1
|
Karimi Tari P, Parsons CG, Collingridge GL, Rammes G. Memantine: Updating a rare success story in pro-cognitive therapeutics. Neuropharmacology 2024; 244:109737. [PMID: 37832633 DOI: 10.1016/j.neuropharm.2023.109737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
The great potential for NMDA receptor modulators as druggable targets in neurodegenerative disorders has been met with limited success. Considered one of the rare exceptions, memantine has consistently demonstrated restorative and prophylactic properties in many AD models. In clinical trials memantine slows the decline in cognitive performance associated with AD. Here, we provide an overview of the basic properties including pharmacological targets, toxicology and cellular effects of memantine. Evidence demonstrating reductions in molecular, physiological and behavioural indices of AD-like impairments associated with memantine treatment are also discussed. This represents both an extension and homage to Dr. Chris Parson's considerable contributions to our fundamental understanding of a success story in the AD treatment landscape.
Collapse
Affiliation(s)
- Parisa Karimi Tari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Chris G Parsons
- Galimedix Therapeutics, Inc., 2704 Calvend Lane, Kensington, 20895, MD, USA
| | - Graham L Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada; Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada; TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care Medicine of the Technical University of Munich, School of Medicine, 22, 81675, Munich, Germany.
| |
Collapse
|
2
|
Elgoyhen AB. The α9α10 nicotinic acetylcholine receptor: a compelling drug target for hearing loss? Expert Opin Ther Targets 2022; 26:291-302. [PMID: 35225139 PMCID: PMC9007918 DOI: 10.1080/14728222.2022.2047931] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hearing loss is a major health problem, impacting education, communication, interpersonal relationships, and mental health. Drugs that prevent or restore hearing are lacking and hence novel drug targets are sought. There is the possibility of targeting the α9α10 nicotinic acetylcholine receptor (nAChR) in the prevention of noise-induced, hidden hearing loss and presbycusis. This receptor mediates synaptic transmission between medial olivocochlear efferent fibers and cochlear outer hair cells. This target is key since enhanced olivocochlear activity prevents noise-induced hearing loss and delays presbycusis. AREAS COVERED The work examines the α9α10 nicotinic acetylcholine receptor (nAChR), its role in noise-induced, hidden hearing loss and presbycusis and the possibility of targeting. Data has been searched in Pubmed, the World Report on Hearing from the World Health Organization and the Global Burden of Disease Study 2019. EXPERT OPINION The design of positive allosteric modulators of α9α10 nAChRs is proposed because of the advantage of reinforcing the medial olivocochlear (MOC)-hair cell endogenous neurotransmission without directly stimulating the target receptors, therefore avoiding receptor desensitization and reduced efficacy. The time is right for the discovery and development of α9α10 nAChRs targeting agents and high throughput screening assays will support this.
Collapse
Affiliation(s)
- Ana Belén Elgoyhen
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
3
|
A Once-Daily High Dose of Intraperitoneal Ascorbate Improves Vestibulo-ocular Reflex Compensation After Unilateral Labyrinthectomy in the Mouse. J Assoc Res Otolaryngol 2022; 23:27-34. [PMID: 34981264 PMCID: PMC8782995 DOI: 10.1007/s10162-021-00831-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023] Open
Abstract
Ascorbate potentiates the response of nicotinic-acetylcholine-receptors containing α9 and α10 subunits found predominantly in the efferent systems of the inner ear, such as the efferent vestibular system (EVS). Prior mouse studies have shown that an attenuated EVS results in reduced vestibulo-ocular reflex (VOR) gain (=eye_velocity/head_velocity) plasticity in intact (VOR adaptation) and surgically-lesioned (VOR compensation) mice. We sought to determine whether ascorbate-treatment could improve VOR recovery after vestibular organ injury, possibly through potentiation of the EVS pathway. We tested 10 cba129 mice, 5 received ascorbate-treatment and 5 did not, but otherwise experienced the same conditions. Ascorbate-treatment comprised a once-daily intraperitoneal injection of L-form reduced ascorbate (4 g/kg) in 0.2 ml saline starting 1 week before, and ending 4 weeks after, unilateral labyrinthectomy surgery. These were deliberately high doses to determine the ascorbate effects on recovery. Baseline, acute, and chronic sinusoidal VOR gains (frequency and velocity ranges: 0.2-10 Hz, 20-100 deg/s) were measured 3-5 days before, 3-5 days after, and 28-31 days after labyrinthectomy. Mice treated with ascorbate had acute ipsilesional VOR gains 12 % higher compared to control mice (+45.2 ± 14.9 % from baseline versus +33.7 ± 15.4 %, P < 0.001). Similarly, chronic ipsilesional and contralesional VOR gains were respectively 16 % (+74.3 ± 16.3 % from baseline versus +58.1 ± 15.8 %, P < 0.001) and 13 % (+78.6 ± 16.0 % versus +65.6 ± 10.9 %, P < 0.001) higher compared to control mice. These data suggest ascorbate-treatment had a prophylactic effect reducing acute loss, and helped recovery during acute to chronic stages of compensation. One possible mechanism is that an ascorbate-enhanced EVS drives an increase in the number and sensitivity of irregular-discharging primary vestibular afferents, important for VOR plasticity.
