1
|
Rahiminezhad Seta R, Eftekhari Mahabadi S, Delphi L, Alijanpour S, Rezayof A. Hippocampal nicotinic acetylcholine receptor signaling mediates the anti-allodynic effect of ketamine and morphine on neuropathic pain. Neuroscience 2025; 565:138-147. [PMID: 39615650 DOI: 10.1016/j.neuroscience.2024.11.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024]
Abstract
The present study investigated the involvement of hippocampal nicotinic acetylcholine receptors (nAChRs) in the anti-allodynic effect of ketamine/morphine on neuropathic pain in adult male Wistar rats. Morphine or ketamine administration decreased the percentage of maximum possible effect (MPE%), indicating an analgesic effect. The most significant decrease occurred with a 5 mg/kg dose of morphine (average MPE% = 98), while a 0.5 mg/kg dose of ketamine resulted in a high response (average MPE% = 91), using decision trees as a machine learning tool. Combining morphine and ketamine improved neuropathic pain (average MPE% = 91). Intra-CA1 microinjection of mecamylamine (2 μg/rat) with morphine (3 mg/kg) reduced neuropathic pain (average MPE% = 94). Co-administration of lower doses of ketamine (0.1 mg/kg, i.p.) and mecamylamine (0.5 or 1 μg/rat) with morphine (3 mg/kg) led to a considerable reduction in pain (average MPE% = 91). Utilizing the generalized least squares (GLS) model enabled the establishment of a continuous relation between drug dose and MPE% as the outcome of interest. There was a 19.60 higher average MPE% for each mg/kg increase in morphine dose. In contrast, there was a 17.05 higher average MPE% for every 0.1 mg/kg increase in ketamine dose. Each 0.1 mg/kg increase in ketamine dose, when combined with morphine (3 mg/kg), led to a 30.85 higher average MPE%. A tenfold impact of increasing mecamylamine dosage on MPE% was observed when paired with morphine. Thus, hippocampal nAChRs play a significant role in mediating the anti-allodynic effect of ketamine and morphine in neuropathic pain.
Collapse
Affiliation(s)
- Romina Rahiminezhad Seta
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Samaneh Eftekhari Mahabadi
- School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
| | - Ladan Delphi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Sakineh Alijanpour
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Dai ZH, Xu X, Chen WQ, Nie LN, Liu Y, Sui N, Liang J. The role of hippocampus in memory reactivation: an implication for a therapeutic target against opioid use disorder. CURRENT ADDICTION REPORTS 2022; 9:67-79. [PMID: 35223369 PMCID: PMC8857535 DOI: 10.1007/s40429-022-00407-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2022] [Indexed: 12/29/2022]
Abstract
Purpose of the review The abuse of opioids induces many terrible problems in human health and social stability. For opioid-dependent individuals, withdrawal memory can be reactivated by context, which is then associated with extremely unpleasant physical and emotional feelings during opioid withdrawal. The reactivation of withdrawal memory is considered one of the most important reasons for opioid relapse, and it also allows for memory modulation based on the reconsolidation phenomenon. However, studies exploring withdrawal memory modulation during the reconsolidation window are lacking. By summarizing the previous findings about the reactivation of negative emotional memories, we are going to suggest potential neural regions and systems for modulating opioid withdrawal memory. Recent findings Here, we first present the role of memory reactivation in its modification, discuss how the hippocampus participates in memory reactivation, and discuss the importance of noradrenergic signaling in the hippocampus for memory reactivation. Then, we review the engagement of other limbic regions receiving noradrenergic signaling in memory reactivation. We suggest that noradrenergic signaling targeting hippocampus neurons might play a potential role in strengthening the disruptive effect of withdrawal memory extinction by facilitating the degree of memory reactivation. Summary This review will contribute to a better understanding of the mechanisms underlying reactivation-dependent memory malleability and will provide new therapeutic avenues for treating opioid use disorders.
