1
|
Zhang X, Yang SB, Cheng L, Ho K, Kim MS. Botanical Mixture Containing Nitric Oxide Metabolite Enhances Neural Plasticity to Improve Cognitive Impairment in a Vascular Dementia Rat Model. Nutrients 2023; 15:4381. [PMID: 37892455 PMCID: PMC10609983 DOI: 10.3390/nu15204381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/12/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Vascular dementia (VD), caused by impaired cerebral blood flow, is the most common form of dementia after Alzheimer's disease (AD) in the elderly and is characterized by severe neuronal damage and cognitive decline. Nitric oxide (NO) is an important determinant of vascular homeostasis, and its deficiency is associated with the progression of VD. In this study, we investigated the role of nitrite ion, a NO metabolite in a botanical mixture (BM) of fermented garlic, fermented Scutellaria baicalensis, and Rhodiola rosea on neuron loss and cognitive impairment using a VD rat model. The BM containing the NO metabolite alleviated cognitive deficits and enhanced neural plasticity, as reflected by an increase in long-term potentiation. The BM also alleviated neuron apoptosis, decreased GFAP expression, and oxidative stress, and increased parvalbumin and brain-derived neurotrophic factor (BDNF) levels. These results indicate that BM exerts neuroprotective effects and alleviates cognitive dysfunction while enhancing neuroplasticity, and thus has therapeutic potential against VD.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
- Center for Cognitive Science and Transdisciplinary Studies, Jiujiang University, Jiujiang 332000, China
- Center for Nitric Oxide Metabolite, Wonkwang University, Iksan 54538, Republic of Korea
| | - Seung-Bum Yang
- Department of Medical Non-Commissioned Officer, Wonkwang Health Science University, Iksan 54538, Republic of Korea
| | - Lin Cheng
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, China
| | - Koo Ho
- Center for Nitric Oxide Metabolite, Wonkwang University, Iksan 54538, Republic of Korea
| | - Min-Sun Kim
- Center for Nitric Oxide Metabolite, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
2
|
Chen J, Zhang J, Yang DD, Li ZC, Zhao B, Chen Y, He Z. Clonidine ameliorates cerebral ischemia-reperfusion injury by up-regulating the GluN3 subunits of NMDA receptor. Metab Brain Dis 2022; 37:1829-1841. [PMID: 35727521 DOI: 10.1007/s11011-022-01028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
Abstract
This study aimed to investigate the protective effects of the alpha-2 adrenergic receptor (α2-AR) agonist, clonidine, on the cerebral ischemia-reperfusion (I/R) injury and elaborate the underlying mechanisms. Cerebral I/R model was established by middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion for 4 h in adult male SD rats. Saline, clonidine and yohimbine (an α2-AR antagonist) were intraperitoneally administered each day for one week before surgery. Neurological deficit was evaluated just before decapitation. TTC staining was applied for correlation of cerebral infarction volume. HE staining was performed to observe the neuron morphology. Immunohistochemical staining was performed to detect the localization and expression of GluN3 proteins. Western blot analysis also was used to detect the expression levels of GluN3 proteins. Our data showed that clonidine ameliorated neurological deficit and reduced the cerebral infarction volume of the rats with cerebral I/R. It is worth noting that treatment with clonidine up-regulated the protein expression of GluN3 in the rats with the cerebral I/R, especially in the cell membrane. Moreover, clonidine also up-regulated the transposition from cytoplasm to cell membrane of GluN3 after cerebral I/R. In addition, yohimbine abolished the neuroprotective effects of clonidine. The results indicated that clonidine played a protective role in cerebral I/R injury through regulation of the protein expression of GluN3 subunits of N-methyl-D-aspartate (NMDA) receptor.
Collapse
Affiliation(s)
- Jing Chen
- Third-Grade Pharmacological Laboratory On Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, People's Republic of China
- Medical College, China Three Gorges University, Yichang, 443002, People's Republic of China
| | - Juan Zhang
- The First People's Hospital of Yichang, Yichang, 443000, People's Republic of China
| | - Dan-Dan Yang
- The Second People's Hospital of China Three Gorges University, Yichang, 443000, People's Republic of China
| | - Zi-Cheng Li
- Third-Grade Pharmacological Laboratory On Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, People's Republic of China
- Medical College, China Three Gorges University, Yichang, 443002, People's Republic of China
| | - Bo Zhao
- Third-Grade Pharmacological Laboratory On Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, People's Republic of China
- Medical College, China Three Gorges University, Yichang, 443002, People's Republic of China
| | - Yue Chen
- Third-Grade Pharmacological Laboratory On Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, People's Republic of China
- Medical College, China Three Gorges University, Yichang, 443002, People's Republic of China
| | - Zhi He
- Third-Grade Pharmacological Laboratory On Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, People's Republic of China.
- Medical College, China Three Gorges University, Yichang, 443002, People's Republic of China.
| |
Collapse
|
3
|
Binzel DW, Li X, Burns N, Khan E, Lee WJ, Chen LC, Ellipilli S, Miles W, Ho YS, Guo P. Thermostability, Tunability, and Tenacity of RNA as Rubbery Anionic Polymeric Materials in Nanotechnology and Nanomedicine-Specific Cancer Targeting with Undetectable Toxicity. Chem Rev 2021; 121:7398-7467. [PMID: 34038115 PMCID: PMC8312718 DOI: 10.1021/acs.chemrev.1c00009] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA nanotechnology is the bottom-up self-assembly of nanometer-scale architectures, resembling LEGOs, composed mainly of RNA. The ideal building material should be (1) versatile and controllable in shape and stoichiometry, (2) spontaneously self-assemble, and (3) thermodynamically, chemically, and enzymatically stable with a long shelf life. RNA building blocks exhibit each of the above. RNA is a polynucleic acid, making it a polymer, and its negative-charge prevents nonspecific binding to negatively charged cell membranes. The thermostability makes it suitable for logic gates, resistive memory, sensor set-ups, and NEM devices. RNA can be designed and manipulated with a level of simplicity of DNA while displaying versatile structure and enzyme activity of proteins. RNA can fold into single-stranded loops or bulges to serve as mounting dovetails for intermolecular or domain interactions without external linking dowels. RNA nanoparticles display rubber- and amoeba-like properties and are stretchable and shrinkable through multiple repeats, leading to enhanced tumor targeting and fast renal excretion to reduce toxicities. It was predicted in 2014 that RNA would be the third milestone in pharmaceutical drug development. The recent approval of several RNA drugs and COVID-19 mRNA vaccines by FDA suggests that this milestone is being realized. Here, we review the unique properties of RNA nanotechnology, summarize its recent advancements, describe its distinct attributes inside or outside the body and discuss potential applications in nanotechnology, medicine, and material science.
