1
|
Adenosine Deaminase as a Biomarker of Tenofovir Mediated Inflammation in Naïve HIV Patients. Int J Mol Sci 2020; 21:ijms21103590. [PMID: 32438744 PMCID: PMC7278965 DOI: 10.3390/ijms21103590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 01/04/2023] Open
Abstract
Plasma levels of adenosine deaminase (ADA), an enzyme that deaminates adenosine to inosine, are increased during inflammation. An increase in ADA activity occurs with lower human immunodeficiency virus (HIV) viral load and higher CD4+ T cell counts. We aimed to investigate the role of plasma ADA as a biomarker of inflammation in treatment-naïve HIV patients who received tenofovir or another nucleoside analog for comparison. Ninety-two treatment-naïve patients were included in the study and grouped by treatment, i.e., tenofovir disoproxil fumarate (TDF), tenofovir alafenamide (TAF) or Triumeq. ADA activity was measured in plasma and cytokines were analyzed by MILLIPLEX® MAP-Luminex® Technology. Plasma concentration of monocytes and neutrophils was measured at 0, 3, and 12 months post-treatment. Treatment-naïve HIV patients had increased ADA concentrations (over 15 U/L) that decreased after treatment with TAF and Triumeq, though this did not occur in TDF-treated patients. However, all groups exhibited a pro-inflammatory systemic profile at 12 months of treatment. Plasma GM-CSF levels decreased after 12 months of treatment in the TDF group, with a concomitant decrease in blood monocyte count, and a negative correlation with ADA values was found. In conclusion, ADA levels may be modulated by antiretroviral therapy in HIV patients, possibly affecting inflammatory status.
Collapse
|
2
|
Effects of tenofovir on cytokines and nucleotidases in HIV-1 target cells and the mucosal tissue environment in the female reproductive tract. Antimicrob Agents Chemother 2014; 58:6444-53. [PMID: 25136003 DOI: 10.1128/aac.03270-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tenofovir (TFV) is a reverse transcriptase inhibitor used in microbicide preexposure prophylaxis trials to prevent HIV infection. Recognizing that changes in cytokine/chemokine secretion and nucleotidase biological activity can influence female reproductive tract (FRT) immune protection against HIV infection, we tested the hypothesis that TFV regulates immune protection in the FRT. Epithelial cells, fibroblasts, CD4(+) T cells, and CD14(+) cells were isolated from the endometrium (Em), endocervix (Cx), and ectocervix (Ecx) following hysterectomy. The levels of proinflammatory cytokines (macrophage inflammatory protein 3α [MIP-3α], interleukin 8 [IL-8], and tumor necrosis factor alpha [TNF-α]), the expression levels of specific nucleotidases, and nucleotidase biological activities were analyzed in the presence or absence of TFV. TFV influenced mRNA and/or protein cytokines and nucleotidases in a cell- and site-specific manner. TFV significantly enhanced IL-8 and TNF-α secretion by epithelial cells from the Em and Ecx but not from the Cx. In contrast, in response to TFV, IL-8 secretion was significantly decreased in Em and Cx fibroblasts but increased with fibroblasts from the Ecx. When incubated with CD4(+) T cells from the FRT, TFV increased IL-8 (Em and Ecx) and TNF-α (Cx and Ecx) secretion levels. Moreover, when incubated with Em CD14(+) cells, TFV significantly increased MIP-3α, IL-8, and TNF-α secretion levels relative to those of the controls. In contrast, nucleotidase biological activities were significantly decreased by TFV in epithelial (Cx) and CD4(+) T cells (Em) but increased in fibroblasts (Em). Our findings indicate that TFV modulates proinflammatory cytokines, nucleotidase gene expression, and nucleotidase biological activity in epithelial cells, fibroblasts, CD4(+) T cells, and CD14(+) cells at distinct sites within the FRT.
