1
|
Dash JR, Mishra SK, Parida S, Singh TU, Choudhury S, Muniyappa K. TRPV4 activation in rat carotid artery in DOCA hypertension involves eNOS and endothelium-derived contractile factor (EDCF). Clin Exp Hypertens 2018; 41:564-570. [PMID: 30325243 DOI: 10.1080/10641963.2018.1523915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Aim: Role of TRPV4 channel in regulation of endothelial function in the carotid artery in deoxycorticosterone acetate (DOCA) model of hypertension in rat was studied. Methods: 8-10 weeks old albino Wistar rats divided into three groups namely Control, UNX and hypertensive animals. Vascular smooth muscle response was studied in isolated carotid artery of rat with acetylcholine, sodium nitroprusside, GSK1016790A (GSK) in presence and absence of L-NAME and indomethacin. Results: At the end of the 6th week, the mean systolic blood pressure was increased in DOCA-treated hypertensive rats (166 ± 8 mm Hg) compared to Control and UNX (125 ± 5 mm Hg). ACh (10-9 to 10-5 M) produced almost 100% relaxation in Control (Emax = 97.48 ± 1.06 %) and UNX animals (Emax = 93.16 ± 2.33 %) which was attenuated in DOCA-treated hypertensive animals (Emax = 70.85 ± 1.65 %). No significant changes seen in SNP (10-12 to 10-5 M) induced relaxation. GSK1016790A (10-12 to 10-7 M)-mediated relaxation was significantly attenuated in DOCA-treated hypertensive animals (Emax = 25.58 ± 13.60%) compared to the control (Emax = 80.59 ± 6.86%) and UNX (Emax = 87.32 ± 2.01%) animals. L-NAME (10-4 M) potently blocked GSK-induced relaxation, and a contractile response to GSK was observed in presence of L-NAME in all the three groups of animals which was sensitive to indomethacin (10-5 M). Conclusion: TRPV4 may regulate the vascular tone of rat carotid artery through an attenuated NO pathway and stimulation of the release of contractile prostanoids in the DOCA hypertensive rats.
Collapse
Affiliation(s)
- J R Dash
- a Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Bareilly , Uttar Pradesh , India
| | - S K Mishra
- a Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Bareilly , Uttar Pradesh , India
| | - S Parida
- a Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Bareilly , Uttar Pradesh , India
| | - T U Singh
- a Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Bareilly , Uttar Pradesh , India
| | - S Choudhury
- a Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Bareilly , Uttar Pradesh , India
| | - K Muniyappa
- b Department of Biochemistry, Indian 5 Institute of Science , Bangalore , India
| |
Collapse
|
2
|
Fujii N, Halili L, Nishiyasu T, Kenny GP. Voltage-gated potassium channels and NOS contribute to a sustained cutaneous vasodilation elicited by local heating in an interactive manner in young adults. Microvasc Res 2017; 117:22-27. [PMID: 29247720 DOI: 10.1016/j.mvr.2017.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022]
Abstract
Local skin heating to 42°C causes rapid increases in cutaneous perfusion (initial peak), followed by a brief nadir and subsequent sustained elevation (plateau). Several studies have demonstrated that nitric oxide synthase (NOS) largely contributes to the plateau response during local heating. In this study, we tested the hypothesis that voltage-gated potassium (Kv) channels contribute to the plateau of the cutaneous vasodilation during local heating through NOS-dependent mechanisms. Eleven young males (25±4years) participated in this study wherein cutaneous vascular conductance (CVC) was measured at four intradermal microdialysis sites that were continuously perfused with either 1) lactated Ringer (Control), 2) 10mM 4-aminopyridine (Kv channel blocker), 3) 10mM Nω-Nitro-L-arginine (NOS inhibitor), or 4) a combination of 4-aminopyridine and Nω-Nitro-L-arginine. In comparison to the Control site, the inhibition of Kv channels alone attenuated the increase in CVC observed at the initial peak, nadir, and plateau phases measured during local heating; in contrast, the inhibition of NOS alone attenuated the increase in CVC at the nadir and plateau phases only (e.g., plateau response: Control site: 59±5%max, Kv channel blockade site: 49±8%max, NOS inhibition site: 35±11%max, combined inhibition site: 40±12%max). Further, no effect of Kv channel blockade on CVC was measured at any phase of the local heating response when the modulating influence of NOS was simultaneously removed. We show that Kv channels and NOS contribute to the local heating mediated sustained increase (i.e., plateau) in cutaneous vasodilation in an interactive manner. (243/250 words).
