabis research outside of the medical biology aspects of its well-characterised constituents and explores additional avenues for the potential improvement of the medical potential of the Cannabis plant.
Collapse
Affiliation(s)
- Jackson M. J. Oultram
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Joseph L. Pegler
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Timothy A. Bowser
- CannaPacific Pty Ltd., 109 Ocean Street, Dudley, NSW 2290, Australia;
| | - Luke J. Ney
- School of Psychological Sciences, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Andrew L. Eamens
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Christopher P. L. Grof
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
- CannaPacific Pty Ltd., 109 Ocean Street, Dudley, NSW 2290, Australia;
- Correspondence: ; Tel.: +612-4921-5858
| |
Collapse
|
10
|
Kosiakova HV, Chumak SA, Berdyshev AG, Pinchuk IY, Hula NM, Chumak AA. RADIATION DAMAGE OF THE NERVOUS SYSTEM AND ENDOCANABINOIDS. PROBLEMY RADIAT︠S︡IĬNOÏ MEDYT︠S︡YNY TA RADIOBIOLOHIÏ 2020; 25:75-89. [PMID: 33361830 DOI: 10.33145/2304-8336-2020-25-75-89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 11/10/2022]
Abstract
The review analyzes the change of the existing paradigm of high radioresistance of the nervous system according tothe results of the study of neuropsychiatric disorders in in the aftermath of the Chornobyl accident in both earlyand remote post-accident period. The participation of the endocannabinoid system in ensuring homeostasis andpathology formation, potential possibilities of using cannabis drugs, agonists and antagonists of endocannabinoidreceptors for the treatment of early and long-term effects of radiation are considered.
Collapse
Affiliation(s)
- H V Kosiakova
- Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 9 Leontovich St., Kyiv, 01054, Ukraine
| | - S A Chumak
- Institute of Psychiatry, Taras Shevchenko National University of Kyiv, 36 Lomonosov St., Kyiv, 03022, Ukraine
| | - A G Berdyshev
- Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 9 Leontovich St., Kyiv, 01054, Ukraine
| | - I Ya Pinchuk
- Institute of Psychiatry, Taras Shevchenko National University of Kyiv, 36 Lomonosov St., Kyiv, 03022, Ukraine
| | - N M Hula
- Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 9 Leontovich St., Kyiv, 01054, Ukraine
| | - A A Chumak
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriy Ilyenko St., Kyiv, 04050, Ukraine
| |
Collapse
|
11
|
Wooldridge LM, Ji L, Liu Y, Nikas SP, Makriyannis A, Bergman J, Kangas BD. Antiemetic Effects of Cannabinoid Agonists in Nonhuman Primates. J Pharmacol Exp Ther 2020; 374:462-468. [PMID: 32561684 PMCID: PMC7445860 DOI: 10.1124/jpet.120.265710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
Attenuating emesis elicited by both disease and medical treatments of disease remains a critical public health challenge. Although cannabinergic medications have been used in certain treatment-resistant populations, Food and Drug Administration-approved cannabinoid antiemetics are associated with undesirable side effects, including cognitive disruption, that limit their prescription. Previous studies have shown that a metabolically stable analog of the endocannabinoid anandamide, methanandamide (mAEA), may produce lesser cognitive disruption than that associated with the primary psychoactive constituent in cannabis, Δ9-tetrahydrocannabinol (Δ9-THC), raising the possibility that endocannabinoids may offer a therapeutic advantage over currently used medications. The present studies were conducted to evaluate this possibility by comparing the antiemetic effects of Δ9-THC (0.032-0.1 mg/kg) and mAEA (3.2-10.0 mg/kg) against nicotine- and lithium chloride (LiCl)-induced emesis and prodromal hypersalivation in squirrel monkeys. Pretreatment with 0.1 mg/kg Δ9-THC blocked nicotine-induced emesis and reduced hypersalivation in all subjects and blocked LiCl-induced emesis and reduced hypersalivation in three of four subjects. Pretreatment with 10 mg/kg mAEA blocked nicotine-induced emesis in three of four subjects and LiCl-induced emesis in one of four subjects and reduced both nicotine- and LiCl-induced hypersalivation. Antiemetic effects of Δ9-THC and mAEA were reversed by rimonabant pretreatment, providing verification of cannabinoid receptor type 1 mediation. These studies systematically demonstrate for the first time the antiemetic effects of cannabinoid agonists in nonhuman primates. Importantly, although Δ9-THC produced superior antiemetic effects, the milder cognitive effects of mAEA demonstrated in previous studies suggest that it may provide a favorable treatment option under clinical circumstances in which antiemetic efficacy must be balanced against side effect liability. SIGNIFICANCE STATEMENT: Emesis has significant evolutionary value as a defense mechanism against ingested toxins; however, it is also one of the most common adverse symptoms associated with both disease and medical treatments of disease. The development of improved antiemetic pharmacotherapies has been impeded by a paucity of animal models. The present studies systematically demonstrate for the first time the antiemetic effects of the phytocannabinoid Δ9-tetrahydrocannabinol and endocannabinoid analog methanandamide in nonhuman primates.
