1
|
Chiu CW, Hsieh CY, Yang CH, Tsai JH, Huang SY, Sheu JR. Yohimbine, an α2-Adrenoceptor Antagonist, Suppresses PDGF-BB-Stimulated Vascular Smooth Muscle Cell Proliferation by Downregulating the PLCγ1 Signaling Pathway. Int J Mol Sci 2022; 23:ijms23148049. [PMID: 35887391 PMCID: PMC9324260 DOI: 10.3390/ijms23148049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022] Open
Abstract
Yohimbine (YOH) has antiproliferative effects against breast cancer and pancreatic cancer; however, its effects on vascular proliferative diseases such as atherosclerosis remain unknown. Accordingly, we investigated the inhibitory mechanisms of YOH in vascular smooth muscle cells (VSMCs) stimulated by platelet-derived growth factor (PDGF)-BB, a major mitogenic factor in vascular diseases. YOH (5–20 μM) suppressed PDGF-BB-stimulated a mouse VSMC line (MOVAS-1 cell) proliferation without inducing cytotoxicity. YOH also exhibited antimigratory effects and downregulated matrix metalloproteinase-2 and -9 expression in PDGF-BB-stimulated MOVAS-1 cells. It also promoted cell cycle arrest in the initial gap/first gap phase by upregulating p27Kip1 and p53 expression and reducing cyclin-dependent kinase 2 and proliferating cell nuclear antigen expression. We noted phospholipase C-γ1 (PLCγ1) but not ERK1/2, AKT, or p38 kinase phosphorylation attenuation in YOH-modulated PDGF-BB-propagated signaling pathways in the MOVAS-1 cells. Furthermore, YOH still inhibited PDGF-BB-induced cell proliferation and PLCγ1 phosphorylation in MOVAS-1 cells with α2B-adrenergic receptor knockdown. YOH (5 and 10 mg/kg) substantially suppressed neointimal hyperplasia in mice subjected to CCA ligation for 21 days. Overall, our results reveal that YOH attenuates PDGF-BB-stimulated VSMC proliferation and migration by downregulating a α2B-adrenergic receptor–independent PLCγ1 pathway and reduces neointimal formation in vivo. Therefore, YOH has potential for repurposing for treating atherosclerosis and other vascular proliferative diseases.
Collapse
Affiliation(s)
- Chih-Wei Chiu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Cheng-Ying Hsieh
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-Y.H.); (C.-H.Y.); (J.-H.T.)
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-Y.H.); (C.-H.Y.); (J.-H.T.)
| | - Jie-Heng Tsai
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-Y.H.); (C.-H.Y.); (J.-H.T.)
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
- Center for Reproductive Medicine & Sciences, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence: (S.-Y.H.); (J.-R.S.); Tel.: +886-2-2736-1661 (ext. 6543) (S.-Y.H.); +886-2-2736-1661 (ext. 3199) (J.-R.S.)
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-Y.H.); (C.-H.Y.); (J.-H.T.)
- Correspondence: (S.-Y.H.); (J.-R.S.); Tel.: +886-2-2736-1661 (ext. 6543) (S.-Y.H.); +886-2-2736-1661 (ext. 3199) (J.-R.S.)
| |
Collapse
|
2
|
Hering L, Rahman M, Potthoff SA, Rump LC, Stegbauer J. Role of α2-Adrenoceptors in Hypertension: Focus on Renal Sympathetic Neurotransmitter Release, Inflammation, and Sodium Homeostasis. Front Physiol 2020; 11:566871. [PMID: 33240096 PMCID: PMC7680782 DOI: 10.3389/fphys.2020.566871] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
The kidney is extensively innervated by sympathetic nerves playing an important role in the regulation of blood pressure homeostasis. Sympathetic nerve activity is ultimately controlled by the central nervous system (CNS). Norepinephrine, the main sympathetic neurotransmitter, is released at prejunctional neuroeffector junctions in the kidney and modulates renin release, renal vascular resistance, sodium and water handling, and immune cell response. Under physiological conditions, renal sympathetic nerve activity (RSNA) is modulated by peripheral mechanisms such as the renorenal reflex, a complex interaction between efferent sympathetic nerves, central mechanism, and afferent sensory nerves. RSNA is increased in hypertension and, therefore, critical for the perpetuation of hypertension and the development of hypertensive kidney disease. Renal sympathetic neurotransmission is not only regulated by RSNA but also by prejunctional α2-adrenoceptors. Prejunctional α2-adrenoceptors serve as autoreceptors which, when activated by norepinephrine, inhibit the subsequent release of norepinephrine induced by a sympathetic nerve impulse. Deletion of α2-adrenoceptors aggravates hypertension ultimately by modulating renal pressor response and sodium handling. α2-adrenoceptors are also expressed in the vasculature, renal tubules, and immune cells and exert thereby effects related to vascular tone, sodium excretion, and inflammation. In the present review, we highlight the role of α2-adrenoceptors on renal sympathetic neurotransmission and its impact on hypertension. Moreover, we focus on physiological and pathophysiological functions mediated by non-adrenergic α2-adrenoceptors. In detail, we discuss the effects of sympathetic norepinephrine release and α2-adrenoceptor activation on renal sodium transporters, on renal vascular tone, and on immune cells in the context of hypertension and kidney disease.