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Lyra Halili
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
3
|
Louie JC, Fujii N, Meade RD, Kenny GP. The roles of the Na+/K+-ATPase, NKCC, and K+ channels in regulating local sweating and cutaneous blood flow during exercise in humans in vivo. Physiol Rep 2017; 4:4/22/e13024. [PMID: 27881572 PMCID: PMC5358008 DOI: 10.14814/phy2.13024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/05/2016] [Indexed: 11/24/2022] Open
Abstract
Na+/K+‐ATPase has been shown to regulate the sweating and cutaneous vascular responses during exercise; however, similar studies have not been conducted to assess the roles of the Na‐K‐2Cl co‐transporter (NKCC) and K+ channels. Additionally, it remains to be determined if these mechanisms underpinning the heat loss responses differ with exercise intensity. Eleven young (24 ± 4 years) males performed three 30‐min semirecumbent cycling bouts at low (30% VO2peak), moderate (50% VO2peak), and high (70% VO2peak) intensity, respectively, each separated by 20‐min recovery periods. Using intradermal microdialysis, four forearm skin sites were continuously perfused with either: (1) lactated Ringer solution (Control); (2) 6 mmol·L−1 ouabain (Na+/K+‐ATPase inhibitor); (3) 10 mmol·L−1 bumetanide (NKCC inhibitor); or (4) 50 mmol·L−1 BaCl2 (nonspecific K+ channel inhibitor); sites at which we assessed local sweat rate (LSR) and cutaneous vascular conductance (CVC). Inhibition of Na+/K+‐ATPase attenuated LSR compared to Control during the moderate and high‐intensity exercise bouts (both P ˂ 0.01), whereas attenuations with NKCC and K+ channel inhibition were only apparent during the high‐intensity exercise bout (both P ≤ 0.05). Na+/K+‐ATPase inhibition augmented CVC during all exercise intensities (all P ˂ 0.01), whereas CVC was greater with NKCC inhibition during the low‐intensity exercise only (P ˂ 0.01) and attenuated with K+ channel inhibition during the moderate and high‐intensity exercise conditions (both P ˂ 0.01). We show that Na+/K+‐ATPase, NKCC and K+ channels all contribute to the regulation of sweating and cutaneous blood flow but their influence is dependent on the intensity of dynamic exercise.
Collapse
Affiliation(s)
- Jeffrey C Louie
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Louie JC, Fujii N, Meade RD, McNeely BD, Kenny GP. The roles of K Ca, K ATP, and K V channels in regulating cutaneous vasodilation and sweating during exercise in the heat. Am J Physiol Regul Integr Comp Physiol 2017; 312:R821-R827. [PMID: 28254750 DOI: 10.1152/ajpregu.00507.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/13/2017] [Accepted: 02/28/2017] [Indexed: 01/11/2023]
Abstract
We recently showed the varying roles of Ca2+-activated (KCa), ATP-sensitive (KATP), and voltage-gated (KV) K+ channels in regulating cholinergic cutaneous vasodilation and sweating in normothermic conditions. However, it is unclear whether the respective contributions of these K+ channels remain intact during dynamic exercise in the heat. Eleven young (23 ± 4 yr) men completed a 30-min exercise bout at a fixed rate of metabolic heat production (400 W) followed by a 40-min recovery period in the heat (35°C, 20% relative humidity). Cutaneous vascular conductance (CVC) and local sweat rate were assessed at four forearm skin sites perfused via intradermal microdialysis with: 1) lactated Ringer solution (control); 2) 50 mM tetraethylammonium (nonspecific KCa channel blocker); 3) 5 mM glybenclamide (selective KATP channel blocker); or 4) 10 mM 4-aminopyridine (nonspecific KV channel blocker). Responses were compared at baseline and at 10-min intervals during and following exercise. KCa channel inhibition resulted in greater CVC versus control at end exercise (P = 0.04) and 10 and 20 min into recovery (both P < 0.01). KATP channel blockade attenuated CVC compared with control during baseline (P = 0.04), exercise (all P ≤ 0.04), and 10 min into recovery (P = 0.02). No differences in CVC were observed with KV channel inhibition during baseline (P = 0.15), exercise (all P ≥ 0.06), or recovery (all P ≥ 0.14). With the exception of KV channel inhibition augmenting sweating during baseline (P = 0.04), responses were similar to control with all K+ channel blockers during each time period (all P ≥ 0.07). We demonstrated that KCa and KATP channels contribute to the regulation of cutaneous vasodilation during rest and/or exercise and recovery in the heat.
