1
|
Tofe-Valera I, Pérez-Navero JL, Caballero-Villarraso J, Cañete MD, Villa-Jiménez R, De la Torre-Aguilar MJ. Vitamin d deficiency with high parathyroid hormone levels is related to late onset SEPSIS among preterm infants. BMC Pregnancy Childbirth 2023; 23:23. [PMID: 36639750 PMCID: PMC9838010 DOI: 10.1186/s12884-022-05334-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Preterm infants (PTs) are at greater risk for vitamin D deficiency, which relates to the possibility of a higher incidence of comorbidities. Our goal was twofold, 1) to monitor vitamin D, calcium, phosphorus, parathyroid hormone (PTH), matrix metalloproteinase-8 (MMP-8) serum levels at three-time points during hospitalization, and 2) to assess the association between 25-hydroxyvitamin D (25OHD) levels and outcomes in PTs. METHODS We carried out a follow-up on 50 Caucasian PTs ≤ 32 weeks of gestational age (GA) and/or ≤ 1500 g birth weight at 28 days and at 4 months. PTs were divided into two subgroups for tests of association with clinical outcomes based on vitamin D deficient infants 25(OH) D cord blood levels: ≤ 20 ng/ml). At an initial stage, 25(OH) D levels were determined in maternal/preterm blood samples and were compared to full term delivery infants. RESULTS There were no differences in 25(OH) D serum levels at birth when comparing PTs to term infants, or regarding maternal levels. A strong positive correlation was detected between maternal and neonatal 25(OH) D serum levels among PTs and term infants (r: 0.466; p < 0.001). Neonates with vitamin D deficiency did not present a higher incidence of comorbidities. PTs were classified in two subgroups based on vitamin D and PTH (group 1: vitamin D < 20 ng/mL and PTH > 60 pg/mL; group 2: vitamin D > 20 and PTH < 60 pg/mL). The PTs in group 1 showed a higher incidence of LOS (RR: 2; 95% CI: 1.31-3.55). No relationship was observed between MMP-8 serum levels and the incidence of sepsis. CONCLUSIONS This study did not find any evidence of an increase in preterm birth risk related to vitamin D level at birth. Vitamin D deficiency by itself is not associated with a higher incidence of comorbidities. However, the binomial vitamin D-PTH must be taken into consideration.
Collapse
Affiliation(s)
- I. Tofe-Valera
- grid.428865.50000 0004 0445 6160Neonatology, Department of Pediatrics Unit, Reina Sofia University Hospital. Córdoba. Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - J. L. Pérez-Navero
- grid.411349.a0000 0004 1771 4667Department of Pediatrics, Unit of Pediatric Research, Reina Sofia University Hospital, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), University of Córdoba, Córdoba, Spain ,grid.413448.e0000 0000 9314 1427CIBERObn Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain ,grid.411901.c0000 0001 2183 9102School of Medicine, University of Córdoba, Córdoba, Spain ,grid.428865.50000 0004 0445 6160Pediatric Research Unit, Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), Ave. Menéndez Pidal 7. P. C. 14004, Córdoba, Spain
| | - J. Caballero-Villarraso
- grid.411349.a0000 0004 1771 4667Department of Biochemistry and Molecular Biology, Clinical Analyses Service, Reina Sofia University Hospital, Córdoba, Spain
| | - M. D. Cañete
- grid.411349.a0000 0004 1771 4667Department of Biochemistry and Molecular Biology, Clinical Analyses Service, Reina Sofia University Hospital, Córdoba, Spain
| | - R. Villa-Jiménez
- grid.411901.c0000 0001 2183 9102Associate Professor at Córdoba University (UCO), Córdoba, Spain
| | - M. J. De la Torre-Aguilar
- grid.411349.a0000 0004 1771 4667Department of Pediatrics, Unit of Pediatric Research, Reina Sofia University Hospital, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), University of Córdoba, Córdoba, Spain
| |
Collapse
|
2
|
Heithoff DM, Pimienta G, Mahan SP, Yang WH, Le DT, House JK, Marth JD, Smith JW, Mahan MJ. Coagulation factor protein abundance in the pre-septic state predicts coagulopathic activities that arise during late-stage murine sepsis. EBioMedicine 2022; 78:103965. [PMID: 35349828 PMCID: PMC8965145 DOI: 10.1016/j.ebiom.2022.103965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/21/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Although sepsis accounts for 1 in 5 deaths globally, few molecular therapies exist for this condition. The development of effective biomarkers and treatments for sepsis requires a more complete understanding of host responses and pathogenic mechanisms at early stages of disease to minimize host-driven pathology. METHODS An alternative to the current symptom-based approach used to diagnose sepsis is a precise assessment of blood proteomic changes during the onset and progression of Salmonella Typhimurium (ST) murine sepsis. FINDINGS A distinct pattern of coagulation factor protein abundance was identified in the pre-septic state- prior to overt disease symptoms or bacteremia- that was predictive of the dysregulation of fibrinolytic and anti-coagulant activities and resultant consumptive coagulopathy during ST murine sepsis. Moreover, the changes in protein abundance observed generally have the same directionality (increased or decreased abundance) reported for human sepsis. Significant overlap of ST coagulopathic activities was observed in Gram-negative Escherichia coli- but not in Gram-positive staphylococcal or pneumococcal murine sepsis models. Treatment with matrix metalloprotease inhibitors prevented aberrant inflammatory and coagulopathic activities post-ST infection and increased survival. Antibiotic treatment regimens initiated after specific changes arise in the plasma proteome post-ST infection were predictive of an increase in disease relapse and death after cessation of antibiotic treatment. INTERPRETATION Altered blood proteomics provides a platform to develop rapid and easy-to-perform tests to predict sepsis for early intervention via biomarker incorporation into existing blood tests prompted by patient presentation with general malaise, and to stratify Gram-negative and Gram-positive infections for appropriate treatment. Antibiotics are less effective in microbial clearance when initiated after the onset of altered blood proteomics as evidenced by increased disease relapse and death after termination of antibiotic therapy. Treatment failure is potentially due to altered bacterial / host-responses and associated increased host-driven pathology, providing insight into why delays in antibiotic administration in human sepsis are associated with increased risk for death. Delayed treatment may thus require prolonged therapy for microbial clearance despite the prevailing notion of antibiotic de-escalation and shortened courses of antibiotics to improve drug stewardship. FUNDING National Institutes of Health, U.S. Army.
Collapse
Affiliation(s)
- Douglas M Heithoff
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, USA
| | - Genaro Pimienta
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Scott P Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, USA; Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis CA 95616, USA
| | - Won Ho Yang
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara CA 93106, USA; Glycosylation Network Research Center and Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Infectious and Inflammatory Diseases Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Dzung T Le
- Department of Pathology, University of California, La Jolla, San Diego, CA 92093, USA
| | - John K House
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales 2570, Australia
| | - Jamey D Marth
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara CA 93106, USA; Infectious and Inflammatory Diseases Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jeffrey W Smith
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Michael J Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
3
|
Barton AK, Richter IG, Ahrens T, Merle R, Alalwani A, Lilge S, Purschke K, Barnewitz D, Gehlen H. MMP-9 Concentration in Peritoneal Fluid Is a Valuable Biomarker Associated with Endotoxemia in Equine Colic. Mediators Inflamm 2021; 2021:9501478. [PMID: 33488296 PMCID: PMC7803393 DOI: 10.1155/2021/9501478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/03/2020] [Accepted: 12/28/2020] [Indexed: 11/21/2022] Open
Abstract
The purpose of the study was to compare the results of sepsis scoring (clinical examination and clinical pathology) to the concentrations of matrix-metalloproteinases (MMPs) -2, -8, and -9; tissue-inhibitor of metalloproteinases (TIMPs) -1 and -2; and inflammatory chemokines interleukin (IL) 1β and tumor-necrosis-factor-alpha (TNF-α) in plasma and peritoneal fluid of equine colic patients. A modified sepsis scoring including general condition, heart and respiratory rate, rectal temperature, mucous membranes, white blood cell count (WBC), and ionized calcium was applied in 47 horses presented with clinical signs of colic. Using this scoring system, horses were classified as negative (n = 32, ≤6/19 points), questionable (n = 9, 7-9/19 points), or positive (n = 6, ≥10/19 points) for sepsis. MMPs, TIMPs, IL-1β, and TNF-α concentrations were evaluated in plasma and peritoneal fluid using species-specific sandwich ELISA kits. In a linear discriminant analysis, all parameters of sepsis scoring apart from calcium separated well between sepsis severity groups (P < 0.05). MMP-9 was the only biomarker of high diagnostic value, while all others remained insignificant. A significant influence of overall sepsis scoring on MMP-9 was found for peritoneal fluid (P = 0.005) with a regression coefficient of 0.092, while no association was found for plasma (P = 0.085). Using a MMP-9 concentration of >113 ng/ml in the peritoneal fluid was found to be the ideal cutoff to identify positive sepsis scoring (≥10/19 points; sensitivity of 83.3% and specificity of 82.9%). In conclusion, MMP-9 was found to be a biomarker of high diagnostic value for sepsis and endotoxemia in equine colic. The evaluation of peritoneal fluid seems preferable in comparison to plasma. As abdominocentesis is commonly performed in the diagnostic work-up of equine colic, a pen-side assay would be useful and easy-to-perform diagnostic support in the decision for therapeutic intervention.