Collapse
|
4
|
Lipovsek M, Marcovich I, Elgoyhen AB. The Hair Cell α9α10 Nicotinic Acetylcholine Receptor: Odd Cousin in an Old Family. Front Cell Neurosci 2021; 15:785265. [PMID: 34867208 PMCID: PMC8634148 DOI: 10.3389/fncel.2021.785265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are a subfamily of pentameric ligand-gated ion channels with members identified in most eumetazoan clades. In vertebrates, they are divided into three subgroups, according to their main tissue of expression: neuronal, muscle and hair cell nAChRs. Each receptor subtype is composed of different subunits, encoded by paralogous genes. The latest to be identified are the α9 and α10 subunits, expressed in the mechanosensory hair cells of the inner ear and the lateral line, where they mediate efferent modulation. α9α10 nAChRs are the most divergent amongst all nicotinic receptors, showing marked differences in their degree of sequence conservation, their expression pattern, their subunit co-assembly rules and, most importantly, their functional properties. Here, we review recent advances in the understanding of the structure and evolution of nAChRs. We discuss the functional consequences of sequence divergence and conservation, with special emphasis on the hair cell α9α10 receptor, a seemingly distant cousin of neuronal and muscle nicotinic receptors. Finally, we highlight potential links between the evolution of the octavolateral system and the extreme divergence of vertebrate α9α10 receptors.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Ear Institute, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Irina Marcovich
- Departments of Otolaryngology & Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
5
|
Soni A, Dubey A. Chronic Primary Tinnitus: A Management Dilemma. Audiol Res 2020; 10:55-66. [PMID: 33255533 PMCID: PMC7768479 DOI: 10.3390/audiolres10020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 11/24/2022] Open
Abstract
Tinnitus often described as sound in the ear in absence of any external stimulus. It poses a challenge to the psychological and mental wellbeing of the patient and professional unsatisfaction to the clinician. The patient often an old aged individual usually approaches the outpatient department with various sounds in the ear, making him feel ill or unable to have a sound sleep. The middle-aged patient often complains of professional incapability and lack of concentration due to tinnitus. Despite vast academic research and advances, the efficiency of available treatment is debatable, often compelling the clinician to convey the message that “you may have to learn to live with it”. In the present overview of reviews, we tend to look into the management of tinnitus and present a comprehensive outlook of various evidence-based reviews from Cochrane and augmented with various studies from PubMed.
Collapse
|
6
|
Musazzi UM, Franzé S, Cilurzo F. Innovative pharmaceutical approaches for the management of inner ear disorders. Drug Deliv Transl Res 2018; 8:436-449. [PMID: 28462501 DOI: 10.1007/s13346-017-0384-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The sense of hearing is essential for permitting human beings to interact with the environment, and its dysfunctions can strongly impact on the quality of life. In this context, the cochlea plays a fundamental role in the transformation of the airborne sound waves into electrical signals, which can be processed by the brain. However, several diseases and external stimuli (e.g., noise, drugs) can damage the sensorineural structures of cochlea, inducing progressive hearing dysfunctions until deafness. In clinical practice, the current pharmacological approaches to treat cochlear diseases are based on the almost exclusive use of systemic steroids. In the last decades, the efficacy of novel therapeutic molecules has been proven, taking advantage from a better comprehension of the pathological mechanisms underlying many cochlear diseases. In addition, the feasibility of intratympanic administration of drugs also permitted to overcome the pharmacokinetic limitations of the systemic drug administration, opening new frontiers in drug delivery to cochlea. Several innovative drug delivery systems, such as in situ gelling systems or nanocarriers, were designed, and their efficacy has been proven in vitro and in vivo in cochlear models. The current review aims to describe the art of state in the cochlear drug delivery, highlighting lights and shadows and discussing the most critical aspects still pending in the field.
Collapse
Affiliation(s)
- Umberto M Musazzi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via G. Colombo, 71, 20133, Milan, Italy.