Collapse
|
3
|
Smith AAA, Kryger MBL, Wohl BM, Ruiz-Sanchis P, Zuwala K, Tolstrup M, Zelikin AN. Macromolecular (pro)drugs in antiviral research. Polym Chem 2014. [DOI: 10.1039/c4py00624k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
4
|
Zhang Q, Ma BW, Wang QQ, Wang XX, Hu X, Xie MS, Qu GR, Guo HM. The Synthesis of Tenofovir and Its Analogues via Asymmetric Transfer Hydrogenation. Org Lett 2014; 16:2014-7. [DOI: 10.1021/ol500583d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Qian Zhang
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Bai-Wei Ma
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Qian-Qian Wang
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xing-Xing Wang
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xia Hu
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Ming-Sheng Xie
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Gui-Rong Qu
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Hai-Ming Guo
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
5
|
Effect of tenofovir on nucleotidases and cytokines in HIV-1 target cells. PLoS One 2013; 8:e78814. [PMID: 24205323 PMCID: PMC3808279 DOI: 10.1371/journal.pone.0078814] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/17/2013] [Indexed: 01/01/2023] Open
Abstract
Tenofovir (TFV) has been widely used for pre-exposure prophylaxis of HIV-1 infection with mixed results. While the use of TFV in uninfected individuals for prevention of HIV-1 acquisition is actively being investigated, the possible consequences of TFV exposure for the HIV-target cells and the mucosal microenvironment are unknown. In the current study, we evaluated the effects of TFV treatment on blood-derived CD4⁺ T cells, monocyte-derived macrophages and dendritic cells (DC). Purified HIV-target cells were treated with different concentrations of TFV (0.001-1.0 mg/ml) for 2 to 24 hr. RNA was isolated and RT-PCR was performed to compare the levels of mRNA expression of nucleotidases and pro-inflammatory cytokine genes (MIP3α, IL-8 and TNFα) in the presence or absence of TFV. We found that TFV increases 5'-ecto-nucleotidase (NT5E) and inhibits mitochondrial nucleotidase (NT5M) gene expression and increases 5' nucleotidase activity in macrophages. We also observed that TFV stimulates the expression and secretion of IL-8 by macrophages, DC, and activated CD4⁺ T cells and increases the expression and secretion of MIP3α by macrophages. In contrast, TFV had no effect on TNFα secretion from macrophages, DC and CD4⁺ T cells. Our results demonstrate that TFV alters innate immune responses in HIV-target cells with potential implications for increased inflammation at mucosal surfaces. As new preventive trials are designed, these findings should provide a foundation for understanding the effects of TFV on HIV-target cells in microbicide trials.
Collapse
|
6
|
Learning from the messengers: innate sensing of viruses and cytokine regulation of immunity - clues for treatments and vaccines. Viruses 2013; 5:470-527. [PMID: 23435233 PMCID: PMC3640511 DOI: 10.3390/v5020470] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 12/14/2022] Open
Abstract
Virus infections are a major global public health concern, and only via substantial knowledge of virus pathogenesis and antiviral immune responses can we develop and improve medical treatments, and preventive and therapeutic vaccines. Innate immunity and the shaping of efficient early immune responses are essential for control of viral infections. In order to trigger an efficient antiviral defense, the host senses the invading microbe via pattern recognition receptors (PRRs), recognizing distinct conserved pathogen-associated molecular patterns (PAMPs). The innate sensing of the invading virus results in intracellular signal transduction and subsequent production of interferons (IFNs) and proinflammatory cytokines. Cytokines, including IFNs and chemokines, are vital molecules of antiviral defense regulating cell activation, differentiation of cells, and, not least, exerting direct antiviral effects. Cytokines shape and modulate the immune response and IFNs are principle antiviral mediators initiating antiviral response through induction of antiviral proteins. In the present review, I describe and discuss the current knowledge on early virus–host interactions, focusing on early recognition of virus infection and the resulting expression of type I and type III IFNs, proinflammatory cytokines, and intracellular antiviral mediators. In addition, the review elucidates how targeted stimulation of innate sensors, such as toll-like receptors (TLRs) and intracellular RNA and DNA sensors, may be used therapeutically. Moreover, I present and discuss data showing how current antimicrobial therapies, including antibiotics and antiviral medication, may interfere with, or improve, immune response.