Collapse
Affiliation(s)
| | - Ina-Gabriele Richter
- Research Centre of Medical Technology and Biotechnology, Bad Langensalza, Germany
| | - Tanja Ahrens
- Equine Clinic, Freie Universitaet Berlin, Berlin, Germany
| | - Roswitha Merle
- Institute for Veterinary Epidemiology, Freie Universitaet Berlin, Berlin, Germany
| | | | - Svenja Lilge
- Equine Clinic, Freie Universitaet Berlin, Berlin, Germany
| | | | - Dirk Barnewitz
- Research Centre of Medical Technology and Biotechnology, Bad Langensalza, Germany
| | - Heidrun Gehlen
- Equine Clinic, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
4
|
Mechanisms of I/R-Induced Endothelium-Dependent Vasodilator Dysfunction. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 81:331-364. [PMID: 29310801 DOI: 10.1016/bs.apha.2017.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ischemia/reperfusion (I/R) induces leukocyte/endothelial cell adhesive interactions (LECA) in postcapillary venules and impaired endothelium-dependent, NO-mediated dilatory responses (EDD) in upstream arterioles. A large body of evidence has implicated reactive oxygen species, adherent leukocytes, and proteases in postischemic EDD dysfunction in conduit arteries. However, arterioles represent the major site for the regulation of vascular resistance but have received less attention with regard to the mechanisms underlying their reduced responsiveness to EDD stimuli in I/R. Even though leukocytes do not roll along, adhere to, or emigrate across arteriolar endothelium in postischemic intestine, recent work indicates that I/R-induced venular LECA is causally linked to EDD in arterioles. An emerging body of evidence suggests that I/R-induced EDD in arterioles occurs by a mechanism that is triggered by LECA in postcapillary venules and involves the formation of signals in the interstitium elicited by the proteolytic activity of emigrated leukocytes. This activity releases matricryptins from or exposes matricryptic sites in the extracellular matrix that interact with the integrin αvβ3 to induce mast cell chymase-dependent formation of angiotensin II (Ang II). Subsequent activation of NAD(P)H oxidase by Ang II leads to the formation of oxidants which inactivate NO and leads to eNOS uncoupling, resulting in arteriolar EDD dysfunction. This work establishes new links between LECA in postcapillary venules, signals generated in the interstitium by emigrated leukocytes, mast cell degranulation, and impaired EDD in upstream arterioles. These fundamentally important findings have enormous implications for our understanding of blood flow dysregulation in conditions characterized by I/R.