Collapse
Affiliation(s)
- Lisa M Wooldridge
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| | - Lipin Ji
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| | - Yingpeng Liu
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| | - Spyros P Nikas
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| | - Alexandros Makriyannis
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| | - Jack Bergman
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| | - Brian D Kangas
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| |
Collapse
|
12
|
Gonçalves J, Rosado T, Soares S, Simão AY, Caramelo D, Luís Â, Fernández N, Barroso M, Gallardo E, Duarte AP. Cannabis and Its Secondary Metabolites: Their Use as Therapeutic Drugs, Toxicological Aspects, and Analytical Determination. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E31. [PMID: 30813390 PMCID: PMC6473697 DOI: 10.3390/medicines6010031] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 02/08/2023]
Abstract
Although the medicinal properties of Cannabis species have been known for centuries, the interest on its main active secondary metabolites as therapeutic alternatives for several pathologies has grown in recent years. This potential use has been a revolution worldwide concerning public health, production, use and sale of cannabis, and has led inclusively to legislation changes in some countries. The scientific advances and concerns of the scientific community have allowed a better understanding of cannabis derivatives as pharmacological options in several conditions, such as appetite stimulation, pain treatment, skin pathologies, anticonvulsant therapy, neurodegenerative diseases, and infectious diseases. However, there is some controversy regarding the legal and ethical implications of their use and routes of administration, also concerning the adverse health consequences and deaths attributed to marijuana consumption, and these represent some of the complexities associated with the use of these compounds as therapeutic drugs. This review comprehends the main secondary metabolites of Cannabis, approaching their therapeutic potential and applications, as well as their potential risks, in order to differentiate the consumption as recreational drugs. There will be also a focus on the analytical methodologies for their analysis, in order to aid health professionals and toxicologists in cases where these compounds are present.
Collapse
Affiliation(s)
- Joana Gonçalves
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Sofia Soares
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Ana Y Simão
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Débora Caramelo
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Ângelo Luís
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Nicolás Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Toxicología y Química Legal, Laboratorio de Asesoramiento Toxicológico Analítico (CENATOXA). Junín 956 7mo piso. Ciudad Autónoma de Buenos Aires (CABA), Buenos Aires C1113AAD, Argentina.
| | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto de Medicina Legal e Ciências Forenses - Delegação do Sul, 1169-201 Lisboa, Portugal.
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Ana Paula Duarte
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| |
Collapse
|
13
|
Abstract
Humans swallow a great variety and often large amounts of chemicals as nutrients, incidental food additives and contaminants, drugs, and inhaled particles and chemicals, thus exposing the gastrointestinal tract to many potentially toxic substances. It serves as a barrier in many cases to protect other components of the body from such substances and infections. Fortunately, the gastrointestinal tract is remarkably robust and generally is able to withstand multiple daily assaults by the chemicals to which it is exposed. Some chemicals, however, can affect one or more aspects of the gastrointestinal tract to produce abnormal events that reflect toxicity. It is the purpose of this chapter to evaluate the mechanisms by which toxic chemicals produce their deleterious effects and to determine the consequences of the toxicity on integrity of gastrointestinal structure and function. Probably because of the intrinsic ability of the gastrointestinal tract to resist toxic chemicals, there is a paucity of data regarding gastrointestinal toxicology. It is therefore necessary in many cases to extrapolate toxic mechanisms from infectious processes, inflammatory conditions, ischemia, and other insults in addition to more conventional chemical sources of toxicity.
Collapse
|
14
|
Badal S, Smith KN, Rajnarayanan R. Analysis of natural product regulation of cannabinoid receptors in the treatment of human disease. Pharmacol Ther 2017; 180:24-48. [PMID: 28583800 DOI: 10.1016/j.pharmthera.2017.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The organized, tightly regulated signaling relays engaged by the cannabinoid receptors (CBs) and their ligands, G proteins and other effectors, together constitute the endocannabinoid system (ECS). This system governs many biological functions including cell proliferation, regulation of ion transport and neuronal messaging. This review will firstly examine the physiology of the ECS, briefly discussing some anomalies in the relay of the ECS signaling as these are consequently linked to maladies of global concern including neurological disorders, cardiovascular disease and cancer. While endogenous ligands are crucial for dispatching messages through the ECS, there are also commonalities in binding affinities with copious exogenous ligands, both natural and synthetic. Therefore, this review provides a comparative analysis of both types of exogenous ligands with emphasis on natural products given their putative safer efficacy and the role of Δ9-tetrahydrocannabinol (Δ9-THC) in uncovering the ECS. Efficacy is congruent to both types of compounds but noteworthy is the effect of a combination therapy to achieve efficacy without unideal side-effects. An example is Sativex that displayed promise in treating Huntington's disease (HD) in preclinical models allowing for its transition to current clinical investigation. Despite the in vitro and preclinical efficacy of Δ9-THC to treat neurodegenerative ailments, its psychotropic effects limit its clinical applicability to treating feeding disorders. We therefore propose further investigation of other compounds and their combinations such as the triterpene, α,β-amyrin that exhibited greater binding affinity to CB1 than CB2 and was more potent than Δ9-THC and the N-alkylamides that exhibited CB2 selective affinity; the latter can be explored towards peripherally exclusive ECS modulation. The synthetic CB1 antagonist, Rimonabant was pulled from commercial markets for the treatment of diabetes, however its analogue SR144528 maybe an ideal lead molecule towards this end and HU-210 and Org27569 are also promising synthetic small molecules.