| | - Silvia Franzé
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via G. Colombo, 71, 20133, Milan, Italy
| | - Francesco Cilurzo
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via G. Colombo, 71, 20133, Milan, Italy
| |
Collapse
|
7
|
Sahoo AK, Dandapat J, Dash UC, Kanhar S. Features and outcomes of drugs for combination therapy as multi-targets strategy to combat Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2018; 215:42-73. [PMID: 29248451 DOI: 10.1016/j.jep.2017.12.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD), a deleterious neurodegenerative disorder that impairs memory, cognitive functions and may lead to dementia in late stage of life. The pathogenic cause of AD remains incompletely understood and FDA approved drugs are partial inhibitors rather than curative. Most of drugs are synthetic or natural products as galanthamine is an alkaloid obtained from Galanthus spp. Huperzine A, an alkaloid found in Huperzia spp., gingkolides a diterpenoids from Gingko biloba and many ethnobotanicals like Withania somnifera (L.) Dunal., Physostigma venenosum Balf., Bacopa monnieri (L.) Wettst., Centella asiatica (L.) Urb. have been used by traditional Indian, Chinese, and European system of medicines in AD. Clinical significance opioid alkaloid in Papaver somniferum has shown another dimension to this study. Over exploitation of medicinal plants with limited bioactive principles has provided templates to design synthetic drugs in AD e.g. rivastigmine, phenserine, eptastigmine based on chemical structure of physostigmine of Physostigma venenosum Balf. Even ZT-1 a prodrug of Hup A and memogain a prodrug of galantamine has achieved new direction in drug development in AD. All these first-line cholinesterase-inhibitors are used as symptomatic treatments in AD. Single modality of "One-molecule-one-target" strategy for treating AD has failed and so future therapies on "Combination-drugs-multi-targets" strategy (CDMT) will need to address multiple aspects to block the progression of pathogenesis of AD. Besides, cholinergic and amyloid drugs, in this article we summarize proteinopathy-based drugs as AD therapeutics from a variety of biological sources. In this review, an attempt has been made to elucidate the molecular mode of action of various plant products, and synthetic drugs investigated in various preclinical and clinical tests in AD. It also discusses current attempts to formulate a comprehensive CDMT strategy to counter complex pathogenesis in AD. MATERIALS AND METHODS Information were collected from classical books on medicinal plants, pharmacopoeias and scientific databases like PubMed, Scopus, GoogleScholar, Web of Science and electronic searches were performed using Cochrane Library, Medline and EMBASE. Also published scientific literatures from Elsevier, Taylor and Francis, Springer, ACS, Wiley publishers and reports by government bodies and documentations were assessed. RESULTS 60 no. of natural and synthetic drugs have been studied with their significant bioactivities. A decision matrix designed for evaluation of drugs for considering to the hypothetic "CDMT" strategy in AD. We have introduced the scoring pattern of individual drugs and based on scoring pattern, drugs that fall within the scoring range of 18-25 are considered in the proposed CDMT. It also highlights the importance of available natural products and in future those drugs may be considered in CDMT along with the qualified synthetic drugs. CONCLUSION A successful validation of the CDMT strategy may open up a debate on health care reform to explore other possibilities of combination therapy. In doing so, it should focus on clinical and molecular relationships between AD and CDMT. A better understanding of these relationships could inform and impact future development of AD-directed treatment strategies. This strategy also involves in reducing costs in treatment phases which will be affordable to a common man suffering from AD.
Collapse
Affiliation(s)
- Atish Kumar Sahoo
- Phytotherapy Research Lab., Medicinal & Aromatic Plant Division, Regional Plant Resource Centre, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar 751015, India.
| | - Jagnehswar Dandapat
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar 751004, India
| | - Umesh Chandra Dash
- Phytotherapy Research Lab., Medicinal & Aromatic Plant Division, Regional Plant Resource Centre, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar 751015, India
| | - Satish Kanhar
- Phytotherapy Research Lab., Medicinal & Aromatic Plant Division, Regional Plant Resource Centre, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar 751015, India
| |
Collapse
|
8
|
Tinnitus and its current treatment–Still an enigma in medicine. J Formos Med Assoc 2016; 115:139-44. [DOI: 10.1016/j.jfma.2015.11.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 11/23/2022] Open
|
9
|
Rammes G. Neramexane: a moderate-affinity NMDA receptor channel blocker: new prospects and indications. Expert Rev Clin Pharmacol 2014; 2:231-8. [PMID: 24410702 DOI: 10.1586/ecp.09.7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
N-methyl-D-aspartate (NMDA) receptor antagonists have a potentially wide range of therapeutic applications. Unfortunately, potent NMDA receptor channel blockers produce phencyclidine-like psychotropic symptoms in humans and rodents, and thereby produce numerous side effects. However, recent data indicate that moderate-affinity, voltage-dependent, open-channel blockers, such as memantine and neramexane (MRZ 2/579) are useful therapeutics as they prevent the pathological activation of NMDA receptors but allow their physiological activity and should prove to be useful therapeutics in a wide range of CNS disorders. Indeed, memantine was recently registered in both Europe and the USA for the treatment of moderate-to-severe Alzheimer's disease (AD). Neramexane is under development as a potential neuroprotectant against various CNS disorders. Although the predicted therapeutic doses of neramexane were very well tolerated in male volunteers, unfortunately, recent Phase II/III clinical trials for moderate-to-severe AD delivered contradictory results. Neramexane also failed in a recent randomized controlled Phase II trial against drug abuse and depression. Although Phase Ib clinical trials for the indications of chronic pain showed positive results, Phase II results indicate no superiority to existing treatments. However, positive study results have been presented recently in a Phase IIb study on the treatment of tinnitus. A Phase III study for this indication is presently ongoing. Another promising application for neramexane as a neuroprotectant might be chronic neurodegeneration, such as Parkinson's disease, Huntington's disease, vascular dementia, frontal lobe dementia, Down's syndrome and AD.