Collapse
Affiliation(s)
- Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xin Li
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wen-Jui Lee
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Li-Ching Chen
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Satheesh Ellipilli
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wayne Miles
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuan Soon Ho
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Upadhyay SP, Thapa P, Sharma R, Sharma M. 1-Isoindolinone scaffold-based natural products with a promising diverse bioactivity. Fitoterapia 2020; 146:104722. [PMID: 32920034 DOI: 10.1016/j.fitote.2020.104722] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/21/2022]
Abstract
Isoindolin-1-one or 1-isoindolinone framework is referred to phthalimidines or benzo fused γ-lactams of the corresponding γ-amino carboxylic acids and has been of prime interest for scientists for last several decades. 1-Isoindolinone framework is found in a wide range of naturally occurring compounds with diverse biological activities and therapeutic potential for various chronic diseases. Recent developments in synthetic methods for their procurement have opened a new era of 1-isoindolinone chemistry. This review aims to provide an alphabetical quick reference guide to only 1-isoindolinone based natural products and its variable fused, oxidized and reduced state skeleton with information for advanced chemotaxonomic analyses, cellular targets/pathways and diverse biological activities and future use for medicinal chemistry.
Collapse
Affiliation(s)
- Sunil P Upadhyay
- Drug Discovery Program, KCVA Medical Center, Midwest Veterans' Biomedical Research Foundation, Kansas City, MO 64128, United States.
| | - Pritam Thapa
- Drug Discovery Program, KCVA Medical Center, Midwest Veterans' Biomedical Research Foundation, Kansas City, MO 64128, United States
| | - Ram Sharma
- Drug Discovery Program, KCVA Medical Center, Midwest Veterans' Biomedical Research Foundation, Kansas City, MO 64128, United States
| | - Mukut Sharma
- Drug Discovery Program, KCVA Medical Center, Midwest Veterans' Biomedical Research Foundation, Kansas City, MO 64128, United States
| |
Collapse
|
5
|
Han JY, Kim JK, Kim JH, Oh BS, Cho WJ, Jung YD, Lee SG. Neurorestorative effects of epigallocatechin-3-Gallate on cognitive function in a chronic cerebral hypoperfusion rat model. Restor Neurol Neurosci 2018; 34:367-77. [PMID: 27080069 DOI: 10.3233/rnn-150586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE This study investigated whether (-)-epigallocatechin-3-gallate (EGCG) can enhance cognition by a neurorestorative effect in a rat model of bilateral common carotid artery occlusion (BCCAO). METHODS Forty-eight male, 8-week-old Sprague-Dawley rats were randomly allocated to four groups 6 weeks after BCCAO or sham operation: EGCG-single intravenous injection (25 mg/kg/day; SIV group), EGCG-multiple intraperitoneal injection (50 mg/kg/day for 5 days; MIP group), untreated BCCAO group (untreated group), and sham-operated group (sham group). RESULTS Escape latency was significantly shorter in the SIV and MIP groups than in the untreated group. SIV and MIP groups were significantly different from the untreated group in the activity of superoxide dismutase and the content of malondialdehyde (p < 0.05). Protein expression level of brain-derived neurotrophic factor was not significantly different between groups (p > 0.05), while protein expression of vascular endothelial growth factor was significantly lower in the SIV group than in the untreated group (p < 0.05). Protein expression of N-methyl-D-aspartate receptor subunits NR1 and NR2B was significantly higher in the MIP group than in the untreated group (p < 0.05). CONCLUSIONS EGCG administration at 6 weeks after BCCAO is neurorestorative via an anti-oxidant effect and synaptogenesis, except for angiogenesis.
Collapse
Affiliation(s)
- Jae-Young Han
- Department of Physical & Rehabilitation Medicine, Chonnam National University Medical School & Hospital, Gwangju City, Republic of Korea
| | - Jung-Kook Kim
- Department of Rehabilitation Standard & Policy, National Rehabilitation Center Research Institute, Seoul City, Republic of Korea
| | - Jae-Hong Kim
- Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Dong-Shin University, Naju City, Republic of Korea
| | - Bong-Seok Oh
- Department of Sports and Leisure Science, Sunchon National University, Sunchon City, Republic of Korea
| | - Wan-Ju Cho
- Department of Physical Education, Chosun University, Gwangju City, Republic of Korea
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Gwangju City, Republic of Korea
| | - Sam-Gyu Lee
- Department of Physical & Rehabilitation Medicine, Chonnam National University Medical School & Hospital, Gwangju City, Republic of Korea
| |
Collapse
|
6
|
Li Y, Yu M, Zhao B, Wang Y, Zha Y, Li Z, Yu L, Yan L, Chen Z, Zhang W, Zeng X, He Z. Clonidine preconditioning improved cerebral ischemia-induced learning and memory deficits in rats via ERK1/2-CREB/ NF-κB-NR2B pathway. Eur J Pharmacol 2017; 818:167-173. [PMID: 29074416 DOI: 10.1016/j.ejphar.2017.10.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Abstract
Clonidine, a classical α-2 adrenergic agonists, has been shown to antagonize brain damage caused by hypoxia, cerebral ischemia and excitotoxicity and reduce cerebral infarction volume in recent studies. We herein investigate the regulatory effect and possible underlying mechanism of clonidine on learning and memory in rats with cerebral ischemia. The cerebral ischemia rat model was established by right middle cerebral artery occlusion for 2h and reperfusion for 28 days. Drugs were administrated to the rats for consecutive 7 days intraperitoneally and once again on the day of surgery. The learning and memory in rats was assayed by Morris water maze. Moreover, protein expression levels of NMDAR2B (NR2B)/ phosphor - NR2B, ERK1/2/phosphor- ERK1/2, CREB/phosphor-CREB and NF-κB/phosphor-NF-κB in the cortex and hippocampus of the rats were assayed by western blotting. Our results demonstrated that clonidine treatment significantly abrogated the negative effect induced by cerebral ischemia on the learning and memory in the rats. In the Western blotting assay, clonidine treatment led to significant up-regulation of the expression level of NR2B and Phospho-NR2B in the hippocampus of the rats when compared with the cerebral ischemia group. Furthermore, clonidine also significantly decreased the protein expression levels of ERK1/2, Phospho-ERK1/2, CREB, Phospho-CREB and Phospho-NF-κB in the hippocampus of the rats when compared with the cerebral ischemia group. In conclusion, clonidine could improve the learning and memory ability of rats with cerebral ischemia, and NR2B, ERK1/2, CREB, NF-κB were involved in this effect.