Collapse
|
5
|
de Souza P, Schulz R, da Silva-Santos JE. Matrix metalloproteinase inhibitors prevent sepsis-induced refractoriness to vasoconstrictors in the cecal ligation and puncture model in rats. Eur J Pharmacol 2015; 765:164-70. [PMID: 26297976 DOI: 10.1016/j.ejphar.2015.08.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 01/02/2023]
Abstract
Previous studies have shown that the loss of contractility in aortas from lipopolysaccharide (LPS)-treated rats is related to intracellular activation of matrix metalloproteinase (MMPs). However, the role of MMPs in the vascular refractoriness to vasoconstrictors has not been investigated in a model of polymicrobial sepsis. We evaluated the effects of the oral administration of the MMP inhibitors doxycycline or ONO-4817 in the in vitro vascular reactivity of aortic rings from rats subjected to the cecal ligation and puncture (CLP) model of sepsis. Both doxycycline and ONO-4817 did not change vascular responses in sham-operated rats, but fully prevented hyporeactivity to KCl, phenylephrine and angiotensin II in vessels from CLP rats. This protective effect was not associated with changes in hematological parameters or blood nitrate and nitrite. The refractoriness to contractile agents was accompanied by enhanced activity of MMP-2 in aorta from CLP rats, which was abrogated by MMP inhibitors. CLP-induced sepsis did not impair the levels of MMP-2 in aorta, but significantly reduced calponin-1, a regulatory protein of vascular contraction. In addition, augmented levels of TIMP-1 were found in vessels from CLP rats. All these differences were prevented by either doxycycline or ONO-4817. Our study shows, for the first time in the CLP rat model of sepsis, that the vascular refractoriness to different contractile agents induced by polymicrobial sepsis is associated with increased activity of MMP-2 and reduced amounts of calponin-1 in the aorta. These findings reinforce the importance of the enhanced activity of MMPs for vascular failure in septic shock.
Collapse
Affiliation(s)
- Priscila de Souza
- Department of Pharmacology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Richard Schulz
- Departments of Pediatrics & Pharmacology, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - José Eduardo da Silva-Santos
- Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
6
|
Disparate roles of marrow- and parenchymal cell-derived TLR4 signaling in murine LPS-induced systemic inflammation. Sci Rep 2012; 2:918. [PMID: 23213355 PMCID: PMC3513967 DOI: 10.1038/srep00918] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 11/07/2012] [Indexed: 12/20/2022] Open
Abstract
Systemic inflammatory response syndrome (SIRS) occurs in a range of infectious and non-infectious disease processes. Toll-like receptors (TLRs) initiate such responses. We have shown that parenchymal cell TLR4 activation drives LPS-induced systemic inflammation; SIRS does not develop in mice lacking TLR4 expression on parenchymal cells. The parenchymal cell types whose TLR4 activation directs this process have not been identified. Employing a bone marrow transplant model to compartmentalize TLR4 signaling, we characterized blood neutrophil and cytokine responses, NF-κB1 activation, and Tnf-α, Il6, and Ccl2 induction in several organs (spleen, aorta, liver, lung) near the time of LPS-induced symptom onset. Aorta, liver, and lung gene responses corresponded with both LPS-induced symptom onset patterns and plasma cytokine/chemokine levels. Parenchymal cells in aorta, liver, and lung bearing TLR4 responded to LPS with chemokine generation and were associated with increased plasma chemokine levels. We propose that parenchymal cells direct SIRS in response to LPS.
Collapse
|
7
|
Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease. EXPERIENTIA SUPPLEMENTUM (2012) 2012; 103:209-79. [PMID: 22642194 DOI: 10.1007/978-3-0348-0364-9_7] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade various components of the extracellular matrix (ECM). MMPs could also regulate the activity of several non-ECM bioactive substrates and consequently affect different cellular functions. Members of the MMPs family include collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and others. Pro-MMPs are cleaved into active MMPs, which in turn act on various substrates in the ECM and on the cell surface. MMPs play an important role in the regulation of numerous physiological processes including vascular remodeling and angiogenesis. MMPs may also be involved in vascular diseases such as hypertension, atherosclerosis, aortic aneurysm, and varicose veins. MMPs also play a role in the hemodynamic and vascular changes associated with pregnancy and preeclampsia. The role of MMPs is commonly assessed by measuring their gene expression, protein amount, and proteolytic activity using gel zymography. Because there are no specific activators of MMPs, MMP inhibitors are often used to investigate the role of MMPs in different physiologic processes and in the pathogenesis of specific diseases. MMP inhibitors include endogenous tissue inhibitors (TIMPs) and pharmacological inhibitors such as zinc chelators, doxycycline, and marimastat. MMP inhibitors have been evaluated as diagnostic and therapeutic tools in cancer, autoimmune disease, and cardiovascular disease. Although several MMP inhibitors have been synthesized and tested both experimentally and clinically, only one MMP inhibitor, i.e., doxycycline, is currently approved by the Food and Drug Administration. This is mainly due to the undesirable side effects of MMP inhibitors especially on the musculoskeletal system. While most experimental and clinical trials of MMP inhibitors have not demonstrated significant benefits, some trials still showed promising results. With the advent of new genetic and pharmacological tools, disease-specific MMP inhibitors with fewer undesirable effects are being developed and could be useful in the management of vascular disease.