Collapse
Affiliation(s)
- Zhong-hua Dai
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xing Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wei-qi Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Li-na Nie
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Sui
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Yadegary A, Nazari-Serenjeh F, Darbandi N. Synergistic improvement effect of nicotine-ghrelin co-injection into the anterior ventral tegmental area on morphine-induced amnesia. Neuropeptides 2020; 80:102025. [PMID: 32029269 DOI: 10.1016/j.npep.2020.102025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 11/15/2022]
Abstract
In the present study the effect of ghrelin or ghrelin/nicotine injection into the anterior ventral tegmental area (aVTA) on morphine-induced amnesia in passive avoidance learning have been evaluated. Also, the role of the aVTA nicotinic receptors in possible ghrelin-induced effects has been investigated. All animals were bilaterally implanted with chronic cannulas in the aVTA. A step-through type passive avoidance task was used for measurement of memory. We found that post-training subcutaneous (s.c.) injection of morphine (0.5-7.5 mg/kg) dose-dependently reduced the step-through latency, indicating morphine-induced amnesia. Post-training bilateral infusion of ghrelin (0.3, 1.5 and 3 nmol/μl) in a dose-dependent manner reversed amnesia induced by morphine (7.5 mg/kg, s.c.). Furthermore, reversal effect of ghrelin (3 nmol/μl) was blocked by pre-treatment of intra-aVTA administration of mecamylamine (1-3 μg/rat), a nicotinic acetylcholine receptor antagonist. Intra-aVTA administration of the higher dose of mecamylamine (3 μg/rat) into the aVTA by itself decreased the step-through latency and induced amnesia. In addition, post-training intra-aVTA administration of nicotine (0.25, 0.5, 1 μg/rat) which alone cannot affect memory consolidation, decreased significantly the amnesia induced by morphine (7.5 mg/kg, s.c.). Co-treatment of an ineffective dose of ghrelin (0.3 nmol/μl) with an ineffective dose of nicotine (0.25 μg/rat) significantly increased step-through latency of morphine (7.5 mg/kg, s.c.) treated animals, indicating the synergistic effect of the drugs. Taken together, our results suggest that intra-aVTA administration of ghrelin reversed morphine-induced amnesia and that ghrelin interacts synergistically with nicotine to mitigate morphine-induced amnesia.
Collapse
Affiliation(s)
- Atena Yadegary
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | | | - Niloufar Darbandi
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| |
Collapse
|
4
|
Bendová Z, Pačesová D, Novotný J. The day-night differences in ERK1/2, GSK3β activity and c-Fos levels in the brain, and the responsiveness of various brain structures to morphine. J Comp Neurol 2020; 528:2471-2495. [PMID: 32170720 DOI: 10.1002/cne.24906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/17/2020] [Accepted: 03/09/2020] [Indexed: 11/12/2022]
Abstract
As with other drugs or pharmaceuticals, opioids differ in their rewarding or analgesic effects depending on when they are applied. In the previous study, we have demonstrated the day/night difference in the sensitivity of the major circadian clock in the suprachiasmatic nucleus to a low dose of morphine, and showed the bidirectional effect of morphine on pERK1/2 and pGSK3β levels in the suprachiasmatic nucleus depending on the time of administration. The main aim of this study was to identify other brain structures that respond differently to morphine depending on the time of its administration. Using immunohistochemistry, we identified 44 structures that show time-of-day specific changes in c-Fos level and activity of ERK1/2 and GSK3β kinases in response to a single dose of 1 mg/kg morphine. Furthermore, comparison among control groups revealed the differences in the spontaneous levels of all markers with a generally higher level during the night, that is, in the active phase of the day. We thus provide further evidence for diurnal variations in the activity of brain regions outside the suprachiasmatic nucleus indicated by the temporal changes in the molecular substrate. We suggest that these changes are responsible for generating diurnal variation in the reward behavior or analgesic effect of opioid administration.