Collapse
Affiliation(s)
- Yanli Li
- Medical School of China Three Gorges University, Yichang 443002, PR China
| | - Min Yu
- The First Renmin Hospital of Yichang City, Yichang 443002, PR China
| | - Bo Zhao
- Medical School of China Three Gorges University, Yichang 443002, PR China
| | - Yan Wang
- The First People's Hospital of Foshan City, Foshan 528000, PR China
| | - Yunhong Zha
- The First Renmin Hospital of Yichang City, Yichang 443002, PR China
| | - Zicheng Li
- Medical School of China Three Gorges University, Yichang 443002, PR China
| | - Lingling Yu
- Medical School of China Three Gorges University, Yichang 443002, PR China
| | - Lingling Yan
- Tianyou Affiliated Hospital,Wuhan University of Science and Technology, Wuhan 430070, PR China
| | - Zhangao Chen
- Wuhan Medtek, Biomedical Technology co., LTD, Wuhan 430064, PR China
| | - Wenjuan Zhang
- Medical School of China Three Gorges University, Yichang 443002, PR China
| | - Xiaoli Zeng
- Medical School of China Three Gorges University, Yichang 443002, PR China; Medical College of Hubei Three Gorges Polytechnic, Yichang 443002, PR China
| | - Zhi He
- Medical School of China Three Gorges University, Yichang 443002, PR China.
| |
Collapse
|
7
|
Clonidine preconditioning alleviated focal cerebral ischemic insult in rats via up-regulating p-NMDAR1 and down-regulating NMDAR2A / p-NMDAR2B. Eur J Pharmacol 2016; 793:89-94. [PMID: 27806917 DOI: 10.1016/j.ejphar.2016.10.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 01/17/2023]
Abstract
A brain ischemia rat model was established by middle cerebral artery occlusion (MCAO) for 2h and reperfusion for 4h to investigate the underlying mechanism of the neuroprotection action of clonidine, a classical alpha-2 adrenergic agonist, on cerebral ischemia. Clonidine and yohimbine were intraperitoneally given to the rats each day for a week before ischemia. Neurological deficits evaluations were carried out at 6h after operation. TTC staining method was used to measure the volume of brain infarction. Expression levels of NMDAR1, NMDAR2A, NMDAR2B were assayed by western blotting. Our data demonstrated that clonidine pretreatment significantly improved the neurological deficit scores and reduced the brain infarct volumes of the rats. Furthermore, protein expression level of p-NMDAR2B in cortex was significantly up-regulated whereas that of p-NMDAR1 was decreased when compared with the sham-operated rats. Remarkably, clonidine treatment led to significant down-regulation of p-NMDAR2B and NMDAR2A in addition to enhancement of the expression level of p-NMDAR1 in cortex. This is the first report illustrating the neuroprotective role of clonidine may be mediated through modulation of the expression levels of p-NMDAR2B, NMDAR2A and p-NMDAR1 during cerebral ischemia.
Collapse
|
8
|
DDPH, a novel antihypertensive agent, is a potential dual inhibitor of hepatic CYP2D and CYP3A. Chem Biol Interact 2016; 247:55-63. [PMID: 26827781 DOI: 10.1016/j.cbi.2016.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 11/21/2022]
Abstract
DDPH (1-(2, 6-dimethylphenoxy)-2-(3, 4-dimethoxyphenylethylamino) propane hydrochloride) is a promising novel antihypertensive agent, with potent antihypertensive, neuroprotective and cardioprotective effects. This study aimed to investigate the effects of DDPH on the expression and activity of hepatic cytochrome P450 (CYP) isoforms and evaluate the metabolic drug-drug interactions of DDPH with propafenone. Our results showed that orally administered DDPH (12.5-50 mg/kg/d) for 7 days significantly inhibited CYP2D1 and CYP3A1 activity and mRNA and protein expression but weakly increased CYP1A2 activity and expression in rats. Enzyme kinetics studies showed that DDPH was a competitive inhibitor of CYP2D1 and mixed inhibitor of CYP3A1 in rat liver microsomes with Ki values of 3.70 ± 0.42 μM and 4.79 ± 1.10 μM respectively. With human liver microsomes, DDPH was a noncompetitive inhibitor of CYP2D6 (Ki = 0.85 ± 0.06 μM) and mixed inhibitor of CYP3A (Ki = 2.15 ± 0.41 μM). Further in vivo study showed that oral administration of DDPH (12.5-50 mg/kg/d) for 7 days in rats significantly increased the area under the plasma concentration-time curve (AUC) of propafenone by 25.4%-63.9%, with a concomitant decrease in the plasma clearance. In conclusion, the results indicated that DDPH inhibited CYP2D and CYP3A activities and down-regulated their protein expression and mRNA transcription. DDPH might cause metabolic drug-drug interactions through modulation of the activity and expression of CYP2D and CYP3A. This information could be important in the prediction of possible drug-drug interactions as well as for the effective therapy and the limitation of toxicity of DDPH in clinical practice.