Collapse
Affiliation(s)
- Lydia Hering
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Masudur Rahman
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian A Potthoff
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Lars C Rump
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Johannes Stegbauer
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Huhtinen A, Hongisto V, Laiho A, Löyttyniemi E, Pijnenburg D, Scheinin M. Gene expression profiles and signaling mechanisms in α 2B-adrenoceptor-evoked proliferation of vascular smooth muscle cells. BMC SYSTEMS BIOLOGY 2017; 11:65. [PMID: 28659168 PMCID: PMC5490158 DOI: 10.1186/s12918-017-0439-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND α2-adrenoceptors are important regulators of vascular tone and blood pressure. Regulation of cell proliferation is a less well investigated consequence of α2-adrenoceptor activation. We have previously shown that α2B-adrenoceptor activation stimulates proliferation of vascular smooth muscle cells (VSMCs). This may be important for blood vessel development and plasticity and for the pathology and therapeutics of cardiovascular disorders. The underlying cellular mechanisms have remained mostly unknown. This study explored pathways of regulation of gene expression and intracellular signaling related to α2B-adrenoceptor-evoked VSMC proliferation. RESULTS The cellular mechanisms and signaling pathways of α2B-adrenoceptor-evoked proliferation of VSMCs are complex and include redundancy. Functional enrichment analysis and pathway analysis identified differentially expressed genes associated with α2B-adrenoceptor-regulated VSMC proliferation. They included the upregulated genes Egr1, F3, Ptgs2 and Serpine1 and the downregulated genes Cx3cl1, Cav1, Rhoa, Nppb and Prrx1. The most highly upregulated gene, Lypd8, represents a novel finding in the VSMC context. Inhibitor library screening and kinase activity profiling were applied to identify kinases in the involved signaling pathways. Putative upstream kinases identified by two different screens included PKC, Raf-1, Src, the MAP kinases p38 and JNK and the receptor tyrosine kinases EGFR and HGF/HGFR. As a novel finding, the Src family kinase Lyn was also identified as a putative upstream kinase. CONCLUSIONS α2B-adrenoceptors may mediate their pro-proliferative effects in VSMCs by promoting the activity of bFGF and PDGF and the growth factor receptors EGFR, HGFR and VEGFR-1/2. The Src family kinase Lyn was also identified as a putative upstream kinase. Lyn is known to be expressed in VSMCs and has been identified as an important regulator of GPCR trafficking and GPCR effects on cell proliferation. Identified Ser/Thr kinases included several PKC isoforms and the β-adrenoceptor kinases 1 and 2. Cross-talk between the signaling mechanisms involved in α2B-adrenoceptor-evoked VSMC proliferation thus appears to involve PKC activation, subsequent changes in gene expression, transactivation of EGFR, and modulation of kinase activities and growth factor-mediated signaling. While many of the identified individual signals were relatively small in terms of effect size, many of them were validated by combining pathway analysis and our integrated screening approach.