Collapse
Affiliation(s)
- Zdeňka Bendová
- Faculty of Science, Charles University, Prague, Czech Republic.,Department of Sleep Medicine and Chronobiology, National Institute of Mental Health, Klecany, Czech Republic
| | - Dominika Pačesová
- Faculty of Science, Charles University, Prague, Czech Republic.,Department of Sleep Medicine and Chronobiology, National Institute of Mental Health, Klecany, Czech Republic
| | - Jiří Novotný
- Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
Nazari-Serenjeh F, Darbandi N, Majidpour S, Moradi P. Ghrelin modulates morphine-nicotine interaction in avoidance memory: Involvement of CA1 nicotinic receptors. Brain Res 2019; 1720:146315. [DOI: 10.1016/j.brainres.2019.146315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 11/29/2022]
|
6
|
Niknamfar S, Nouri Zadeh-Tehrani S, Sadat-Shirazi MS, Akbarabadi A, Rahimi-Movaghar A, Zarrindast MR. μ-Opioid receptor in the CA1 involves in tramadol and morphine cross state-dependent memory. Neurosci Lett 2019; 705:177-182. [PMID: 31051223 DOI: 10.1016/j.neulet.2019.04.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/15/2019] [Accepted: 04/25/2019] [Indexed: 12/31/2022]
Abstract
In the present study, the effect of tramadol - an opioid painkiller drug with abuse potential- on amnesia and state-dependent memory and its interaction with the opioidergic system was investigated in male Wistar rats. Intra CA-1 administration of tramadol (0.5, 1, and 2 μg/rat) before training, dose-dependently decreased the learning ability in passive avoidance task. Amnesia induced by pre-train tramadol administration was significantly reversed by pre-test administration of tramadol (1 μg/rat). Pre-test administration of naltrexone (a μ-opioid receptor (MOR) antagonist) inhibited the effect of tramadol on memory retrieval. In addition, the pre-test administration of morphine (1 μg/rat, intra-CA1) also reversed memory impairment induced by pre-train tramadol administration. Although, pre-train morphine administration (1 μg/rat, intra-CA1), induced memory impairment reversed by pre-test tramadol administration (1 μg/rat, intra-CA1). In addition, the level of MOR in the hippocampus decreased in animals with memory impairment due to using tramadol in the training day. However, state-dependent retrieval using tramadol or cross state-dependent retrieval using morphine enhanced the MOR level in the hippocampus. The results of the study suggested that intra-CA1 tramadol administration induced memory impairment, improved by pre-test administration of either tramadol or morphine (MOR agonist). It could be concluded that tramadol is capable to induced state-dependent memory and also, it has a cross state-dependent memory with morphine in the hippocampus, done possibly through MOR.
Collapse
Affiliation(s)
- Saba Niknamfar
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Ardeshir Akbarabadi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Afarin Rahimi-Movaghar
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
7
|
Zarrindast MR, Khakpai F. The modulatory role of nicotine on cognitive and non-cognitive functions. Brain Res 2019; 1710:92-101. [DOI: 10.1016/j.brainres.2018.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 01/12/2023]
|
8
|
The dorsal hippocampal group III metabotropic glutamate receptors are involved in morphine effect on memory formation in male mice. Eur J Pharmacol 2018; 836:44-49. [DOI: 10.1016/j.ejphar.2018.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/21/2018] [Accepted: 08/16/2018] [Indexed: 01/04/2023]
|
9
|
Michalak A, Pekala K, Budzynska B, Kruk-Slomka M, Biala G. The role of verapamil and SL-327 in morphine- and ethanol-induced state-dependent and cross state-dependent memory. Eur J Pharmacol 2018; 834:318-326. [DOI: 10.1016/j.ejphar.2018.07.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/20/2018] [Accepted: 07/26/2018] [Indexed: 11/24/2022]
|
10
|
Nabaee E, Kesmati M, Shahriari A, Khajehpour L, Torabi M. Cognitive and hippocampus biochemical changes following sleep deprivation in the adult male rat. Biomed Pharmacother 2018; 104:69-76. [PMID: 29772442 DOI: 10.1016/j.biopha.2018.04.197] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 01/08/2023] Open
Abstract
Sleep deprivation (SD) influences physiological processes such as cognitive function. The balance of oxidant and antioxidant markers, neurotrophic factors and magnesium are affected by sleep deprivation but there is no difference between pre and post training sleep deprivation. This study was designed to investigate memory retrieval and biochemical factors such as oxidant and antioxidant enzyme, brain-derived neurotrophic factor (BDNF) and magnesium levels in the hippocampus following pre and post-training sleep deprivation. Male Wistar rats (weighing 200 ± 20 g) in below groups were used: control 1, 24, 48 and 72 h SD before training groups, control2, 24 h SD1 after training (being evaluated 24 h after training) and SD2 24 after training (being evaluated 48 h after training). Memory was evaluated 90 min, 24 h or 48 h after training by step-through passive avoidance apparatus. Multiple platforms method was used to induce SD. Oxidant and antioxidant markers including glutathione (GSH), glutathione reductase (GPx), malonedialdehyde (MDA), Total antioxidant concentration, catalase, superoxide dismutase (SOD), magnesium and BDNF were assessed in the hippocampus or/and brain. 72 h pre-training SD impaired short and long-term memory significantly. There was no significant difference in hippocampus oxidant and antioxidant markers compared to control. Hippocampal BDNF and magnesium did not show any changes in all SD groups. Lack of correlation between memory impairment and levels of BDNF, magnesium and/or oxidant and antioxidant balance in the hippocampus is likely to be related to animal locomotor activity in the multiple platforms method. More research is needed to clarify the role of neurochemical systems.