Collapse
|
9
|
Li CJ, Zhou M, Li HG, Lv Q, Xu XL, Guo LJ. Clonidine suppresses the induction of long-term potentiation by inhibiting HCN channels at the Schaffer collateral-CA1 synapse in anesthetized adult rats. Cell Mol Neurobiol 2013; 33:1075-86. [PMID: 23975095 PMCID: PMC11497926 DOI: 10.1007/s10571-013-9974-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/11/2013] [Indexed: 11/25/2022]
Abstract
Activation of alpha2-adrenoceptors inhibits long-term potentiation and long-term depression in many brain regions. However, effectiveness and mechanism of alpha2-adrenoceptors for synaptic plasticity at the Schaffer collateral-CA1 synapses in rat in vivo is unclear. In the present study, we investigated the effects of alpha2-adrenoceptors agonist clonidine on high-frequency stimulation (HFS)-induced long-term potentiation (LTP) and paired-pulse facilitation (PPF) at the Schaffer collateral-CA1 synapse of rat hippocampus in vivo. Clonidine (0.05, 0.1 mg/kg, ip) inhibited synaptic plasticity in a dose-dependent manner, accompanying with the decreasing of aortic pressure and heart rate (HR) in anesthetized rats. Clonidine (1.25, 2.5 μg/kg, icv, 10 min before HFS) also dose-dependently inhibited synaptic plasticity, which had no remarkable effect on HR and aortic pressure. But, 20 min after HFS, administration of clonidine (2.5 μg/kg) had no effect on LTP. The inhibitory effect of clonidine (2.5 μg/kg) on LTP was completely reversed by yohimbine (18 μg/kg, icv) and ZD7288 (5 μg/kg, icv). Moreover, the inhibition was accompanied by a significant increase of the normalized PPF ratio. Furthermore, clonidine at 1 and 10 μM significantly decreased glutamate (Glu) content in the culture supernatants of hippocampal neurons, and yohimbine at 1 and 10 μM had no effect on Glu release, while it could reverse the inhibition of clonidine (1 and 10 μM) on Glu release. In conclusion, clonidine can suppress the induction of LTP at the Schaffer collateral-CA1 synapse, and the possible mechanism is that activation of presynaptic alpha2-adrenoceptors reduces the Glu release by inhibiting HCN channels.
Collapse
Affiliation(s)
- Chang-jun Li
- Department of Pharmacology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
- Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, 430030 Hubei People’s Republic of China
| | - Mei Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Hui-ge Li
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Qing Lv
- Department of Pharmacology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
- Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, 430030 Hubei People’s Republic of China
| | - Xu-lin Xu
- Department of Pharmacology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
- Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, 430030 Hubei People’s Republic of China
| | - Lian-jun Guo
- Department of Pharmacology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
- Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, 430030 Hubei People’s Republic of China
| |
Collapse
|
10
|
Ding J, Fu G, Zhao Y, Cheng Z, Chen Y, Zhao B, He W, Guo LJ. EGCG ameliorates the suppression of long-term potentiation induced by ischemia at the Schaffer collateral-CA1 synapse in the rat. Cell Mol Neurobiol 2012; 32:267-77. [PMID: 22076575 PMCID: PMC11498421 DOI: 10.1007/s10571-011-9758-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/13/2011] [Indexed: 10/15/2022]
Abstract
The function of Epigallocatechin gallate (EGCG), a main component of green tea, has been widely investigated, amelioration of synaptic transmission and neuroprotective effects against ischemia-induced brain damage among others. However, the mechanism underlying is still unveiled. We investigated the effects of EGCG on high frequency stimulation-induced long-term potentiation (LTP) in the Schaffer collateral-CA1 synapse with or without cerebral ischemia injury induced by middle cerebral artery occlusion (MCAO) in vivo to examine the possible relations between EGCG and synaptic transmission. Application of EGCG modulated synaptic transmission and produced a dose-dependent improvement of the induction of LTP. However, relative high-dose EGCG can block the induction of LTP at the Schaffer collateral-CA1 synapse in normal rat in vivo. In addition, the effects of EGCG were observed on the infarct volume and neurological deficit in rats subjected to MCAO; furthermore, the cell viability of primary cultured rat hippocampal and cortical neurons suffered from oxygen-glucose deprivation were evaluated with MTT and LDH assay, which showed significant neuroprotective properties in vitro. Surprisingly, the contents of the glutamate (Glu), glycine (Gly), and gamma-aminobutyric acid amino acids were totally disequilibrated before and after cerebral ischemia injury and could be rebalanced to original level by application of EGCG. Our results suggest that EGCG is able to improve the efficiency of synaptic transmission in cerebral ischemia injury with attenuated effect related to the neuroprotection of EGCG through regulating excitatory and inhibitory amino acid balance.
Collapse
Affiliation(s)
- Jie Ding
- Department of Pharmacology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030 People’s Republic of China
| | - Gang Fu
- Department of Pharmacology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030 People’s Republic of China
| | - Yan Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030 People’s Republic of China
| | - Zhenyong Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030 People’s Republic of China
| | - Yang Chen
- Department of Pharmacology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030 People’s Republic of China
| | - Bo Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030 People’s Republic of China
| | - Wei He
- Department of Pharmacology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030 People’s Republic of China
| | - Lian-Jun Guo
- Department of Pharmacology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030 People’s Republic of China
| |
Collapse
|
11
|
Blocking cerebral lymphatic drainage deteriorates cerebral oxidative injury in rats with subarachnoid hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011. [PMID: 21125445 DOI: 10.1007/978-3-7091-0356-2_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Substances and fluid in the brain and subarachnoid spaces may be drained into extracranial lymphatics. This study aimed to investigate the possible role of cerebral lymphatic drainage in the process of cerebral injury following subarachnoid hemorrhage (SAH). Wistar rats were divided into non-SAH, SAH, and SAH plus cervical lymphatic blockage (SAH + CLB) groups. Autologous arterial hemolysate was injected into rats' cisterna magna to induce SAH. At time of 24 and 72 h after SAH, the rats were sacrificed for serum lactate dehydrogenase (LDH) activity, brain tissue superoxide dismutase (SOD) activity, and brain tissue malonaldehyde (MDA) content detection. It was found that serum LDH activity increased in rats of SAH group comparing with non-SAH group. SAH also resulted in decreased brain tissue SOD activity and increased brain tissue MDA content. In rats of SAH + CLB group, the increase of serum LDH activity was to a lager extent. Meanwhile, brain tissue SOD activity decreased and MDA content increased to a lager extent, as compared with SAH group. It was concluded that blockage of cerebral lymphatic drainage deteriorates cerebral oxidative injury after SAH, indicating cerebral lymphatic drainage may exert intrinsic protective effects against cerebral injury following SAH.