Collapse
Affiliation(s)
- Gerhard Rammes
- Max Planck Institute of Psychiatry, Clinical Neuropharmacology, Kraepelinstraße 2, 80804 München, Germany and Klinik rechts der Isar, Department of Anaesthesiology, Technische Universität, 81675 Munich, Germany.
| |
Collapse
|
10
|
Boffi JC, Wedemeyer C, Lipovsek M, Katz E, Calvo DJ, Elgoyhen AB. Positive modulation of the α9α10 nicotinic cholinergic receptor by ascorbic acid. Br J Pharmacol 2013; 168:954-65. [PMID: 22994414 DOI: 10.1111/j.1476-5381.2012.02221.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 09/01/2012] [Accepted: 09/07/2012] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE The activation of α9α10 nicotinic cholinergic receptors (nAChRs) present at the synapse between efferent olivocochlear fibres and cochlear hair cells can prevent acoustic trauma. Hence, pharmacological potentiators of these receptors could be useful therapeutically. In this work, we characterize ascorbic acid as a positive modulator of recombinant α9α10 nAChRs. EXPERIMENTAL APPROACH ACh-evoked responses were analysed under two-electrode voltage-clamp recordings in Xenopus laevis oocytes injected with α9 and α10 cRNAs. KEY RESULTS Ascorbic acid potentiated ACh responses in X. laevis oocytes expressing α9α10 (but not α4β2 or α7) nAChRs, in a concentration-dependent manner, with an effective concentration range of 1-30 mM. The compound did not affect the receptor's current-voltage profile nor its apparent affinity for ACh, but it significantly enhanced the maximal evoked currents (percentage of ACh maximal response, 240 ± 20%). This effect was specific for the L form of reduced ascorbic acid. Substitution of the extracellular cysteine residues present in loop C of the ACh binding site did not affect the potentiation. Ascorbic acid turned into a partial agonist of α9α10 nAChRs bearing a point mutation at the pore domain of the channel (TM2 V13'T mutant). A positive allosteric mechanism of action rather than an antioxidant effect of ascorbic acid is proposed. CONCLUSIONS AND IMPLICATIONS The present work describes one of the few agents that activates or potentiates α9α10 nAChRs and leads to new avenues for designing drugs with potential therapeutic use in inner ear disorders.
Collapse
Affiliation(s)
- J C Boffi
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
11
|
Langguth B, Elgoyhen AB. Current pharmacological treatments for tinnitus. Expert Opin Pharmacother 2012; 13:2495-509. [DOI: 10.1517/14656566.2012.739608] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Knott V, Shah D, Millar A, McIntosh J, Fisher D, Blais C, Ilivitsky V. Nicotine, Auditory Sensory Memory, and sustained Attention in a Human Ketamine Model of Schizophrenia: Moderating Influence of a Hallucinatory Trait. Front Pharmacol 2012; 3:172. [PMID: 23060793 PMCID: PMC3460347 DOI: 10.3389/fphar.2012.00172] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/04/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The procognitive actions of the nicotinic acetylcholine receptor (nAChR) agonist nicotine are believed, in part, to motivate the excessive cigarette smoking in schizophrenia, a disorder associated with deficits in multiple cognitive domains, including low-level auditory sensory processes and higher-order attention-dependent operations. OBJECTIVES As N-methyl-d-aspartate receptor (NMDAR) hypofunction has been shown to contribute to these cognitive impairments, the primary aims of this healthy volunteer study were to: (a) to shed light on the separate and interactive roles of nAChR and NMDAR systems in the modulation of auditory sensory memory (and sustained attention), as indexed by the auditory event-related brain potential - mismatch negativity (MMN), and (b) to examine how these effects are moderated by a predisposition to auditory hallucinations/delusions (HD). METHODS In a randomized, double-blind, placebo-controlled design involving a low intravenous dose of ketamine (0.04 mg/kg) and a 4 mg dose of nicotine gum, MMN, and performance on a rapid visual information processing (RVIP) task of sustained attention were examined in 24 healthy controls psychometrically stratified as being lower (L-HD, n = 12) or higher (H-HD) for HD propensity. RESULTS Ketamine significantly slowed MMN, and reduced MMN in H-HD, with amplitude attenuation being blocked by the co-administration of nicotine. Nicotine significantly enhanced response speed [reaction time (RT)] and accuracy (increased % hits and d' and reduced false alarms) on the RVIP, with improved performance accuracy being prevented when nicotine was administered with ketamine. Both % hits and d', as well as RT were poorer in H-HD (vs. L-HD) and while hit rate and d' was increased by nicotine in H-HD, RT was slowed by ketamine in L-HD. CONCLUSIONS Nicotine alleviated ketamine-induced sensory memory impairment and improved attention, particularly in individuals prone to HD.