Collapse
|
8
|
Lauhio A, Hästbacka J, Pettilä V, Tervahartiala T, Karlsson S, Varpula T, Varpula M, Ruokonen E, Sorsa T, Kolho E. Serum MMP-8, -9 and TIMP-1 in sepsis: high serum levels of MMP-8 and TIMP-1 are associated with fatal outcome in a multicentre, prospective cohort study. Hypothetical impact of tetracyclines. Pharmacol Res 2011; 64:590-4. [PMID: 21742038 DOI: 10.1016/j.phrs.2011.06.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent evidence suggests that matrix metalloproteinases (MMPs) and their endogenous inhibitors are involved in the pathogenesis of sepsis. We studied serum levels of MMP-8, MMP-9 and TIMP-1 (tissue inhibitor of matrix metalloproteinase-1) in a multicentre, prospective cohort study of patients with sepsis treated in Intensive Care Units (ICUs). We analyzed serum samples taken on ICU admission from 248 critically ill sepsis patients. MMP-8, -9 and TIMP-1 serum levels were analyzed by enzyme-linked immunosorbent assays. Serum MMP-8, MMP-9 and TIMP-1 levels were significantly higher in patients with severe sepsis than in healthy controls. Serum MMP-8 levels among non-survivors (n=33) were significantly (p=0.006) higher than among survivors (n=215). Serum TIMP-1 but not MMP-9 levels were significantly higher among non-survivors than survivors (p<0.0001, p=0.079, respectively). Systemic MMP-8 is upregulated in sepsis suggesting that MMP-8 may contribute to the host response during sepsis. High serum MMP-8 and TIMP-1 levels at ICU admission were seen among patients with fatal outcome. With this background, clinical studies examining the ability of MMP-inhibitors (such as the non-antimicrobial properties of tetracyclines) to diminish the MMP-mediated inflammatory response are needed to develop novel therapies in order to improve the outcome of sepsis.
Collapse
Affiliation(s)
- Anneli Lauhio
- Division of Infectious Diseases, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Castro MM, Kandasamy AD, Youssef N, Schulz R. Matrix metalloproteinase inhibitor properties of tetracyclines: therapeutic potential in cardiovascular diseases. Pharmacol Res 2011; 64:551-60. [PMID: 21689755 DOI: 10.1016/j.phrs.2011.05.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of proteases best known for their capacity to proteolyse several proteins of the extracellular matrix. Their increased activity contributes to the pathogenesis of several cardiovascular diseases. MMP-2 in particular is now considered to be also an important intracellular protease which has the ability to proteolyse specific intracellular proteins in cardiac muscle cells and thus reduce contractile function. Accordingly, inhibition of MMPs is a growing therapeutic aim in the treatment or prevention of various cardiovascular diseases. Tetracyclines, especially doxycycline, have been frequently used as important MMP inhibitors since they inhibit MMP activity independently of their antimicrobial properties. In this review we will focus on the intracellular actions of MMPs in some cardiovascular diseases including ischemia and reperfusion (I/R) injury, inflammatory heart diseases and septic shock; and explain how tetracyclines, as MMP inhibitors, have therapeutic actions to treat such diseases. We will also briefly discuss how MMPs can be intracellularly regulated and activated by oxidative stress, thus cleaving several important proteins inside cells. In addition to their potential therapeutic effects, MMP inhibitors may also be useful tools to understand the biological consequences of MMP activity and its respective extra- and intracellular effects.