Collapse
|
12
|
Maiese K, Chong ZZ, Shang YC, Hou J. Novel avenues of drug discovery and biomarkers for diabetes mellitus. J Clin Pharmacol 2011; 51:128-52. [PMID: 20220043 PMCID: PMC3033756 DOI: 10.1177/0091270010362904] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Globally, developed nations spend a significant amount of their resources on health care initiatives that poorly translate into increased population life expectancy. As an example, the United States devotes 16% of its gross domestic product to health care, the highest level in the world, but falls behind other nations that enjoy greater individual life expectancy. These observations point to the need for pioneering avenues of drug discovery to increase life span with controlled costs. In particular, innovative drug development for metabolic disorders such as diabetes mellitus becomes increasingly critical given that the number of diabetic people will increase exponentially over the next 20 years. This article discusses the elucidation and targeting of novel cellular pathways that are intimately tied to oxidative stress in diabetes mellitus for new treatment strategies. Pathways that involve wingless, β-nicotinamide adenine dinucleotide (NAD(+)) precursors, and cytokines govern complex biological pathways that determine both cell survival and longevity during diabetes mellitus and its complications. Furthermore, the role of these entities as biomarkers for disease can further enhance their utility irrespective of their treatment potential. Greater understanding of the intricacies of these unique cellular mechanisms will shape future drug discovery for diabetes mellitus to provide focused clinical care with limited or absent long-term complications.
Collapse
Affiliation(s)
- Kenneth Maiese
- Department of Neurology, 8C-1 UHC, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
13
|
QSAR studies on a number of pyrrolidin-2-one antiarrhythmic arylpiperazinyls. Med Chem Res 2011; 21:373-381. [PMID: 22308062 PMCID: PMC3265727 DOI: 10.1007/s00044-010-9540-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 12/10/2010] [Indexed: 12/18/2022]
Abstract
The activity of a number of 1-[3-(4-arylpiperazin-1-yl)propyl]pyrrolidin-2-one antiarrhythmic (AA) agents was described using the quantitative structure–activity relationship model by applying it to 33 compounds. The molecular descriptors of the AA activity were obtained by quantum chemical calculations combined with molecular modeling calculations. The resulting model explains up to 91% of the variance and it was successfully validated by four tests (LOO, LMO, external test, and Y-scrambling test). Statistical analysis shows that the AA activity of the studied compounds depends mainly on the PCR and JGI4 descriptors.
Collapse
|
14
|
Zhang SH, Wang CY, Jiang ZZ, Ni PZ, Zhou JP, Xi BM, Chen WH. Synthesis and Blocking Activities of Isoindolinone- and Isobenzofuranone-Containing Phenoxylalkylamines as Potent .ALPHA.1-Adrenoceptor Antagonists. Chem Pharm Bull (Tokyo) 2011; 59:96-9. [DOI: 10.1248/cpb.59.96] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shou-Hua Zhang
- School of Pharmaceutical Sciences, Southern Medical University
- Center of Drug Discovery, China Pharmaceutical University
| | - Chun-Ye Wang
- School of Pharmaceutical Sciences, Southern Medical University
| | - Zhen-Zhou Jiang
- National Drug Screening Center, China Pharmaceutical University
| | - Pei-Zhou Ni
- Department of Organic Chemistry, China Pharmaceutical University
| | - Jin-Pei Zhou
- Center of Drug Discovery, China Pharmaceutical University
| | - Bao-Min Xi
- School of Pharmaceutical Sciences, Southern Medical University
| | - Wen-Hua Chen
- School of Pharmaceutical Sciences, Southern Medical University
| |
Collapse
|
15
|
Sapa J, Nowaczyk A, Kulig K. Antiarrhythmic and antioxidant activity of novel pyrrolidin-2-one derivatives with adrenolytic properties. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2011; 383:13-25. [PMID: 20949258 PMCID: PMC3016165 DOI: 10.1007/s00210-010-0566-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 09/20/2010] [Indexed: 11/26/2022]
Abstract
A series of novel pyrrolidin-2-one derivatives (17 compounds) with adrenolytic properties was evaluated for antiarrhythmic, electrocardiographic and antioxidant activity. Some of them displayed antiarrhythmic activity in barium chloride-induced arrhythmia and in the rat coronary artery ligation-reperfusion model, and slightly decreased the heart rate, prolonged P-Q, Q-T intervals and QRS complex. Among them, compound EP-40 (1-[2-hydroxy-3-[4-[(2-hydroxyphenyl)piperazin-1-yl]propyl]pyrrolidin-2-one showed excellent antiarrhythmic activity. This compound had significantly antioxidant effect, too. The present results suggest that the antiarrhythmic effect of compound EP-40 is related to their adrenolytic and antioxidant properties. A biological activity prediction using the PASS software shows that compound EP-35 and EP-40 can be characterized by antiischemic activity; whereas, compound EP-68, EP-70, EP-71 could be good tachycardia agents.