Collapse
Affiliation(s)
- Verner Knott
- Institute of Mental Health Research, University of OttawaOttawa, ON, Canada
- Neuroscience Program, Department of Cellular and Molecular Medicine, University of OttawaOttawa, ON, Canada
- School of Psychology, University of OttawaOttawa, ON, Canada
- Institute of Cognitive Science, Carleton UniversityOttawa, ON, Canada
- Royal Ottawa Mental Health CentreOttawa, ON, Canada
| | - Dhrasti Shah
- School of Psychology, University of OttawaOttawa, ON, Canada
| | - Anne Millar
- Neuroscience Program, Department of Cellular and Molecular Medicine, University of OttawaOttawa, ON, Canada
| | - Judy McIntosh
- Institute of Mental Health Research, University of OttawaOttawa, ON, Canada
| | - Derek Fisher
- Department of Psychology, Mount Saint Vincent UniversityHalifax, NS, Canada
| | - Crystal Blais
- Institute of Cognitive Science, Carleton UniversityOttawa, ON, Canada
| | | |
Collapse
|
13
|
Pathophysiology and treatment of tinnitus: an elusive disease. Indian J Otolaryngol Head Neck Surg 2011; 66:1-5. [PMID: 24533352 DOI: 10.1007/s12070-011-0374-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 11/15/2011] [Indexed: 02/01/2023] Open
Abstract
Tinnitus is a perception of sound in proximity to the head with the absence of an external source. It is estimated to occur in 15-20% of the world's population, with 1-3% of cases severely affecting quality of life. Severe tinnitus is frequently associated with depression, anxiety and insomnia. Tinnitus has been associated with a variety of risk factors, including prolonged noise exposure, head and neck injury and infection. The most recent pathophysiologic theory of tinnitus suggests that the central nervous system is the source or "generator" of this condition. However, treatment modalities are still aimed at lessening the awareness of tinnitus and its impact on quality of life rather than attaining a definitive cure. Currently, no drug is available that has demonstrated replicable, long-term reduction of tinnitus impact in excess of placebo effects. However, the market value of such an agent is estimated to be $1.1 billion, with a potential for increase with an aging and longer-living population. This review assesses the current developments in the pathophysiology and treatment for tinnitus, which remains a chronic and debilitating condition.
Collapse
|
14
|
The efferent medial olivocochlear-hair cell synapse. ACTA ACUST UNITED AC 2011; 106:47-56. [PMID: 21762779 DOI: 10.1016/j.jphysparis.2011.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 06/24/2011] [Indexed: 01/14/2023]
Abstract
Amplification of incoming sounds in the inner ear is modulated by an efferent pathway which travels back from the brain all the way to the cochlea. The medial olivocochlear system makes synaptic contacts with hair cells, where the neurotransmitter acetylcholine is released. Synaptic transmission is mediated by a unique nicotinic cholinergic receptor composed of α9 and α10 subunits, which is highly Ca2+ permeable and is coupled to a Ca2+-activated SK potassium channel. Thus, hyperpolarization of hair cells follows efferent fiber activation. In this work we review the literature that has enlightened our knowledge concerning the intimacies of this synapse.
Collapse
|
15
|
Suckfüll M, Althaus M, Ellers-Lenz B, Gebauer A, Görtelmeyer R, Jastreboff PJ, Moebius HJ, Rosenberg T, Russ H, Wirth Y, Krueger H. A randomized, double-blind, placebo-controlled clinical trial to evaluate the efficacy and safety of neramexane in patients with moderate to severe subjective tinnitus. BMC EAR, NOSE, AND THROAT DISORDERS 2011; 11:1. [PMID: 21223542 PMCID: PMC3031239 DOI: 10.1186/1472-6815-11-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Accepted: 01/11/2011] [Indexed: 11/14/2022]
Abstract
Background Neramexane is a new substance that exhibits antagonistic properties at α9α10 cholinergic nicotinic receptors and N-methyl-D-aspartate receptors, suggesting potential efficacy in the treatment of tinnitus. Methods A total of 431 outpatients with moderate to severe subjective tinnitus (onset 3-18 months before screening) were assigned randomly to receive either placebo or neramexane mesylate (25 mg/day, 50 mg/day and 75 mg/day) for 16 weeks, with assessment at 4-week intervals. The primary (intention-to-treat) efficacy analysis was based on the change from baseline in Week 16 in the total score of the adapted German short version of the validated Tinnitus Handicap Inventory questionnaire (THI-12). Results Compared with placebo, the largest improvement was achieved in the 50 mg/d neramexane group, followed by the 75 mg/d neramexane group. This treatment difference did not reach statistical significance at the pre-defined endpoint in Week 16 (p = 0.098 for 50 mg/d; p = 0.289 for 75 mg/d neramexane), but consistent numerical superiority of both neramexane groups compared with placebo was observed. Four weeks after the end of treatment, THI-12 scores in the 50 mg/d group were significantly better than those of the controls. Secondary efficacy variables supported this trend, with p values of < 0.05 for the 50 mg/d neramexane group associated with the functional-communicational subscores of the THI-12 and the assessments of tinnitus annoyance and tinnitus impact on life as measured on an 11-point Likert-like scale. No relevant changes were observed for puretone threshold, for tinnitus pitch and loudness match, or for minimum masking levels. The 25 mg/d neramexane group did not differ from placebo. Neramexane was generally well tolerated and had no relevant influence on laboratory values, electrocardiography and vital signs. Dizziness was the most common adverse event and showed a clear dose-dependence. Conclusions This study demonstrated the safety and tolerability of neramexane treatment in patients with moderate to severe tinnitus. The primary efficacy variable showed a trend towards improvement of tinnitus suffering in the medium- and high-dose neramexane groups. This finding is in line with consistent beneficial effects observed in secondary assessment variables. These results allow appropriate dose selection for further studies. Trial Registration ClinicalTrials.gov NCT00405886
Collapse
Affiliation(s)
- Markus Suckfüll
- University of Munich, Department of Oto-Rhino-Laryngolgy, Marchioninistraße 15, 81377 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rammes G, Danysz W, Parsons CG. Pharmacodynamics of memantine: an update. Curr Neuropharmacol 2010; 6:55-78. [PMID: 19305788 PMCID: PMC2645549 DOI: 10.2174/157015908783769671] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 05/10/2007] [Accepted: 11/05/2007] [Indexed: 01/12/2023] Open
Abstract
Memantine received marketing authorization from the European Agency for the Evaluation of Medicinal Products (EMEA) for the treatment of moderately severe to severe Alzheimer s disease (AD) in Europe on 17(th) May 2002 and shortly thereafter was also approved by the FDA for use in the same indication in the USA. Memantine is a moderate affinity, uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist with strong voltage-dependency and fast kinetics. Due to this mechanism of action (MOA), there is a wealth of other possible therapeutic indications for memantine and numerous preclinical data in animal models support this assumption. This review is intended to provide an update on preclinical studies on the pharmacodynamics of memantine, with an additional focus on animal models of diseases aside from the approved indication. For most studies prior to 1999, the reader is referred to a previous review [196].In general, since 1999, considerable additional preclinical evidence has accumulated supporting the use of memantine in AD (both symptomatic and neuroprotective). In addition, there has been further confirmation of the MOA of memantine as an uncompetitive NMDA receptor antagonist and essentially no data contradicting our understanding of the benign side effect profile of memantine.