Collapse
Affiliation(s)
- S Badal
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Mona, Jamaica.
| | - K N Smith
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R Rajnarayanan
- Jacobs School of Medicine and Biomedical Sciences, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14228, USA
| |
Collapse
|
15
|
Zhong W, Picca AJ, Lee AS, Darmani NA. Ca2+ signaling and emesis: Recent progress and new perspectives. Auton Neurosci 2017; 202:18-27. [DOI: 10.1016/j.autneu.2016.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 02/07/2023]
|
16
|
Rock EM, Boulet N, Limebeer CL, Mechoulam R, Parker LA. Cannabinoid 2 (CB2) receptor agonism reduces lithium chloride-induced vomiting in Suncus murinus and nausea-induced conditioned gaping in rats. Eur J Pharmacol 2016; 786:94-99. [PMID: 27263826 DOI: 10.1016/j.ejphar.2016.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 05/20/2016] [Accepted: 06/01/2016] [Indexed: 12/20/2022]
Abstract
We aimed to investigate the potential anti-emetic and anti-nausea properties of targeting the cannabinoid 2 (CB2) receptor. We investigated the effect of the selective CB2 agonist, HU-308, on lithium chloride- (LiCl) induced vomiting in Suncus murinus (S. murinus) and conditioned gaping (nausea-induced behaviour) in rats. Additionally, we determined whether these effects could be prevented by pretreatment with AM630 (a selective CB2 receptor antagonist/inverse agonist). In S. murinus, HU-308 (2.5, 5mg/kg, i.p.) reduced, but did not completely block, LiCl-induced vomiting; an effect that was prevented with AM630. In rats, HU-308 (5mg/kg, i.p.) suppressed, but did not completely block, LiCl-induced conditioned gaping to a flavour; an effect that was prevented by AM630. These findings are the first to demonstrate the ability of a selective CB2 receptor agonist to reduce nausea in animal models, indicating that targeting the CB2 receptor may be an effective strategy, devoid of psychoactive effects, for managing toxin-induced nausea and vomiting.
Collapse
Affiliation(s)
- Erin M Rock
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Nathalie Boulet
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Cheryl L Limebeer
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Raphael Mechoulam
- Institute of Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
17
|
Chakravarti B, Ravi J, Ganju RK. Cannabinoids as therapeutic agents in cancer: current status and future implications. Oncotarget 2015; 5:5852-72. [PMID: 25115386 PMCID: PMC4171598 DOI: 10.18632/oncotarget.2233] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The pharmacological importance of cannabinoids has been in study for several years. Cannabinoids comprise of (a) the active compounds of the Cannabis sativa plant, (b) endogenous as well as (c) synthetic cannabinoids. Though cannabinoids are clinically used for anti-palliative effects, recent studies open a promising possibility as anti-cancer agents. They have been shown to possess anti-proliferative and anti-angiogenic effects in vitro as well as in vivo in different cancer models. Cannabinoids regulate key cell signaling pathways that are involved in cell survival, invasion, angiogenesis, metastasis, etc. There is more focus on CB1 and CB2, the two cannabinoid receptors which are activated by most of the cannabinoids. In this review article, we will focus on a broad range of cannabinoids, their receptor dependent and receptor independent functional roles against various cancer types with respect to growth, metastasis, energy metabolism, immune environment, stemness and future perspectives in exploring new possible therapeutic opportunities.