Collapse
Affiliation(s)
- Jacek Sapa
- Department of Pharmacodynamic, Laboratory of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | | | | |
Collapse
|
16
|
Xi BM, Jiang ZZ, Zou JW, Ni PZ, Chen WH. Drug metabolism-based design, synthesis, and bioactivities of 1-(2,6-dimethylphenoxy)-2-(3,4-dimethoxyphenylethylamino)propane hydrochloride (DDPH) analogs as α1-adrenoceptors antagonists. Bioorg Med Chem 2011; 19:783-8. [DOI: 10.1016/j.bmc.2010.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/06/2010] [Accepted: 12/06/2010] [Indexed: 11/29/2022]
Affiliation(s)
- Bao-Min Xi
- Southern Medical University, Guangzhou, China
| | | | | | | | | |
Collapse
|
17
|
Monge L, Fernández N, Salcedo A, García-Villalón ÁL, Diéguez G. Role of α-adrenoceptors and prostacyclin in the enhanced adrenergic reactivity of goat cerebral arteries after ischemia-reperfusion. Brain Res 2010; 1346:121-31. [DOI: 10.1016/j.brainres.2010.05.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 04/27/2010] [Accepted: 05/28/2010] [Indexed: 11/27/2022]
|
18
|
Maiese K, Shang YC, Chong ZZ, Hou J. Diabetes mellitus: channeling care through cellular discovery. Curr Neurovasc Res 2010; 7:59-64. [PMID: 20158461 DOI: 10.2174/156720210790820217] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 12/29/2009] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus (DM) impacts a significant portion of the world's population and care for this disorder places an economic burden on the gross domestic product for any particular country. Furthermore, both Type 1 and Type 2 DM are becoming increasingly prevalent and there is increased incidence of impaired glucose tolerance in the young. The complications of DM are protean and can involve multiple systems throughout the body that are susceptible to the detrimental effects of oxidative stress and apoptotic cell injury. For these reasons, innovative strategies are necessary for the implementation of new treatments for DM that are generated through the further understanding of cellular pathways that govern the pathological consequences of DM. In particular, both the precursor for the coenzyme beta-nicotinamide adenine dinucleotide (NAD(+)), nicotinamide, and the growth factor erythropoietin offer novel platforms for drug discovery that involve cellular metabolic homeostasis and inflammatory cell control. Interestingly, these agents and their tightly associated pathways that consist of cell cycle regulation, protein kinase B, forkhead transcription factors, and Wnt signaling also function in a broader sense as biomarkers for disease onset and progression.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
19
|
ZD7288-induced suppression of long-term potentiation was attenuated by exogenous NMDA at the Schaffer collateral–CA1 synapse in the rat in vivo. Eur J Pharmacol 2010; 631:10-6. [DOI: 10.1016/j.ejphar.2009.12.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 11/19/2009] [Accepted: 12/22/2009] [Indexed: 11/18/2022]
|
20
|
Nowaczyk A, Przybylski R, Kulig K, Malawska B. Structure-Activity Relationship Studies of a Number of α1 -Adrenoceptor Antagonists and Antiarrhythmic Agents. Mol Inform 2010; 29:343-51. [PMID: 27463061 DOI: 10.1002/minf.200900063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 02/08/2010] [Indexed: 01/13/2023]
Abstract
Arylpiperazines represent one of the most studied classes of α1 -adrenoceptor (α1 -AR) antagonists. Currently, α1 -AR antagonists are useful in the treatment of benign prostatic hyperplasia, lower urinary tract symptoms or cardiac arrhythmia. The activity of various derivatives of 1-[3-(4-arylpiperazin-1-yl)propyl]pyrrolidin-2-one as α1 -adrenergic receptor antagonists and antiarrhythmic (AA) agents was described using the qualitative inverse Structure Activity Relationship (SAR) model. The three-dimensional structures of the pyrrolidin-2-one derivatives in the basic form were obtained using AM1 semi-empirical quantum chemical calculations. All the molecules were geometry-optimized until the root-mean-square (RMS) gradient value was smaller than 10(-6) a.u. Single-point energy (SPE) calculations were performed at the DFT/B3LYP level of theory using the 6-31G** basis set. The main focus of this inverse SAR study is to find which features cause enhancing of antiarrhythmic properties between subtly different types of activity (α1 -adrenoreceptor antagonists and antiarrhythmic activities). Our SAR study involves the charge distribution in the plane of the pharmacophore model for α1 -AR. Suitable maps of the electrostatic potential were plotted based on the electronic and nuclear charge distribution obtained from the energy calculations. The results of this modelling study indicate that if the terminal arylpiperazine moiety is surrounded by regions of negative electrostatic potential, then the antiarrhythmic activity is blocked.
Collapse
Affiliation(s)
- Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 9 Sklodowskiej-Curie Str., 85-094 Bydgoszcz, Poland phone: (+4852) 585 39 04 fax: (+4852) 585 39 20.
| | - Rafał Przybylski
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 9 Sklodowskiej-Curie Str., 85-094 Bydgoszcz, Poland phone: (+4852) 585 39 04 fax: (+4852) 585 39 20
| | - Katarzyna Kulig
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Medical College Jagiellonian University, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Medical College Jagiellonian University, 9 Medyczna Str., 30-688 Kraków, Poland
| |
Collapse
|
21
|
Cai ZY, Yan Y, Chen R. Minocycline reduces astrocytic reactivation and neuroinflammation in the hippocampus of a vascular cognitive impairment rat model. Neurosci Bull 2010; 26:28-36. [PMID: 20101270 PMCID: PMC5560381 DOI: 10.1007/s12264-010-0818-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 10/27/2009] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To study the neuroprotective mechanism of minocycline against vascular cognitive impairment after cerebral ischemia. METHODS The rat model with vascular cognitive impairment was established by permanent bilateral common carotid artery occlusion (BCCAO). The observing time-points were determined at 4, 8 and 16 weeks after BCCAO. Animals were randomly divided into sham-operated group (n = 6), model group (subdivided into 3 groups: 4 weeks after BCCAO, n = 6; 8 weeks after BCCAO, n = 6; and 16 weeks after BCCAO, n = 6), and minocycline group (subdivided into 3 groups: 4 weeks after BCCAO, n = 6; 8 weeks after BCCAO, n = 6; and 16 weeks after BCCAO, n = 6). Minocycline was administered by douche via stomach after BCCAO until sacrifice. Glial fibrillary acidic protein (GFAP) was examined by Western blotting and immunohistochemistry. Levels of cyclooxygenase-2 (COX-2) and nuclear factor-kappaB (NF-kappaB) were measured by immunohistochemistry. IL-1beta and TNF-alpha levels were tested with ELISA method. RESULTS Levels of GFAP, COX-2, NF-kappaB, IL-1beta and TNF-alpha were all up-regulated after permanent BCCAO, which could be significantly inhibited by minocycline. CONCLUSION Minocycline could ameliorate the inflammation and oxidative stress in the hippocampus of the vascular cognitive impairment rat model.