Collapse
Affiliation(s)
- Ebrahim Nabaee
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mahnaz Kesmati
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ali Shahriari
- ِDepartment of Biochemistry, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Lotfollah Khajehpour
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mozhgan Torabi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
11
|
Tirgar F, Rezayof A, Alijanpour S, Yazdanbakhsh N. Interactive effects of morphine and nicotine on memory function depend on the central amygdala cannabinoid CB1 receptor function in rats. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:62-68. [PMID: 29203303 DOI: 10.1016/j.pnpbp.2017.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/23/2017] [Accepted: 11/30/2017] [Indexed: 11/25/2022]
Abstract
The present study investigated the possible involvement of the central amygdala (CeA) cannabinoid receptors type-1 (CB1Rs) in the interactive effects of morphine and nicotine on memory formation in a passive avoidance learning task. Our results showed that systemic administration of morphine (3 and 6mg/kg, s.c.) immediately after training phase impaired memory consolidation and induced amnesia. Administration of nicotine (0.3 and 0.6mg/kg, s.c.) before testing phase significantly restored morphine-induced amnesia, suggesting a cross state-dependent learning between morphine and nicotine. The results showed that while the administration of the lower dose of nicotine (0.1mg/kg, s.c.) per se did not induce a significant effect on morphine-induced amnesia, intra-CeA injection of arachidonylcyclopropylamide (ACPA), a cannabinoid CB1 receptor agonist (3 and 4ng/rat), significantly potentiated the nicotine response. Furthermore, the blockade of the CeA cannabinoid CB1 receptors by the injection of AM251 (0.75 and 1ng/rat) reversed the potentiative effect of nicotine (0.6mg/kg, s.c.) on morphine-induced amnesia. It should be considered that bilateral injection of the same doses of ACPA or AM251 (0.5-1ng/rat) into the CeA by itself had no effect on morphine response in a passive avoidance learning task. Confirmed by the cubic interpolation planes, the dose-response data revealed a cross-state-dependent learning between morphine and nicotine which may be mediated by the CeA endocannabinoid system via CB1 receptors.
Collapse
Affiliation(s)
- Fatemeh Tirgar
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Nima Yazdanbakhsh
- School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
12
|
Rashid H, Mahboob A, Ahmed T. Role of cholinergic receptors in memory retrieval depends on gender and age of memory. Behav Brain Res 2017; 331:233-240. [PMID: 28511981 DOI: 10.1016/j.bbr.2017.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 01/10/2023]
Abstract
The phenomenon of utilizing information acquired in the past to make decision and performance in present depends on memory retrieval, which is affected in retrograde amnesia. Role of cholinergic receptors in memory retrieval is not much explored. In this study we evaluated the gender specific role of cholinergic receptors, i.e. muscarinic and nicotinic receptors, in memory retrieval in young Balb/c mice. Acute (only one injection, 30min before test) and sub-chronic (five days) muscarinic blockade (using scopolamine=1mg/kg) before test impaired retrieval of contextual fear memory in male (31.45±5.39% and 33.36±3.78% respectively) and female mice (22.88±5.73%; P<0.05), except sub-chronically treated female group (33.31±4.90%; P>0.05). Only sub-chronic nicotinic receptor antagonism (using methyllycaconitine MLA=87.5μg/kg and dihydro β erythroidine DHβE=1mg/kg) in female showed significantly higher freezing response than control during contextual fear memory retrieval (60.85±7.71% and 40.91±7.53% respectively; P<0.001). Acute and sub-chronic muscarinic antagonism (but not nicotinic antagonism) impaired spatial memory retrieval in male (P<0.05) but not in female mice (P>0.05). There was no effect of acute and sub-chronic cholinergic receptor antagonism on discriminating novel object from the familiar one in male and female mice, however, nicotinic receptor blockade affected the working memory of all male and female mice on test day compared to the training sessions. Our results suggested that cholinergic receptors involvement in retrieving spatial and fear memories depends on the age of the memory and gender.