Collapse
|
7
|
Differential effects of acyclic nucleoside phosphonates on nitric oxide and cytokines in rat hepatocytes and macrophages. Int Immunopharmacol 2011; 12:342-9. [PMID: 22198073 DOI: 10.1016/j.intimp.2011.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 11/29/2011] [Accepted: 12/05/2011] [Indexed: 01/12/2023]
Abstract
Acyclic nucleoside phosphonates (ANP) are virostatics effective against viruses like hepatitis B virus and human immunodeficiency virus. Our previous reports indicated immunomodulatory activities of ANP in mouse and human innate immune cells. Recently, evidence has increased that hepatocytes may play an active role in immune regulation of the liver homeostasis or injury. In this study we investigated possible immunomodulatory effects of ANP on rat hepatocytes and macrophages. Nitric oxide (NO) production and secretion of cytokines (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-13, IL-18, IFN-γ, TNF-α and GM-CSF) were analyzed under in vitro conditions. Test compounds included: 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA; adefovir); 9-[2-(phosphonomethoxy)ethyl]-2,6-diaminopurine (PMEDAP); (R)- and (S)-enantiomers of 9-[2-(phosphonomethoxy)propyl]adenine [(R)-PMPA; tenofovir] and [(S)-PMPA]; 9-[2-(phosphonomethoxy)propyl]-2,6-diaminopurine [(R)-PMPDAP] and [(S)-PMPDAP]. The group of test compounds also included their N(6)-substituted derivatives. Some of ANP which are able to induce NO production and cytokine secretion in cultured macrophages possess the same immunobiological activity in isolated hepatocytes. The extent of responses is in range of LPS/IFN-γ stimulation in both types of cells. The effects of active ANP on NO expression and cytokine secretion are dose- and time-dependent. Interestingly, the spectrum of detected cytokines induced by ANP is broader in hepatocytes. The results also confirm immunomodulatory effects of some ANP on rodent macrophages. Moreover, we demonstrate for the first time immunobiological reactivity of primary rat hepatocytes induced by exogenous ANP compounds. The potential of hepatocytes to synthesize cytokines can contribute to better understanding of liver immune function and can serve for pharmacological intervention in liver diseases.
Collapse
|
8
|
Melchjorsen J, Risør MW, Søgaard OS, O'Loughlin KL, Chow S, Paludan SR, Ellermann-Eriksen S, Hedley DW, Minderman H, Østergaard L, Tolstrup M. Tenofovir selectively regulates production of inflammatory cytokines and shifts the IL-12/IL-10 balance in human primary cells. J Acquir Immune Defic Syndr 2011; 57:265-75. [PMID: 21471820 DOI: 10.1097/qai.0b013e3182185276] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES In this study, we aimed to investigate the possible immune modulatory effects of HIV nucleoside reverse transcriptase inhibitors during secondary infections and inflammation, focusing on inflammatory cytokine responses and the interleukin (IL)-12/IL-10 balance. METHODS We investigated the in vitro effect of tenofovir and zidovudine (AZT) on production of proinflammatory cytokines in monocytes and human peripheral blood mononuclear cells (PBMCs). Stimulation panels included Toll-Like receptor (TLR) ligands; the inflammation mediator tumor necrosis factor-α; and the pathogens cytomegalovirus, Neisseria meningitides, Escherichia coli, and Streptococcus pneumoniae. Cytokine levels were measured using enzyme-linked immunosorbent assay and luminex technology. RNA levels were assessed using real-time polymerase chain reaction. Activity of mitogen-activated protein kinase and NF-κB signaling was evaluated using flow cytometry and multispectral imaging cytometry, respectively. RESULTS Tenofovir decreased and AZT increased both IL-8 and CCL3 production from monocytes after stimulation with TLR ligands, tumor necrosis factor-α, or live pathogens. Similarly, tenofovir decreased CCL3 levels in human PBMCs. Furthermore, tenofovir strongly decreased induction of IL-10 but increased levels of IL-12. AZT did not affect IL-12 or IL-10 levels. The observed drug-induced changes in cytokine production were independent from transcriptional regulation through the mitogen-activated protein kinase and nuclear factor kappa B pathways. CONCLUSIONS Our data suggest divergent effects of tenofovir and AZT on proinflammatory responses in monocytes (CCL3 and IL-8) and PBMCs (CCL3). Moreover, tenofovir shifts the IL-10/IL-12 balance after cell stimulation with TLR ligands or infection with live bacteria, thus suggesting that the choice of nucleoside reverse transcriptase inhibitor affects overall inflammation and early immune responses against secondary pathogens.
Collapse
Affiliation(s)
- Jesper Melchjorsen
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|