Collapse
Affiliation(s)
- Michele M Castro
- Department of Pharmacology, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
10
|
Cena JJ, Lalu MM, Cho WJ, Chow AK, Bagdan ML, Daniel EE, Castro MM, Schulz R. Inhibition of matrix metalloproteinase activity in vivo protects against vascular hyporeactivity in endotoxemia. Am J Physiol Heart Circ Physiol 2009; 298:H45-51. [PMID: 19837953 DOI: 10.1152/ajpheart.00273.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Persistent arterial hypotension is a hallmark of sepsis and is believed to be caused, at least in part, by excess nitric oxide (NO). NO can combine with superoxide to produce peroxynitrite, which activates matrix metalloproteinases (MMPs). Whether MMP inhibition in vivo protects against vascular hyporeactivity induced by endotoxemia is unknown. Male Sprague-Dawley rats were administered either bacterial lipopolysaccharide (LPS, 4 mg/kg ip) or vehicle (pyrogen-free water). Later (30 min), animals received the MMP inhibitor doxycycline (4 mg/kg ip) or vehicle (pyrogen-free water). After LPS injection (6 h), animals were killed, and aortas were excised. Aortic rings were mounted in organ baths, and contractile responses to phenylephrine or KCl were measured. Aortas and plasma were examined for MMP activity by gelatin zymography. Aortic MMP and inducible nitric oxide synthase (iNOS) were examined by immunoblot and/or immunohistochemistry. Doxycycline prevented the LPS-induced development of ex vivo vascular hyporeactivity to phenylephrine and KCl. iNOS protein was significantly upregulated in aortic homogenates from endotoxemic rats; doxycycline did not alter its level. MMP-9 activity was undetectable in aortic homogenates from LPS-treated rats but significantly upregulated in the plasma; this was attenuated by doxycycline. Plasma MMP-2 activities were unchanged by LPS. Specific MMP-2 activity was increased in aortas from LPS-treated rats. This study demonstrates the in vivo protective effect of the MMP inhibitor doxycycline against the development of vascular hyporeactivity in endotoxemic rats.
Collapse
Affiliation(s)
- Jonathan J Cena
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Sompamit K, Kukongviriyapan U, Nakmareong S, Pannangpetch P, Kukongviriyapan V. Curcumin improves vascular function and alleviates oxidative stress in non-lethal lipopolysaccharide-induced endotoxaemia in mice. Eur J Pharmacol 2009; 616:192-199. [PMID: 19540224 DOI: 10.1016/j.ejphar.2009.06.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 05/29/2009] [Accepted: 06/09/2009] [Indexed: 12/12/2022]
Abstract
Oxidative stress is implicated in various pathological conditions, including septic shock, and other diseases associated with local or systemic inflammation. Curcumin, a major component from turmeric (Curcuma longa), possesses diverse anti-inflammatory, anti-tumour and antioxidant properties. The aim of this study was to investigate the effect of curcumin on modulation of vascular dysfunction and oxidative stress induced by lipopolysaccharide (LPS) in mice. Male ICR mice were treated with curcumin (50 or 100 mg/kg), administered intragastrically, either before or after intraperitoneal injection of LPS (10 mg/kg). Fifteen hours after LPS administration, arterial blood pressure was measured and vascular response to vasoactive agents were assessed. Aortic tissues and blood samples were taken for assays of antioxidant and oxidative stress markers. LPS caused marked hypotension, tachycardia and vascular hyporeactivity. The mean arterial pressures in responses to phenylephrine, acetylcholine, and sodium nitroprusside of LPS-treated mice were significantly decreased when compared with the untreated controls. Curcumin modulated heart rate and restored arterial blood pressure in a dose-dependent manner in both protectively- and therapeutically-treated regimens. Furthermore, the vascular responsiveness of LPS-treated mice was improved by curcumin. Interestingly, the improvements of haemodynamics and vascular response during endotoxaemia were related to alleviation of oxidative stress by reducing aortic-derived superoxide production, suppression of lipid peroxidation and protein oxidation, and decrease in urinary nitric oxide metabolites with preservation of the ratio of glutathione/glutathione disulfide. This study provides the first evidence for the potential role of curcumin in prevention and treatment of vascular dysfunction in mice with endotoxaemia elicited by LPS.
Collapse
Affiliation(s)
- Kwanjit Sompamit
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | | | | | | |
Collapse
|