Collapse
Affiliation(s)
- Bandana Chakravarti
- Division of Endocrinology, Central Drug Research Institute, Lucknow, UP, India; These authors contributed equally to this work
| | - Janani Ravi
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA; These authors contributed equally to this work
| | - Ramesh K Ganju
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
18
|
Deng L, Cornett BL, Mackie K, Hohmann AG. CB1 Knockout Mice Unveil Sustained CB2-Mediated Antiallodynic Effects of the Mixed CB1/CB2 Agonist CP55,940 in a Mouse Model of Paclitaxel-Induced Neuropathic Pain. Mol Pharmacol 2015; 88:64-74. [PMID: 25904556 PMCID: PMC4468646 DOI: 10.1124/mol.115.098483] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 01/02/2023] Open
Abstract
Cannabinoids suppress neuropathic pain through activation of cannabinoid CB1 and/or CB2 receptors; however, unwanted CB1-mediated cannabimimetic effects limit clinical use. We asked whether CP55,940 [(-)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexanol], a potent cannabinoid that binds with similar affinity to CB1 and CB2 in vitro, produces functionally separable CB1- and CB2-mediated pharmacological effects in vivo. We evaluated antiallodynic effects, possible tolerance, and cannabimimetic effects (e.g., hypothermia, catalepsy, CB1-dependent withdrawal signs) after systemic CP55,940 treatment in a mouse model of toxic neuropathy produced by a chemotherapeutic agent, paclitaxel. The contribution of CB1 and CB2 receptors to in vivo actions of CP55,940 was evaluated using CB1 knockout (KO), CB2KO, and wild-type (WT) mice. Low-dose CP55,940 (0.3 mg/kg daily, i.p. ) suppressed paclitaxel-induced allodynia in WT and CB2KO mice, but not CB1KO mice. Low-dose CP55,940 also produced hypothermia and rimonabant-precipitated withdrawal in WT, but not CB1KO, mice. In WT mice, tolerance developed to CB1-mediated hypothermic effects of CP55,940 earlier than to antiallodynic effects. High-dose CP55,940 (10 mg/kg daily, i.p.) produced catalepsy in WT mice, which precluded determination of antiallodynic efficacy but produced sustained CB2-mediated suppression of paclitaxel-induced allodynia in CB1KO mice; these antiallodynic effects were blocked by the CB2 antagonist 6-iodopravadoline (AM630). High-dose CP55,940 did not produce hypothermia or rimonabant-precipitated withdrawal in CB1KO mice. Our results using the mixed CB1/CB2 agonist CP55,940 document that CB1 and CB2 receptor activations produce mechanistically distinct suppression of neuropathic pain. Our study highlights the therapeutic potential of targeting cannabinoid CB2 receptors to bypass unwanted central effects associated with CB1 receptor activation.
Collapse
MESH Headings
- Analgesics/administration & dosage
- Analgesics/pharmacology
- Animals
- Cannabinoid Receptor Antagonists/pharmacology
- Cyclohexanols/administration & dosage
- Cyclohexanols/pharmacology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Female
- Humans
- Male
- Mice
- Mice, Knockout
- Neuralgia/chemically induced
- Neuralgia/drug therapy
- Neuralgia/genetics
- Neuralgia/metabolism
- Paclitaxel
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Liting Deng
- Department of Molecular and Cellular Biochemistry (L.D.), Department of Psychological and Brain Sciences (L.D., B.L.C., K.M., A.G.H.), The Linda and Jack Gill Center for Biomolecular Science (L.D., B.L.C., K.M., A.G.H.), Indiana University, Bloomington, Indiana
| | - Benjamin L Cornett
- Department of Molecular and Cellular Biochemistry (L.D.), Department of Psychological and Brain Sciences (L.D., B.L.C., K.M., A.G.H.), The Linda and Jack Gill Center for Biomolecular Science (L.D., B.L.C., K.M., A.G.H.), Indiana University, Bloomington, Indiana
| | - Ken Mackie
- Department of Molecular and Cellular Biochemistry (L.D.), Department of Psychological and Brain Sciences (L.D., B.L.C., K.M., A.G.H.), The Linda and Jack Gill Center for Biomolecular Science (L.D., B.L.C., K.M., A.G.H.), Indiana University, Bloomington, Indiana
| | - Andrea G Hohmann
- Department of Molecular and Cellular Biochemistry (L.D.), Department of Psychological and Brain Sciences (L.D., B.L.C., K.M., A.G.H.), The Linda and Jack Gill Center for Biomolecular Science (L.D., B.L.C., K.M., A.G.H.), Indiana University, Bloomington, Indiana
| |
Collapse
|
19
|
Rock EM, Kopstick RL, Limebeer CL, Parker LA. Tetrahydrocannabinolic acid reduces nausea-induced conditioned gaping in rats and vomiting in Suncus murinus. Br J Pharmacol 2014; 170:641-8. [PMID: 23889598 DOI: 10.1111/bph.12316] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 07/05/2013] [Accepted: 07/19/2013] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE We evaluated the anti-emetic and anti-nausea properties of the acid precursor of Δ(9) -tetrahydrocannabinol (THC), tetrahydrocannabinolic acid (THCA), and determined its mechanism of action in these animal models. EXPERIMENTAL APPROACH We investigated the effect of THCA on lithium chloride- (LiCl) induced conditioned gaping (nausea-induced behaviour) to a flavour, and context (a model of anticipatory nausea) in rats, and on LiCl-induced vomiting in Suncus murinus. Furthermore, we investigated THCA's ability to induce hypothermia and suppress locomotion [rodent tasks to assess cannabinoid1 (CB1 ) receptor agonist-like activity], and measured plasma and brain THCA and THC levels. We also determined whether THCA's effect could be blocked by pretreatment with SR141716 (SR, a CB1 receptor antagonist). KEY RESULTS In rats, THCA (0.05 and/or 0.5 mg·kg(-1) ) suppressed LiCl-induced conditioned gaping to a flavour and context; the latter effect blocked by the CB1 receptor antagonist, SR, but not by the 5-hydroxytryptamine-1A receptor antagonist, WAY100635. In S. murinus, THCA (0.05 and 0.5 mg·kg(-1) ) reduced LiCl-induced vomiting, an effect that was reversed with SR. A comparatively low dose of THC (0.05 mg·kg(-1) ) did not suppress conditioned gaping to a LiCl-paired flavour or context. THCA did not induce hypothermia or reduce locomotion, indicating non-CB1 agonist-like effects. THCA, but not THC was detected in plasma samples. CONCLUSIONS AND IMPLICATIONS THCA potently reduced conditioned gaping in rats and vomiting in S. murinus, effects that were blocked by SR. These data suggest that THCA may be a more potent alternative to THC in the treatment of nausea and vomiting.