Collapse
Affiliation(s)
- Habiba Rashid
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Aamra Mahboob
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan.
| |
Collapse
|
13
|
Tajik A, Rezayof A, Ghasemzadeh Z, Sardari M. Activation of the dorsal hippocampal nicotinic acetylcholine receptors improves tamoxifen-induced memory retrieval impairment in adult female rats. Neuroscience 2016; 327:1-9. [DOI: 10.1016/j.neuroscience.2016.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 12/20/2022]
|
14
|
Impaired hippocampal synaptic plasticity and NR2A/2B expression ratio in remifentanil withdrawal rats. Neurotoxicology 2016; 53:115-123. [PMID: 26777139 DOI: 10.1016/j.neuro.2016.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/05/2015] [Accepted: 01/09/2016] [Indexed: 11/20/2022]
Abstract
Remifentanil is a kind of synthetic opioid which has gained wide clinical acceptance by anesthesiologists. In this study, we attempted to test whether withdrawal effects on learning mechanisms can be triggered by repeated low-dose remifentanil treatment. Male Sprague-Dawley (SD) rats were subjected to remifentanil (50μg/kgs.c.) twice per day at 12h intervals for 15 days. When the animals of remifentanil group were withdrawn from remifentanil at 10h after the last injection, changes in open field test, Morris water maze test (MWM) and synaptic efficacy were examined in each group. We demonstrated that repeated exposure to 50μg/kg remifentanil produced enhanced locomotor activity indicating that a remifentanil addiction animal model in rats was established. MWM results showed that exposure to remifentanil had no influence on the spatial cognition. After withdrawal of remifentanil rats showed impaired spatial cognition. In electrophysiology test, remifentanil group rats showed a trend for a rightward shift of input/output relationship and significant deficits in maintenance of STP and LTP. Immunohistochemistry results demonstrated increased NR2A/NR2B ratio that should be included depression of LTP. In the whole-cell patch-clamp recording, after elimination from remifentanil incubation, mEPSC frequency was down regulated in hippocampal CA1 neurons, indicating that basal synaptic transmission were affected by remifentanil withdrawal. Taken together, the current findings demonstrate that the remifentanil withdrawn rats exhibit obvious impairment of hippocampus-dependent memory and synaptic plasticity. Increased hippocampal NR2A/NR2B expression ratio and the changes of basal synaptic transmission may participate in the impairment of LTP.
Collapse
|
15
|
Role of dorsal hippocampal orexin-1 receptors in memory restoration induced by morphine sensitization phenomenon. Neuroscience 2015; 312:215-26. [PMID: 26592714 DOI: 10.1016/j.neuroscience.2015.11.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/08/2015] [Accepted: 11/11/2015] [Indexed: 01/20/2023]
Abstract
The present study was examined the blockade of CA1 orexin-1 receptors (OX1Rs) of the dorsal hippocampus in the induction or expression phase on morphine sensitization-induced memory restoration using the Morris water maze (MWM) apparatus. Results showed that pre-training administration of morphine (5mg/kg, s.c.) increases escape latency and traveled distance, while does not alter swimming speed. This supports the impairing effect of morphine on the spatial memory acquisition in male adult rats. Also, in the retrieval session (probe trial) this treatment decreased the time spent in the target quadrant. Moreover, morphine-induced sensitization (15 or 20mg/kg, s.c.; once daily for 3days and followed by 5days no drug treatment) restored the memory acquisition/retrieval deficit which had been induced by pre-training administration of morphine (5mg/kg, s.c.). Intra-CA1 microinjection of subthreshold doses of SB-334867 (OX1Rs antagonist; 10, 20 and 40nmol/rat), 5min before morphine (20mg/kg/day×3days, s.c.; induction phase for morphine sensitization) did not alter restoration of memory acquisition/retrieval produced by the morphine sensitization phenomenon. In contrast, microinjection of subthreshold doses of SB-334867 (10, 20 and 40nmol/rat) into the CA1 region in the training session, 5min prior to morphine (5mg/kg, s.c.; expression phase for morphine sensitization) blocked the spatial memory acquisition/retrieval in morphine-sensitized rats. In conclusion, these findings show that morphine sensitization reverses morphine-induced amnesia. Furthermore, the blockade of CA1 OX1Rs in the expression phase, but not in the induction phase, disrupts memory restoration induced by morphine sensitization.