Collapse
Affiliation(s)
- Anna Huhtinen
- Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Vesa Hongisto
- Toxicology Division, Misvik Biology Oy, Turku, Finland
| | - Asta Laiho
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Dirk Pijnenburg
- PamGene International BV, Wolvenhoek 10, 5211HH s’Hertogenbosch, The Netherlands
| | - Mika Scheinin
- Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| |
Collapse
|
4
|
Björk S, Huhtinen A, Vuorenpää A, Scheinin M. Quantitative determination of α2B-adrenoceptor-evoked myosin light chain phosphorylation in vascular smooth muscle cells. J Pharmacol Toxicol Methods 2014; 70:152-62. [DOI: 10.1016/j.vascn.2014.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 06/17/2014] [Accepted: 07/15/2014] [Indexed: 11/16/2022]
|
5
|
Fallarero A, Pohjanoksa K, Wissel G, Parkkisenniemi-Kinnunen UM, Xhaard H, Scheinin M, Vuorela P. High-throughput screening with a miniaturized radioligand competition assay identifies new modulators of human α2-adrenoceptors. Eur J Pharm Sci 2012; 47:941-51. [DOI: 10.1016/j.ejps.2012.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/30/2012] [Accepted: 08/31/2012] [Indexed: 11/30/2022]
|
6
|
Haenisch B, Walstab J, Herberhold S, Bootz F, Tschaikin M, Ramseger R, Bönisch H. Alpha-adrenoceptor agonistic activity of oxymetazoline and xylometazoline. Fundam Clin Pharmacol 2011; 24:729-39. [PMID: 20030735 DOI: 10.1111/j.1472-8206.2009.00805.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Oxymetazoline and xylometazoline are both used as nasal mucosa decongesting α-adrenoceptor agonists during a common cold. However, it is largely unknown which of the six α-adrenoceptor subtypes are actually present in human nasal mucosa, which are activated by the two alpha-adrenoceptor agonists and to what extent. Therefore, mRNA expression in human nasal mucosa of the six α-adrenoceptor subtypes was studied. Furthermore, the affinity and potency of the imidazolines oxymetazoline and xylometazoline at these α-adrenoceptor subtypes were examined in transfected HEK293 cells. The rank order of mRNA levels of α-adrenoceptor subtypes in human nasal mucosa was: α(2A) > α(1A) ≥ α(2B) > α(1D) ≥ α(2C) >> α(1B) . Oxymetazoline and xylometazoline exhibited in radioligand competition studies higher affinities than the catecholamines adrenaline and noradrenaline at most α-adrenoceptor subtypes. Compared to xylometazoline, oxymetazoline exhibited a significantly higher affinity at α(1A) - but a lower affinity at α(2B) -adrenoceptors. In functional studies in which adrenoceptor-mediated Ca(2+) signals were measured, both, oxymetazoline and xylometazoline behaved at α(2B) -adrenoceptors as full agonists but oxymetazoline was significantly more potent than xylometazoline. Furthermore, oxymetazoline was also a partial agonist at α(1A) -adrenoceptors; however, its potency was relatively low and it was much lower than its affinity. The higher potency at α(2B) -adrenoceptors, i.e. at receptors highly expressed at the mRNA level in human nasal mucosa, could eventually explain why in nasal decongestants oxymetazoline can be used in lower concentrations than xylometazoline.
Collapse
Affiliation(s)
- Britta Haenisch
- University of Bonn, Institute of Pharmacology and Toxicology, D-53113 Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Haubold M, Gilsbach R, Hein L. {Alpha}2B-adrenoceptor deficiency leads to postnatal respiratory failure in mice. J Biol Chem 2010; 285:34213-9. [PMID: 20729197 DOI: 10.1074/jbc.m110.129205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
α(2)-Adrenoceptors belong to the family of adrenergic receptors, which regulate the neuronal release of norepinephrine as part of a negative feedback loop. Among the α(2)-adrenoceptors, the α(2B)-subtype may also influence developmental signaling pathways involved in angiogenesis of the placenta. Thus, the aim of the present study was to determine whether α(2B)-adrenoceptors are also involved in other developmental processes beyond placental angiogenesis. Ablation of α(2B)-adrenoceptors led to lethality of mutant mice during the first hours after birth. Despite normal breathing and drinking behavior, mutant mice developed cyanosis, which could be traced back to a defect in lung morphology with significantly reduced alveolar volume and thickened interalveolar septi. In α(2B)-deficient lungs and in isolated alveolar type II cells, expression of sonic hedgehog (SHH) was significantly increased, resulting in mesenchymal proliferation. In vitro α(2B)-adrenoreceptor stimulation suppressed expression of sonic hedgehog and the cell cycle genes cyclin D1 and Ki67. In vivo inhibition of enhanced SHH signaling by the smoothened antagonist cyclopamine partially rescued perinatal lethality, lung morphology, and altered gene expression in mutant mice. Thus, α(2B)-adrenoceptors in lung epithelia play an important role in suppressing sonic hedgehog-mediated proliferation of mesenchymal cells and thus prevent respiratory failure.
Collapse
Affiliation(s)
- Miriam Haubold
- Institute of Experimental and Clinical Pharmacology and Toxicology and the Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | | | | |
Collapse
|