Collapse
Affiliation(s)
- G Rammes
- Clinical Neuropharmacology, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | | | | |
Collapse
|
17
|
Soto E, Vega R. Neuropharmacology of vestibular system disorders. Curr Neuropharmacol 2010; 8:26-40. [PMID: 20808544 PMCID: PMC2866460 DOI: 10.2174/157015910790909511] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 12/17/2009] [Accepted: 01/08/2010] [Indexed: 11/22/2022] Open
Abstract
This work reviews the neuropharmacology of the vestibular system, with an emphasis on the mechanism of action of drugs used in the treatment of vestibular disorders. Otolaryngologists are confronted with a rapidly changing field in which advances in the knowledge of ionic channel function and synaptic transmission mechanisms have led to the development of new scientific models for the understanding of vestibular dysfunction and its management. In particular, there have been recent advances in our knowledge of the fundamental mechanisms of vestibular system function and drug mechanisms of action. In this work, drugs acting on vestibular system have been grouped into two main categories according to their primary mechanisms of action: those with effects on neurotransmitters and neuromodulator receptors and those that act on voltage-gated ion channels. Particular attention is given in this review to drugs that may provide additional insight into the pathophysiology of vestibular diseases. A critical review of the pharmacology and highlights of the major advances are discussed in each case.
Collapse
Affiliation(s)
- Enrique Soto
- Institute of Physiology, Autonomous University of Puebla, México.
| | | |
Collapse
|
18
|
Abstract
Tinnitus, the perception of sound in the absence of an auditory stimulus, is perceived by about 1 in 10 adults, and for at least 1 in 100, tinnitus severely affects their quality of life. Because tinnitus is frequently associated with irritability, agitation, stress, insomnia, anxiety and depression, the social and economic burdens of tinnitus can be enormous. No curative treatments are available. However, tinnitus symptoms can be alleviated to some extent. The most widespread management therapies consist of auditory stimulation and cognitive behavioral treatment, aiming at improving habituation and coping strategies. Available clinical trials vary in methodological rigor and have been performed for a considerable number of different drugs. None of the investigated drugs have demonstrated providing replicable long-term reduction of tinnitus impact in the majority of patients in excess of placebo effects. Accordingly, there are no FDA or European Medicines Agency approved drugs for the treatment of tinnitus. However, in spite of the lack of evidence, a large variety of different compounds are prescribed off-label. Therefore, more effective pharmacotherapies for this huge and still growing market are desperately needed and even a drug that produces only a small but significant effect would have an enormous therapeutic impact. This review describes current and emerging pharmacotherapies with current difficulties and limitations. In addition, it provides an estimate of the tinnitus market. Finally, it describes recent advances in the tinnitus field which may help overcome obstacles faced in the pharmacological treatment of tinnitus. These include incomplete knowledge of tinnitus pathophysiology, lack of well-established animal models, heterogeneity of different forms of tinnitus, difficulties in tinnitus assessment and outcome measurement and variability in clinical trial methodology.
Collapse
Affiliation(s)
- Berthold Langguth
- University of Regensburg, Interdisciplinary Tinnitus Clinic, Department of Psychiatry and Psychotherapy, Universitaetsstrabetae 84, 93053 Regensburg, Germany.
| | | | | |
Collapse
|
19
|
Alam M, Danysz W, Schmidt WJ, Dekundy A. Effects of glutamate and α2-noradrenergic receptor antagonists on the development of neurotoxicity produced by chronic rotenone in rats. Toxicol Appl Pharmacol 2009; 240:198-207. [DOI: 10.1016/j.taap.2009.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/07/2009] [Accepted: 07/10/2009] [Indexed: 01/24/2023]
|
20
|
The nicotinic receptor of cochlear hair cells: a possible pharmacotherapeutic target? Biochem Pharmacol 2009; 78:712-9. [PMID: 19481062 DOI: 10.1016/j.bcp.2009.05.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 01/09/2023]
Abstract
Mechanosensory hair cells of the organ of Corti transmit information regarding sound to the central nervous system by way of peripheral afferent neurons. In return, the central nervous system provides feedback and modulates the afferent stream of information through efferent neurons. The medial olivocochlear efferent system makes direct synaptic contacts with outer hair cells and inhibits amplification brought about by the active mechanical process inherent to these cells. This feedback system offers the potential to improve the detection of signals in background noise, to selectively attend to particular signals, and to protect the periphery from damage caused by overly loud sounds. Acetylcholine released at the synapse between efferent terminals and outer hair cells activates a peculiar nicotinic cholinergic receptor subtype, the alpha9alpha10 receptor. At present no pharmacotherapeutic approaches have been designed that target this cholinergic receptor to treat pathologies of the auditory system. The potential use of alpha9alpha10 selective drugs in conditions such as noise-induced hearing loss, tinnitus and auditory processing disorders is discussed.