Collapse
|
16
|
Torkaman-Boutorabi A, Sheidadoust H, Hashemi-Hezaveh SM, Zarrindast MR. Influence of morphine on medial prefrontal cortex alpha2 adrenergic system in passive avoidance learning in rats. Pharmacol Biochem Behav 2015; 133:92-8. [DOI: 10.1016/j.pbb.2015.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 03/08/2015] [Accepted: 03/11/2015] [Indexed: 12/17/2022]
|
17
|
Role of hippocampal CA1 area gap junction channels on morphine state-dependent learning. Eur J Pharmacol 2014; 745:196-200. [DOI: 10.1016/j.ejphar.2014.10.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 11/23/2022]
|
18
|
Maki AE, Morris KA, Catherman K, Chen X, Hatcher NG, Gold PE, Sweedler JV. Fibrinogen α-chain-derived peptide is upregulated in hippocampus of rats exposed to acute morphine injection and spontaneous alternation testing. Pharmacol Res Perspect 2014; 2:e00037. [PMID: 24855564 PMCID: PMC4024393 DOI: 10.1002/prp2.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Fibrinogen is a secreted glycoprotein that is synthesized in the liver, although recent in situ hybridization data support its expression in the brain. It is involved in blood clotting and is released in the brain upon injury. Here, we report changes in the extracellular levels of fibrinogen α-chain-derived peptides in the brain after injections of saline and morphine. More specifically, in order to assess hippocampus-related working memory, an approach pairing in vivo microdialysis with mass spectrometry was used to characterize extracellular peptide release from the hippocampus of rats in response to saline or morphine injection coupled with a spontaneous alternation task. Two fibrinopeptide A-related peptides derived from the fibrinogen α-chain – fibrinopeptide A (ADTGTTSEFIEAGGDIR) and a fibrinopeptide A-derived peptide (DTGTTSEFIEAGGDIR) – were shown to be consistently elevated in the hippocampal microdialysate. Fibrinopeptide A was significantly upregulated in rats exposed to morphine and spontaneous alternation testing compared with rats exposed to saline and spontaneous alternation testing (P < 0.001), morphine alone (P < 0.01), or saline alone (P < 0.01), respectively. The increase in fibrinopeptide A in rats subjected to morphine and a memory task suggests that a complex interaction between fibrinogen and morphine takes place in the hippocampus.