Collapse
Affiliation(s)
- E M Rock
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | | | | | | |
Collapse
|
20
|
Emery SM, Alotaibi MR, Tao Q, Selley DE, Lichtman AH, Gewirtz DA. Combined antiproliferative effects of the aminoalkylindole WIN55,212-2 and radiation in breast cancer cells. J Pharmacol Exp Ther 2014; 348:293-302. [PMID: 24259678 PMCID: PMC4859093 DOI: 10.1124/jpet.113.205120] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 11/19/2013] [Indexed: 01/08/2023] Open
Abstract
The potential antitumor activity of cannabinoid receptor agonists, such as the aminoalklylindole WIN55,212-2 (WIN2), has been studied extensively, but their potential interaction with conventional cancer therapies, such as radiation, remains unknown. In the present work, the influence of WIN2 on the antiproliferative activity of radiation in human (MCF-7 and MDA-MB231) and murine (4T1) breast cancer cells was investigated. The antiproliferative effects produced by combination of WIN2 and radiation were more effective than either agent alone. The stereoisomer of WIN2, WIN55,212-3 (WIN3), failed to inhibit growth or potentiate the growth-inhibitory effects of radiation, indicative of stereospecificity. Two other aminoalkylindoles, pravadoline and JWH-015 [(2-methyl-1-propyl-1H-indol-3-yl)-1-naphthalenyl-methanone], also enhanced the antiproliferative effects of radiation, but other synthetic cannabinoids (i.e., nabilone, CP55,940 [(+)-rel-5-(1,1-dimethylheptyl)-2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]-phenol], and methanandamide) or phytocannabinoids [i.e., Δ⁹-tetrahydrocannabinol (THC) and cannabidiol] did not. The combination treatment of WIN2 + radiation promoted both autophagy and senescence but not apoptosis or necrosis. WIN2 also failed to alter radiation-induced DNA damage or the apparent rate of DNA repair. Although the antiproliferative actions of WIN2 were mediated through noncannabinoid receptor-mediated pathways, the observation that WIN2 interfered with growth stimulation by sphingosine-1-phosphate (S1P) implicates the potential involvement of S1P/ceramide signaling pathways. In addition to demonstrating that aminoalkylindole compounds could potentially augment the effectiveness of radiation treatment in breast cancer, the present study suggests that THC and nabilone are unlikely to interfere with the effectiveness of radiation therapy, which is of particular relevance to patients using cannabinoid-based drugs to ameliorate the toxicity of cancer therapies.
Collapse
Affiliation(s)
- Sean M Emery
- Departments of Pharmacology and Toxicology (S.M.E., M.R.A., Q.T., D.E.S., A.H.T., D.A.G.), Massey Cancer Center (D.A.G.), Virginia Commonwealth University, Richmond, Virginia
| | | | | | | | | | | |
Collapse
|
21
|
Parker LA. Conditioned flavor avoidance and conditioned gaping: rat models of conditioned nausea. Eur J Pharmacol 2013; 722:122-33. [PMID: 24157975 DOI: 10.1016/j.ejphar.2013.09.070] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 09/20/2013] [Accepted: 09/27/2013] [Indexed: 01/06/2023]
Abstract
Although rats are incapable of vomiting, they demonstrate profound avoidance of a flavor previously paired with an emetic drug. They also display conditioned gaping reactions during re-exposure to the flavor. This robust learning occurs in a single trial and with long delays (hours) between consumption of a novel flavor and the emetic treatment. However, conditioned flavor avoidance learning is not a selective measure of the emetic properties of drugs, because non-emetic treatments (even highly rewarding treatments) produce conditioned avoidance, and anti-emetic treatments are generally ineffective in suppressing conditioned avoidance produced by an emetic drug. On the other hand, conditioned gaping reactions are consistently produced by emetic drugs and are prevented by anti-emetic drugs, indicating that they may be a more selective measure of conditioned malaise in rats. Here we review the literature on the use of conditioned flavor avoidance and conditioned gaping reactions as rat measures of conditioned nausea, as well as the neuropharmacology and neuroanatomy of conditioned gaping reactions in rats.