Collapse
|
21
|
Takahashi A, Yap JJ, Bohager DZ, Faccidomo S, Clayton T, Cook JM, Miczek KA. Glutamatergic and GABAergic modulations of ultrasonic vocalizations during maternal separation distress in mouse pups. Psychopharmacology (Berl) 2009; 204:61-71. [PMID: 19099296 PMCID: PMC2758424 DOI: 10.1007/s00213-008-1437-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 12/05/2008] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Dysregulation of GABAergic inhibition and glutamatergic excitation has been implicated in exaggerated anxiety. Mouse pups emit distress-like ultrasonic vocalizations (USVs) when they are separated from their dam/siblings, and this behavior is reduced by benzodiazepines (BZs) which modulate GABAergic inhibition. The roles of glutamate receptors on USVs remain to be investigated. MATERIALS AND METHODS We examined the roles of glutamate receptor subtypes on mouse pup USVs using N-methyl-D: -aspartate (NMDA) receptor antagonists with different affinities [dizocilpine (MK-801), memantine, and neramexane] and group II metabotropic glutamate receptor agonist (LY-379268) and antagonist (LY-341495). These effects were compared with classic BZs: flunitrazepam, bromazepam, and chlordiazepoxide. To assess the role of GABA(A) receptor subunits on USVs, drugs that have preferential actions at different GABA(A)-alpha subunits (L-838417 and QH-ii-066) were tested. Seven-day-old CFW mouse pups were separated from their dam and littermates and placed individually on a 19 degrees C test platform for 4 min. Grid crossings and body rolls were measured in addition to USVs. RESULTS Dizocilpine dose-dependently reduced USVs, whereas memantine and neramexane showed biphasic effects and enhanced USVs at low to moderate doses. The NMDA receptor antagonists increased locomotion. LY-379268 reduced USVs but also suppressed locomotion. All BZs reduced USVs and increased motor incoordination. Neither L-838417 nor QH-ii-066 changed USVs, but both induced motor incoordination. CONCLUSION Low-affinity NMDA receptor antagonists, but not the high-affinity antagonist, enhanced mouse pup distress calls, which may be reflective of an anxiety-like state. BZs reduced USVs but also induced motor incoordination, possibly mediated by the alpha5 subunit containing GABA(A) receptors.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Anti-Anxiety Agents/adverse effects
- Anti-Anxiety Agents/pharmacology
- Anxiety/psychology
- Behavior, Animal/drug effects
- GABA Agents/pharmacology
- Locomotion/drug effects
- Maternal Deprivation
- Mice
- Motor Activity/drug effects
- Protein Subunits/physiology
- Receptors, GABA-A/physiology
- Receptors, Metabotropic Glutamate/agonists
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
- Receptors, Metabotropic Glutamate/physiology
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/physiology
- Sound Spectrography
- Ultrasonics
- Vocalization, Animal/drug effects
- Vocalization, Animal/physiology
Collapse
Affiliation(s)
- Aki. Takahashi
- A. Takahashi · J. J. Yap · D. Z. Bohager · S. Faccidomo · K. A. Miczek, Department of Psychology, Tufts University, 530 Boston Ave. (Bacon Hall), Medford, MA 02155, USA, e-mail:
- K. A. Miczek, Departments of Psychiatry, Pharmacology and Neuroscience, Tufts University, Medford, MA, USA
- T. Clayton · J. M. Cook, Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | - Jasmine. J. Yap
- A. Takahashi · J. J. Yap · D. Z. Bohager · S. Faccidomo · K. A. Miczek, Department of Psychology, Tufts University, 530 Boston Ave. (Bacon Hall), Medford, MA 02155, USA, e-mail:
- K. A. Miczek, Departments of Psychiatry, Pharmacology and Neuroscience, Tufts University, Medford, MA, USA
- T. Clayton · J. M. Cook, Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | - Dawnya Zitzman Bohager
- A. Takahashi · J. J. Yap · D. Z. Bohager · S. Faccidomo · K. A. Miczek, Department of Psychology, Tufts University, 530 Boston Ave. (Bacon Hall), Medford, MA 02155, USA, e-mail:
- K. A. Miczek, Departments of Psychiatry, Pharmacology and Neuroscience, Tufts University, Medford, MA, USA
- T. Clayton · J. M. Cook, Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | - Sara Faccidomo
- A. Takahashi · J. J. Yap · D. Z. Bohager · S. Faccidomo · K. A. Miczek, Department of Psychology, Tufts University, 530 Boston Ave. (Bacon Hall), Medford, MA 02155, USA, e-mail:
- K. A. Miczek, Departments of Psychiatry, Pharmacology and Neuroscience, Tufts University, Medford, MA, USA
- T. Clayton · J. M. Cook, Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | - Terry Clayton
- A. Takahashi · J. J. Yap · D. Z. Bohager · S. Faccidomo · K. A. Miczek, Department of Psychology, Tufts University, 530 Boston Ave. (Bacon Hall), Medford, MA 02155, USA, e-mail:
- K. A. Miczek, Departments of Psychiatry, Pharmacology and Neuroscience, Tufts University, Medford, MA, USA
- T. Clayton · J. M. Cook, Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | - James. M. Cook