Collapse
Affiliation(s)
- Agatha E Maki
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Kenneth A Morris
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Kasia Catherman
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Xian Chen
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Nathan G Hatcher
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Paul E Gold
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Jonathan V Sweedler
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| |
Collapse
|
19
|
Zarrindast MR, Ownegh V, Rezayof A, Ownegh F. The involvement of dorsal hippocampus in dextromethorphan-induced state-dependent learning in mice. Pharmacol Biochem Behav 2014; 116:90-5. [DOI: 10.1016/j.pbb.2013.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 11/10/2013] [Accepted: 11/14/2013] [Indexed: 10/26/2022]
|
20
|
Zhang RX, Zhang M, Li A, Pan L, Berman BM, Ren K, Lao L. DAMGO in the central amygdala alleviates the affective dimension of pain in a rat model of inflammatory hyperalgesia. Neuroscience 2013; 252:359-66. [PMID: 23994597 DOI: 10.1016/j.neuroscience.2013.08.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
Abstract
Pain has sensory-discriminative and emotional-affective dimensions. Recent studies show that the affective component can be assessed with a conditioned place avoidance (CPA) test. We hypothesized that systemic morphine before a post-conditioning test would more potently attenuate the affective aspect compared to the sensory component and that [d-Ala2-N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO), a μ-selective opioid receptor agonist, injected into the central nucleus of the amygdala (CeA) would reduce established CPA. A rat model of inflammatory pain, produced by a complete Freund adjuvant (CFA) injection into the hind paw, was combined with a CPA test. Three experiments were performed on adult male Sprague-Dawley rats. Systemic morphine (0.5 or 1.0mg/kg) in Experiment 1, intrathecal (i.t.) morphine (2.5 μg/rat) in Experiment 2, and intra-CeA DAMGO (7.7-15.4 ng/0.4 μl) in Experiment 3 were given to CFA-injected rats (n=6-8/group) prior to a post-conditioning test. Saline-injected rats were used as control. Time spent in a pain-paired compartment was recorded twice, before conditioning and after a post-conditioning test. Paw withdrawal latency (PWL) to a noxious thermal stimulus was measured before experiment at day-1 and after the post-conditioning test; hyperalgesia was defined as a decrease in PWL. The data showed that CFA-injected rats had significantly negative CPA compared to those of saline-injected rats (P<0.05). Low-dosage systemic morphine significantly (P<0.05) reduced CFA-induced CPA but had no effect on PWL. I.t. morphine did not inhibit the display of CPA but significantly increased PWL, suppressing hyperalgesia (P<0.05). Intra-CeA DAMGO significantly inhibited the display of CPA compared to saline (P<0.05) but had no effect on PWL. The data demonstrate that morphine attenuates the affective component more powerfully than it does the sensory and suggests that the sensory and the emotional-affective dimensions are underpinned by different mechanisms.
Collapse
Affiliation(s)
- R-X Zhang
- Center for Integrative Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Alijanpour S, Rezayof A. Involvement of dorsal hippocampal and medial septal nicotinic receptors in cross state-dependent memory between WIN55, 212-2 and nicotine or ethanol in mice. Neuroscience 2013; 245:61-73. [DOI: 10.1016/j.neuroscience.2013.04.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/11/2013] [Accepted: 04/15/2013] [Indexed: 12/28/2022]
|
22
|
Sierra RO, Cassini LF, Santana F, Crestani AP, Duran JM, Haubrich J, de Oliveira Alvares L, Quillfeldt JA. Reconsolidation may incorporate state-dependency into previously consolidated memories. Learn Mem 2013; 20:379-87. [DOI: 10.1101/lm.030023.112] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Khajehpour L, Fathinia K, Moazedi AA, Kesmati M. Вeta1-Adrenoreceptors of the CA1 Area Mediate Morphine-Modified State-Dependent Memory in Rats. NEUROPHYSIOLOGY+ 2013. [DOI: 10.1007/s11062-013-9350-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Khajehpour L, Alizadeh-Makvandi A, Kesmati M, Eshagh-Harooni H. Involvement of basolateral amygdala GABAA receptors in the effect of dexamethasone on memory in rats. J Zhejiang Univ Sci B 2012; 12:900-8. [PMID: 22042654 DOI: 10.1631/jzus.b1000340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study we investigated whether GABA(A) receptors of the basolateral amygdala (BLA) interact with the effect of dexamethasone on the retrieval stage of memory. Adult male Wistar rats were bilaterally cannulated in the BLA by stereotaxic surgery. The animals were trained in step-through apparatus by induction of electric shock (1.5 mA, 3 s) and were tested for memory retrieval after 1 d. The time of latency for entering the dark compartment of the instrument and the time spent by rats in this chamber were recorded for evaluation of the animals' retrieval in passive avoidance memory. Administration of dexamethasone (0.3 and 0.9 mg/kg, subcutaneously (s.c.)), immediately after training, enhanced memory retrieval. This effect was reduced by intra-BLA microinjection of muscimol (0.125, 0.250 and 0.500 µg/rat), when administered before 0.9 mg/kg of dexamethasone. Microinjection of bicuculline (0.75 µg/rat, intra-BLA) with an ineffective dose of dexamethasone (0.1 mg/kg, s.c.) increased memory retrieval. However, the same doses of muscimol and bicuculline without dexamethasone did not affect memory processes. Our data support reports that dexamethasone enhances memory retrieval. It seems that GABA(A) receptors of the BLA mediate the effect of dexamethasone on memory retrieval in rats.