Collapse
Affiliation(s)
- Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
22
|
Mostafeezur RM, Zakir HM, Takatsuji H, Yamada Y, Yamamura K, Kitagawa J. Cannabinoids facilitate the swallowing reflex elicited by the superior laryngeal nerve stimulation in rats. PLoS One 2012; 7:e50703. [PMID: 23209814 PMCID: PMC3507745 DOI: 10.1371/journal.pone.0050703] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 10/25/2012] [Indexed: 12/03/2022] Open
Abstract
Cannabinoids have been reported to be involved in affecting various biological functions through binding with cannabinoid receptors type 1 (CB1) and 2 (CB2). The present study was designed to investigate whether swallowing, an essential component of feeding behavior, is modulated after the administration of cannabinoid. The swallowing reflex evoked by the repetitive electrical stimulation of the superior laryngeal nerve in rats was recorded before and after the administration of the cannabinoid receptor agonist, WIN 55-212-2 (WIN), with or without CB1 or CB2 antagonist. The onset latency of the first swallow and the time intervals between swallows were analyzed. The onset latency and the intervals between swallows were shorter after the intravenous administration of WIN, and the strength of effect of WIN was dose-dependent. Although the intravenous administration of CB1 antagonist prior to intravenous administration of WIN blocked the effect of WIN, the administration of CB2 antagonist did not block the effect of WIN. The microinjection of the CB1 receptor antagonist directly into the nucleus tractus solitarius (NTS) prior to intravenous administration of WIN also blocked the effect of WIN. Immunofluorescence histochemistry was conducted to assess the co-localization of CB1 receptor immunoreactivity to glutamic acid decarboxylase 67 (GAD67) or glutamate in the NTS. CB1 receptor was co-localized more with GAD67 than glutamate in the NTS. These findings suggest that cannabinoids facilitate the swallowing reflex via CB1 receptors. Cannabinoids may attenuate the tonic inhibitory effect of GABA (gamma-aminobuteric acid) neurons in the central pattern generator for swallowing.
Collapse
Affiliation(s)
- Rahman Md. Mostafeezur
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hossain Md. Zakir
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hanako Takatsuji
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshiaki Yamada
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Junichi Kitagawa
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
23
|
Rock EM, Bolognini D, Limebeer CL, Cascio MG, Anavi-Goffer S, Fletcher PJ, Mechoulam R, Pertwee RG, Parker LA. Cannabidiol, a non-psychotropic component of cannabis, attenuates vomiting and nausea-like behaviour via indirect agonism of 5-HT(1A) somatodendritic autoreceptors in the dorsal raphe nucleus. Br J Pharmacol 2012; 165:2620-34. [PMID: 21827451 PMCID: PMC3423241 DOI: 10.1111/j.1476-5381.2011.01621.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/04/2011] [Accepted: 07/15/2011] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE To evaluate the hypothesis that activation of somatodendritic 5-HT(1A) autoreceptors in the dorsal raphe nucleus (DRN) produces the anti-emetic/anti-nausea effects of cannabidiol (CBD), a primary non-psychoactive cannabinoid found in cannabis. EXPERIMENTAL APPROACH The potential of systemic and intra-DRN administration of 5-HT(1A) receptor antagonists, WAY100135 or WAY100635, to prevent the anti-emetic effect of CBD in shrews (Suncus murinus) and the anti-nausea-like effects of CBD (conditioned gaping) in rats were evaluated. Also, the ability of intra-DRN administration of CBD to produce anti-nausea-like effects (and reversal by systemic WAY100635) was assessed. In vitro studies evaluated the potential of CBD to directly target 5-HT(1A) receptors and to modify the ability of the 5-HT(1A) agonist, 8-OH-DPAT, to stimulate [(35) S]GTPγS binding in rat brainstem membranes. KEY RESULTS CBD suppressed nicotine-, lithium chloride (LiCl)- and cisplatin (20 mg·kg(-1) , but not 40 mg·kg(-1) )-induced vomiting in the S. murinus and LiCl-induced conditioned gaping in rats. Anti-emetic and anti-nausea-like effects of CBD were suppressed by WAY100135 and the latter by WAY100635. When administered to the DRN: (i) WAY100635 reversed anti-nausea-like effects of systemic CBD, and (ii) CBD suppressed nausea-like effects, an effect that was reversed by systemic WAY100635. CBD also displayed significant potency (in a bell-shaped dose-response curve) at enhancing the ability of 8-OH-DPAT to stimulate [(35) S]GTPγS binding to rat brainstem membranes in vitro. Systemically administered CBD and 8-OH-DPAT synergistically suppressed LiCl-induced conditioned gaping. CONCLUSIONS AND IMPLICATIONS These results suggest that CBD produced its anti-emetic/anti-nausea effects by indirect activation of the somatodendritic 5-HT(1A) autoreceptors in the DRN. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7.