Collapse
Affiliation(s)
- Zhi-You Cai
- Department of Neurology, Lu’an People’s Hospital, the Fifth Clinical College, Anhui Medical University, Lu’an, 237005 China
| | - Yong Yan
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016 China
| | - Ran Chen
- Department of Neurology, Lu’an People’s Hospital, the Fifth Clinical College, Anhui Medical University, Lu’an, 237005 China
| |
Collapse
|
22
|
Oxidative stress: Biomarkers and novel therapeutic pathways. Exp Gerontol 2010; 45:217-34. [PMID: 20064603 DOI: 10.1016/j.exger.2010.01.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 12/28/2009] [Accepted: 01/07/2010] [Indexed: 01/12/2023]
Abstract
Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO) and members of the mammalian forkhead transcription factors of the O class (FoxOs) may offer the greatest promise for new treatment regimens since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. However, biological outcome with EPO and FoxOs may sometimes be both unexpected and undesirable that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as complicated role EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.
Collapse
|
23
|
Maiese K, Chong ZZ, Hou J, Shang YC. New strategies for Alzheimer's disease and cognitive impairment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2009; 2:279-89. [PMID: 20716915 PMCID: PMC2835916 DOI: 10.4161/oxim.2.5.9990] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/24/2009] [Accepted: 09/02/2009] [Indexed: 02/06/2023]
Abstract
Approximately five million people suffer with Alzheimer's disease (AD) and more than twenty-four million people are diagnosed with AD, pre-senile dementia, and other disorders of cognitive loss worldwide. Furthermore, the annual cost per patient with AD can approach $200,000 with an annual population aggregate cost of $100 billion. Yet, complete therapeutic prevention or reversal of neurovascular injury during AD and cognitive loss is not achievable despite the current understanding of the cellular pathways that modulate nervous system injury during these disorders. As a result, identification of novel therapeutic targets for the treatment of neurovascular injury would be extremely beneficial to reduce or eliminate disability from diseases that lead to cognitive loss or impairment. Here we describe the capacity of intrinsic cellular mechanisms for the novel pathways of erythropoietin and forkhead transcription factors that may offer not only new strategies for disorders such as AD and cognitive loss, but also function as biomarkers for disease onset and progression.
Collapse
Affiliation(s)
- Kenneth Maiese
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA.
| | | | | | | |
Collapse
|
24
|
Maiese K, Hou J, Chong ZZ, Shang YC. Erythropoietin, forkhead proteins, and oxidative injury: biomarkers and biology. ScientificWorldJournal 2009; 9:1072-104. [PMID: 19802503 PMCID: PMC2762199 DOI: 10.1100/tsw.2009.121] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO), and members of the mammalian forkhead transcription factors of the O class (FoxOs), may offer the greatest promise for new treatment regimens, since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. Yet, EPO and FoxOs may sometimes have unexpected and undesirable effects that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as the complex role that EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan, USA.
| | | | | | | |
Collapse
|
25
|
Maiese K, Chong ZZ, Hou J, Shang YC. The vitamin nicotinamide: translating nutrition into clinical care. Molecules 2009; 14:3446-85. [PMID: 19783937 PMCID: PMC2756609 DOI: 10.3390/molecules14093446] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/08/2009] [Accepted: 09/08/2009] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide, the amide form of vitamin B(3) (niacin), is changed to its mononucleotide compound with the enzyme nicotinic acide/nicotinamide adenylyltransferase, and participates in the cellular energy metabolism that directly impacts normal physiology. However, nicotinamide also influences oxidative stress and modulates multiple pathways tied to both cellular survival and death. During disorders that include immune system dysfunction, diabetes, and aging-related diseases, nicotinamide is a robust cytoprotectant that blocks cellular inflammatory cell activation, early apoptotic phosphatidylserine exposure, and late nuclear DNA degradation. Nicotinamide relies upon unique cellular pathways that involve forkhead transcription factors, sirtuins, protein kinase B (Akt), Bad, caspases, and poly (ADP-ribose) polymerase that may offer a fine line with determining cellular longevity, cell survival, and unwanted cancer progression. If one is cognizant of the these considerations, it becomes evident that nicotinamide holds great potential for multiple disease entities, but the development of new therapeutic strategies rests heavily upon the elucidation of the novel cellular pathways that nicotinamide closely governs.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
26
|
Ozacmak VH, Barut F, Ozacmak HS. Melatonin provides neuroprotection by reducing oxidative stress and HSP70 expression during chronic cerebral hypoperfusion in ovariectomized rats. J Pineal Res 2009; 47:156-163. [PMID: 19552637 DOI: 10.1111/j.1600-079x.2009.00695.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Oxidative stress is believed to contribute to functional and histopathologic disturbances associated with chronic cerebral hypoperfusion (CCH) in rats. Melatonin has protective effects against cerebral ischemia/reperfusion injury. This effect has mainly been attributed to its antioxidant properties. In the present study, we evaluate the effects of melatonin on chronic cerebral hypoperfused rats and examined its possible influence on oxidative stress, superoxide dismutase (SOD) activity, reduced glutathione (GSH) levels, and heat shock protein (HSP) 70 induction. CCH was induced by permanent bilateral common carotid artery occlusion in ovariectomized female rats. Extensive neuronal loss in the hippocampus at day 14 following CCH was observed. The ischemic changes were preceded by increases in malondialdehyde (MDA) concentration and HSP70 induction as well as reductions in GSH and SOD. Melatonin treatment restored the levels of MDA, SOD, GSH, and HSP70 induction as compared to the ischemic group. Histopathologic analysis confirmed the protective effect of melatonin against CCH-induced morphologic alterations. Taken together, our results document that melatonin provides neuroprotective effects in CCH by attenuating oxidative stress and stress protein expression in neurons. This suggests melatonin may be helpful for the treatment of vascular dementia and cerebrovascular insufficiency.