Collapse
Affiliation(s)
- Lotfollah Khajehpour
- Department of Biology, College of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | | | | |
Collapse
|
25
|
Zarrindast MR, Hoseindoost S, Nasehi M. Possible interaction between opioidergic and cholinergic systems of CA1 in cholestasis-induced amnesia in mice. Behav Brain Res 2012; 228:116-24. [DOI: 10.1016/j.bbr.2011.11.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 11/28/2011] [Indexed: 01/26/2023]
|
26
|
Hall BJ, Pearson LS, Terry AV, Buccafusco JJ. The use-dependent, nicotinic antagonist BTMPS reduces the adverse consequences of morphine self-administration in rats in an abstinence model of drug seeking. Neuropharmacology 2011; 61:798-806. [PMID: 21651919 PMCID: PMC3130076 DOI: 10.1016/j.neuropharm.2011.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 05/06/2011] [Accepted: 05/18/2011] [Indexed: 10/18/2022]
Abstract
In this study, the use-dependent, nicotinic receptor antagonist bis (2,2,6,6-tetramethyl-4-piperidinyl) sebacate (BTMPS) was evaluated for its ability to attenuate the adverse consequences associated with morphine in rats in all three phases of an abstinence model of drug seeking: self-administration, acute withdrawal, and delayed test of drug seeking. Rats were allowed to self-administer morphine (FR1 schedule) with an active response lever, on a 24 h basis inside operant chambers, for 14 days. Each rat was subsequently evaluated for stereotypical behaviors associated with spontaneous morphine withdrawal. Rats were then placed in standard housing cages for a six week period of protracted abstinence from morphine. After this period, each rat was placed back into its respective operant chamber for a 14 day assessment of unrewarded drug seeking responses. BTMPS was administered to the animals in all three clinically relevant phases in three separate sets of experiments. BTMPS treatment during the self-administration phase resulted in up to a 34% reduction of lever responses to morphine when compared to vehicle treated control animals, as well as a 32% reduction in the dose of morphine self-administered. When given during self-administration and acute withdrawal, BTMPS treatment decreased acute withdrawal symptoms (up to 64%) of morphine use and reduced (up to 45%) drug seeking responses after six weeks of protracted withdrawal compared to control animals. BTMPS treatment after six weeks of abstinence from morphine had no effect. These results offer insight into the role of central cholinergic receptors in the onset and maintenance of drug addiction.
Collapse
Affiliation(s)
- Brandon J. Hall
- Department of Pharmacology and Toxicology, Alzheimer’s Research Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood Veterans Administration Medical Center, Augusta, Georgia
| | - Laura S. Pearson
- Charlie Norwood Veterans Administration Medical Center, Augusta, Georgia
| | - Alvin V. Terry
- Department of Pharmacology and Toxicology, Alzheimer’s Research Center, Medical College of Georgia, Augusta, Georgia
| | - Jerry J. Buccafusco
- Department of Pharmacology and Toxicology, Alzheimer’s Research Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood Veterans Administration Medical Center, Augusta, Georgia
| |
Collapse
|
27
|
Rezayof A, Zare-Chahoki A, Zarrindast MR, Rassouli Y. Inhibition of dorsal hippocampal nitric oxide synthesis potentiates ethanol-induced state-dependent memory in mice. Behav Brain Res 2010; 209:189-95. [DOI: 10.1016/j.bbr.2010.01.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 01/15/2010] [Accepted: 01/20/2010] [Indexed: 11/30/2022]
|
28
|
Abstract
This paper is the 31st consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2008 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, United States.
| |
Collapse
|
29
|
Rezayof A, Khajehpour L, Zarrindast M. The amygdala modulates morphine-induced state-dependent memory retrieval via muscarinic acetylcholine receptors. Neuroscience 2009; 160:255-63. [DOI: 10.1016/j.neuroscience.2009.02.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 02/26/2009] [Accepted: 02/28/2009] [Indexed: 10/21/2022]
|