Collapse
Affiliation(s)
- E M Rock
- Department of Psychology and Neuroscience Graduate Program, University of Guelph, Guelph, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Interaction between non-psychotropic cannabinoids in marihuana: effect of cannabigerol (CBG) on the anti-nausea or anti-emetic effects of cannabidiol (CBD) in rats and shrews. Psychopharmacology (Berl) 2011; 215:505-12. [PMID: 21243485 DOI: 10.1007/s00213-010-2157-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 12/19/2010] [Indexed: 02/08/2023]
Abstract
RATIONALE The interaction between two non-psychotropic cannabinoids, cannabidiol (CBD) and cannabigerol (CBG), which have been reported to act as a 5-hydroxytryptamine 1A (5-HT(1A)) agonist and antagonist, respectively, was evaluated. OBJECTIVE To evaluate the potential of CBG to reverse the anti-nausea, anti-emetic effects of CBD. MATERIALS AND METHODS In experiment 1, rats were pre-treated with CBG (0.0, 1, 5, and 10 mg/kg, ip), 15 min prior to being treated with CBD (experiment 1a: VEH or 5 mg/kg, ip) or 8-OH-DPAT (experiment 1b: VEH or 0.01 mg/kg, ip). Thirty minutes later, all rats received a pairing of 0.1% saccharin solution and LiCl (20 ml/kg of 0.15 M, ip). Seventy-two hours later, the rats received a drug-free taste reactivity test with saccharin to evaluate the effects of the treatments on the establishment of conditioned gaping reactions (a model of nausea). As well, conditioned saccharin avoidance was measured. In experiment 2, Suncus murinus were injected with CBG (5 mg/kg, ip) or VEH 15 min prior to CBD (5 mg/kg) or VEH and 30 min later were injected with LiCl (60 ml/kg of 0.15 M, i.p.), and the number of vomiting episodes were measured. RESULTS CBD (5 mg/kg) suppressed conditioned gaping in rats and vomiting in shrews, which were reversed by pre-treatment with all doses of CBG. CBG also prevented the anti-nausea effects of 8-OH-DPAT. CONCLUSIONS Interactions between moderate doses of CBG and CBD may oppose one another at the 5-HT(1A) receptor in the regulation of nausea and vomiting.
Collapse
|
25
|
Olver I, Molassiotis A, Aapro M, Herrstedt J, Grunberg S, Morrow G. Antiemetic research: future directions. Support Care Cancer 2010; 19 Suppl 1:S49-55. [DOI: 10.1007/s00520-010-1036-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 10/18/2022]
|
26
|
Darmani NA. Mechanisms of Broad-Spectrum Antiemetic Efficacy of Cannabinoids against Chemotherapy-Induced Acute and Delayed Vomiting. Pharmaceuticals (Basel) 2010; 3:2930-2955. [PMID: 27713384 PMCID: PMC4034105 DOI: 10.3390/ph3092930] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/26/2010] [Accepted: 08/30/2010] [Indexed: 01/02/2023] Open
Abstract
Chemotherapy-induced nausea and vomiting (CINV) is a complex pathophysiological condition and consists of two phases. The conventional CINV neurotransmitter hypothesis suggests that the immediate phase is mainly due to release of serotonin (5-HT) from the enterochromaffin cells in the gastrointestinal tract (GIT), while the delayed phase is a consequence of release of substance P (SP) in the brainstem. However, more recent findings argue against this simplistic neurotransmitter and anatomical view of CINV. Revision of the hypothesis advocates a more complex, differential and overlapping involvement of several emetic neurotransmitters/modulators (e.g. dopamine, serotonin, substance P, prostaglandins and related arachidonic acid derived metabolites) in both phases of emesis occurring concomitantly in the brainstem and in the GIT enteric nervous system (ENS) [1]. No single antiemetic is currently available to completely prevent both phases of CINV. The standard antiemetic regimens include a 5-HT₃ antagonist plus dexamethasone for the prevention of acute emetic phase, combined with an NK1 receptor antagonist (e.g. aprepitant) for the delayed phase. Although NK1 antagonists behave in animals as broad-spectrum antiemetics against different emetogens including cisplatin-induced acute and delayed vomiting, by themselves they are not very effective against CINV in cancer patients. Cannabinoids such as D⁸-THC also behave as broad-spectrum antiemetics against diverse emetic stimuli as well as being effective against both phases of CINV in animals and patients. Potential side effects may limit the clinical utility of direct-acting cannabinoid agonists which could be avoided by the use of corresponding indirect-acting agonists. Cannabinoids (both phyto-derived and synthetic) behave as agonist antiemetics via the activation of cannabinoid CB₁ receptors in both the brainstem and the ENS emetic loci. An endocannabinoid antiemetic tone may exist since inverse CB₁ agonists (but not the corresponding silent antagonists) cause nausea and vomiting.