Collapse
Affiliation(s)
| | - Figen Barut
- Department of Pathology, Zonguldak Karaelmas University, Zonguldak, Turkey
| | | |
Collapse
|
27
|
Zhao L, Yang X, Xu R, Wu J, Gu S, Zhang L, Gong P, Chen H, Zeng F. Safety, tolerability and pharmacokinetics of phenoprolamine hydrochloride floating sustained-release tablets in healthy Chinese subjects. Int J Pharm 2009; 377:99-104. [PMID: 19446622 DOI: 10.1016/j.ijpharm.2009.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/12/2009] [Accepted: 05/08/2009] [Indexed: 11/29/2022]
Abstract
The present study was designed to assess the safety, tolerability and pharmacokinetics of phenoprolamine hydrochloride floating sustained tablets (PHFST) in healthy Chinese subjects. 116 volunteers were randomized into single- or multiple-dose groups for oral administration 30-240 mg of PHFST once or 60-120 mg twice daily. Safety and tolerability were appraised by monitoring adverse events and laboratory parameters. Pharmacokinetics was assessed by determining the plasma concentrations of phenoprolamine hydrochloride with a validated HPLC method. In single-dose studies, no severe adverse events were observed in volunteers, and all adverse events were mild; the percentages of treatment-emergent events judged to be possibly related to the drug were 3/6 in the 240 mg dose group, 1/6 in the 180-210 mg dose groups, and none in the 30-150 mg dose groups; system exposure (AUC, C(max)) increased with respect to dose at 30-120 mg, whereas AUC raised disproportionately with dose escalating from 120 to 240 mg; the absorption of phenoprolamine hydrochloride was unaffected by food. In multiple studies, no safety concerns were revealed up to 7 days; steady-state plasma concentration was achieved after approximately 4-5 days of repeated twice-daily dosing. PHFST is safe and well tolerated in healthy Chinese subjects. The mean C(max) of PHFST is proportional to dose, but not the AUC. Oral dosing regimen selected for subsequent Phase II/III clinical trials was 60 mg of PHFST, b.i.d., and dose up to 120 mg, b.i.d. - may be used to achieve better antihypertensive effect.
Collapse
Affiliation(s)
- Libo Zhao
- Institute of Clinical Pharmacology, Tongji Medical College of Huazhong University of Science and Technolog, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nowaczyk A, Kulig K, Malawska B. 1-(3-(4-Arylpiperazin-1-yl)-propyl)-Pyrrolidin-2-one Derivatives as α1
-Adrenoceptor Antagonists: A QSAR Study. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/qsar.200810145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Upregulation of BACE1 and beta-amyloid protein mediated by chronic cerebral hypoperfusion contributes to cognitive impairment and pathogenesis of Alzheimer's disease. Neurochem Res 2009; 34:1226-35. [PMID: 19123057 DOI: 10.1007/s11064-008-9899-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) increases the risk of Alzheimer disease (AD) through several biologically plausible pathways, but the relationship between CCH and the development of AD remains uncertain. To investigate expression of APP, BACE1 and A beta in the hippocampus of BCCAO rats and study pathophysiological mechanism of AD from CCH. CCH rat model was established by chronic bilateral common carotid artery occlusion (BCCAO). Behavior was evaluated after BCCAO with Morris water maze and open-field task. Expression of A beta was measured by enzyme linked immunosorbent assay (ELISA). beta-Amyloid precursor protein cleavage enzyme 1 (BACE1) and beta-amyloid precursor protein (APP) were tested by ELISA, Western blotting and RT-PCR. Cognitive impairment occurred with CCH by Morris water maze test and open-field task. The BACE1 and A beta level in BCCAO rats was more increased than sham-operation control rats (P < 0.01) but APP had no difference(P > 0.05). The expression of BACE1 and A beta has no inter-group difference in BCCAO rats (P > 0.05). The level of BACE1 and A beta had positive correlation with cognitive impairment (P < 0.01) while no correlation was observed between APP and cognitive impairment. Chronic cerebral ischemia contributes to cognitive impairment and vascular pathogenesis of Alzheimer's disease that chronic cerebral hypoperfusion increases BACE1 and A beta level in brain.
Collapse
|
30
|
He Z, Lu Q, Xu X, Huang L, Chen J, Guo L. DDPH ameliorated oxygen and glucose deprivation-induced injury in rat hippocampal neurons via interrupting Ca2+ overload and glutamate release. Eur J Pharmacol 2008; 603:50-5. [PMID: 19105952 DOI: 10.1016/j.ejphar.2008.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 11/19/2008] [Accepted: 12/02/2008] [Indexed: 11/26/2022]
Abstract
Our previous work has demonstrated that DDPH (1-(2, 6-dimethylphenoxy)-2-(3, 4-dimethoxyphenylethylamino) propane hydrochloride), a competitive alpha(1)-adrenoceptor antagonist, could improve cognitive deficits, reduce histopathological damage and facilitate synaptic plasticity in vivo possibly via increasing NR2B (NMDA receptor 2B) expression and antioxidation of DDPH itself. The present study further evaluated effects of DDPH on OGD (Oxygen and glucose deprivation)-induced neuronal damage in rat primary hippocampal cells. The addition of DDPH to the cultured cells 12 h before OGD for 4 h significantly reduced neuronal damage as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and LDH (lactate dehydrogenase) release experiments. The effects of DDPH on intracellular calcium concentration were explored by Fura-2 based calcium imaging techniques and results showed that DDPH at the dosages of 5 microM and 10 microM suppressed the increase of intracellular calcium ([Ca(2+)](i)) stimulated by 50 mM KCl in Ca(2+)-containing extracellular solutions. However, DDPH couldn't suppress the increase of [Ca(2+)](i) induced by both 50 microM glutamate in Ca(2+)-containing extracellular solutions and 20 microM ATP (Adenosine Triphosphate) in Ca(2+)-free solution. These results indicated that DDPH prevented [Ca(2+)](i) overload in hippocampal neurons by blocking Ca(2+) influx (voltage-dependent calcium channel) but not Ca(2+) mobilization from the intracellular Ca(2+) store in endoplasm reticulum (ER). We also demonstrated that DDPH could decrease glutamate release when hippocampal cells were subjected to OGD. These observations demonstrated that DDPH protected hippocampal neurons against OGD-induced damage by preventing the Ca(2+) influx and decreasing glutamate release.
Collapse
Affiliation(s)
- Zhi He
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | | | | | | | | | | |
Collapse
|