- A. Takahashi · J. J. Yap · D. Z. Bohager · S. Faccidomo · K. A. Miczek, Department of Psychology, Tufts University, 530 Boston Ave. (Bacon Hall), Medford, MA 02155, USA, e-mail:
- K. A. Miczek, Departments of Psychiatry, Pharmacology and Neuroscience, Tufts University, Medford, MA, USA
- T. Clayton · J. M. Cook, Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | - Klaus A. Miczek
- A. Takahashi · J. J. Yap · D. Z. Bohager · S. Faccidomo · K. A. Miczek, Department of Psychology, Tufts University, 530 Boston Ave. (Bacon Hall), Medford, MA 02155, USA, e-mail:
- K. A. Miczek, Departments of Psychiatry, Pharmacology and Neuroscience, Tufts University, Medford, MA, USA
- T. Clayton · J. M. Cook, Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
22
|
Flores-Hernandez J, Salgado H, De La Rosa V, Avila-Ruiz T, Torres-Ramirez O, Lopez-Lopez G, Atzori M. Cholinergic direct inhibition of N-methyl-D aspartate receptor-mediated currents in the rat neocortex. Synapse 2009; 63:308-18. [PMID: 19140165 DOI: 10.1002/syn.20609] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Acetylcholine (ACh) and N-methyl-D aspartate receptors (NMDARs) interact in the regulation of multiple important brain functions. NMDAR activation is indirectly modulated by ACh through the activation of muscarinic or nicotinic receptors. Scant information is available on whether ACh directly interacts with the NMDAR. By using a cortical brain slice preparation we found that the application of ACh and of other drugs acting on muscarinic or nicotinic receptors induces an acute and reversible reduction of NMDAR-mediated currents (I(NMDA)), ranging from 20 to 90% of the control amplitude. The reduction displayed similar features in synaptic I(NMDA) in brain slices, as well as in currents evoked by NMDA application in brain slices or from acutely dissociated cortical cells, demonstrating its postsynaptic nature. The cholinergic inhibition of I(NMDA) displayed an onset-offset rate in the order of a second, and was resistant to the presence of the muscarinic antagonist atropine (10 microM) in the extracellular solution, and of G-protein blocker GDP(beta)S (500 microM) and activator GTP(gamma)S (400 microM) in the intracellular solution, indicating that it was not G-protein dependent. Recording at depolarized or hyperpolarized holding voltages reduced NMDAR-mediated currents to similar extents, suggesting that the inhibition was voltage-independent, whereas the reduction was markedly more pronounced in the presence of glycine (20 microM). A detailed analysis of the effects of tubocurarine suggested that at least this drug interfered with glycine-dependent NMDAR-activity. We conclude that NMDAR-mediated current scan be inhibited directly by cholinergic drugs, possibly by direct interaction within one or more subunits of the NMDAR. Our results could supply a new interpretation to previous studies on the role of ACh at the glutamatergic synapse.
Collapse
|
23
|
Abstract
Subjective tinnitus, the phantom ringing or buzzing sensation that occurs in the absence of sound, affects 12-14% of adults; in some cases the tinnitus is so severe or disabling that patients seek medical treatment. However, although the economic and emotional impact of tinnitus is large, there are currently no FDA-approved drugs to treat this condition. Clinical trials are now underway to evaluate the efficacy of N-methyl-d-aspartate (NMDA) and dopamine D(2) antagonists, selective serotonin reuptake inhibitors (SSRIs), γ-aminobutyric acid (GABA) agonists and zinc dietary supplements. Previous off-label clinical studies, while not definitive, suggest that patients with severe depression may experience improvement in their tinnitus after treatment with antidepressants such as nortriptyline or sertraline. A small subpopulation of patients with what has been described as "typewriter tinnitus" have been shown to gain significant relief from the anticonvulsant carbamazepine. Preliminary studies with misoprostol, a synthetic prostaglandin E1 analogue, and sulpiride, a dopamine D(2) antagonist, have shown promise. Animal behavioral studies suggest that GABA transaminase inhibitors and potassium channel modulators can suppress tinnitus. Additionally, improvements in tinnitus have also been noted in patients taking melatonin for significant sleep disturbances. Like other complex neurological disorders, one drug is unlikely to resolve tinnitus in all patients; therapies targeting specific subgroups are likely to yield the greatest success.
Collapse
Affiliation(s)
- R. Salvi
- Center for Hearing and Deafness and Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - E. Lobarinas
- Center for Hearing and Deafness and Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - W. Sun
- Center for Hearing and Deafness and Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|