Collapse
Affiliation(s)
- Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
27
|
Izzo AA, Sharkey KA. Cannabinoids and the gut: new developments and emerging concepts. Pharmacol Ther 2010; 126:21-38. [PMID: 20117132 DOI: 10.1016/j.pharmthera.2009.12.005] [Citation(s) in RCA: 309] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 12/24/2009] [Indexed: 12/11/2022]
Abstract
Cannabis has been used to treat gastrointestinal (GI) conditions that range from enteric infections and inflammatory conditions to disorders of motility, emesis and abdominal pain. The mechanistic basis of these treatments emerged after the discovery of Delta(9)-tetrahydrocannabinol as the major constituent of Cannabis. Further progress was made when the receptors for Delta(9)-tetrahydrocannabinol were identified as part of an endocannabinoid system, that consists of specific cannabinoid receptors, endogenous ligands and their biosynthetic and degradative enzymes. Anatomical, physiological and pharmacological studies have shown that the endocannabinoid system is widely distributed throughout the gut, with regional variation and organ-specific actions. It is involved in the regulation of food intake, nausea and emesis, gastric secretion and gastroprotection, GI motility, ion transport, visceral sensation, intestinal inflammation and cell proliferation in the gut. Cellular targets have been defined that include the enteric nervous system, epithelial and immune cells. Molecular targets of the endocannabinoid system include, in addition to the cannabinoid receptors, transient receptor potential vanilloid 1 receptors, peroxisome proliferator-activated receptor alpha receptors and the orphan G-protein coupled receptors, GPR55 and GPR119. Pharmacological agents that act on these targets have been shown in preclinical models to have therapeutic potential. Here, we discuss cannabinoid receptors and their localization in the gut, the proteins involved in endocannabinoid synthesis and degradation and the presence of endocannabinoids in the gut in health and disease. We focus on the pharmacological actions of cannabinoids in relation to GI disorders, highlighting recent data on genetic mutations in the endocannabinoid system in GI disease.
Collapse
Affiliation(s)
- Angelo A Izzo
- Department of Experimental Pharmacology, University of Naples Federico II and Endocannabinoid Research Group, Naples, Italy.
| | | |
Collapse
|
28
|
Darmani NA, Ray AP. Evidence for a re-evaluation of the neurochemical and anatomical bases of chemotherapy-induced vomiting. Chem Rev 2009; 109:3158-99. [PMID: 19522506 DOI: 10.1021/cr900117p] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766-1854, USA.
| | | |
Collapse
|
29
|
Di Marzo V. CB1 receptor antagonism: biological basis for metabolic effects. Drug Discov Today 2008; 13:1026-41. [DOI: 10.1016/j.drudis.2008.09.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 08/20/2008] [Accepted: 09/01/2008] [Indexed: 11/15/2022]
|
30
|
Cluny NL, Naylor RJ, Whittle BA, Javid FA. The effects of cannabidiol and tetrahydrocannabinol on motion-induced emesis in Suncus murinus. Basic Clin Pharmacol Toxicol 2008; 103:150-6. [PMID: 18816298 DOI: 10.1111/j.1742-7843.2008.00253.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of cannabinoids on motion-induced emesis is unknown. The present study investigated the action of phytocannabinoids against motion-induced emesis in Suncus murinus. Suncus murinus were injected intraperitoneally with either cannabidiol (CBD) (0.5, 1, 2, 5, 10, 20 and 40 mg/kg), Delta(9)-tetrahydrocannabinol (Delta(9)-THC; 0.5, 3, 5 and 10 mg/kg) or vehicle 45 min. before exposure to a 10-min. horizontal motion stimulus (amplitude 40 mm, frequency 1 Hz). In further investigations, the CB(1) receptor antagonist, N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM 251; 5 mg/kg), was injected 15 min. prior to an injection of Delta(9)-THC (3 mg/kg). The motion stimulus was applied 45 min. later. The number of emetic episodes and latency of onset to the first emetic episode were recorded. Pre-treatment with the above doses of CBD did not modify the emetic response to the motion stimulus as compared to the vehicle-treated controls. Application of the higher doses of Delta(9)-THC induced emesis in its own right, which was inhibited by AM 251. Furthermore, pre-treatment with Delta(9)-THC dose-dependently attenuated motion-induced emesis, an effect that was inhibited by AM 251. AM 251 neither induced an emetic response nor modified motion-induced emesis. The present study indicates that Delta(9)-THC, acting via the CB(1) receptors, is anti-emetic to motion, and that CBD has no effect on motion-induced emesis in Suncus murinus.
Collapse
Affiliation(s)
- Nina L Cluny
- The School of Pharmacy, University of Bradford, Bradford, West Yorkshire, UK.
| | | | | | | |
Collapse
|