Collapse
Affiliation(s)
- Jeffrey C Louie
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and.,Institute of Health and Sports Sciences, University of Tsukuba, Tsukuba, Japan
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Brendan D McNeely
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and
| |
Collapse
|
6
|
Fujii N, Louie JC, McNeely BD, Zhang SY, Tran MA, Kenny GP. K+ channel mechanisms underlying cholinergic cutaneous vasodilation and sweating in young humans: roles of KCa, KATP, and KV channels? Am J Physiol Regul Integr Comp Physiol 2016; 311:R600-6. [PMID: 27440718 DOI: 10.1152/ajpregu.00249.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/14/2016] [Indexed: 11/22/2022]
Abstract
Acetylcholine released from cholinergic nerves is involved in heat loss responses of cutaneous vasodilation and sweating. K(+) channels are thought to play a role in regulating cholinergic cutaneous vasodilation and sweating, though which K(+) channels are involved in their regulation remains unclear. We evaluated the hypotheses that 1) Ca(2+)-activated K(+) (KCa), ATP-sensitive K(+) (KATP), and voltage-gated K(+) (KV) channels all contribute to cholinergic cutaneous vasodilation; and 2) KV channels, but not KCa and KATP channels, contribute to cholinergic sweating. In 13 young adults (24 ± 5 years), cutaneous vascular conductance (CVC) and sweat rate were evaluated at intradermal microdialysis sites that were continuously perfused with: 1) lactated Ringer (Control), 2) 50 mM tetraethylammonium (KCa channel blocker), 3) 5 mM glybenclamide (KATP channel blocker), and 4) 10 mM 4-aminopyridine (KV channel blocker). At all sites, cholinergic cutaneous vasodilation and sweating were induced by coadministration of methacholine (0.0125, 0.25, 5, 100, and 2,000 mM, each for 25 min). The methacholine-induced increase in CVC was lower with the KCa channel blocker relative to Control at 0.0125 (1 ± 1 vs. 9 ± 6%max) and 5 (2 ± 5 vs. 17 ± 14%max) mM methacholine, whereas it was lower in the presence of KATP (69 ± 7%max) and KV (57 ± 14%max) channel blocker compared with Control (79 ± 6%max) at 100 mM methacholine. Furthermore, methacholine-induced sweating was lower at the KV channel blocker site (0.42 ± 0.17 mg·min(-1)·cm(-2)) compared with Control (0.58 ± 0.15 mg·min(-1)·cm(-2)) at 2,000 mM methacholine. In conclusion, we show that KCa, KATP, and KV channels play a role in cholinergic cutaneous vasodilation, whereas only KV channels contribute to cholinergic sweating in normothermic resting humans.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Jeffrey C Louie
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Brendan D McNeely
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Sarah Yan Zhang
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - My-An Tran
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
7
|
The influence of autonomic dysfunction associated with aging and type 2 diabetes on daily life activities. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:657103. [PMID: 22566994 PMCID: PMC3332074 DOI: 10.1155/2012/657103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 01/28/2012] [Accepted: 01/30/2012] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes (T2D) and ageing have well documented effects on every organ in the body. In T2D the autonomic nervous system is impaired due to damage to neurons, sensory receptors, synapses and the blood vessels. This paper will concentrate on how autonomic impairment alters normal daily activities. Impairments include the response of the blood vessels to heat, sweating, heat transfer, whole body heating, orthostatic intolerance, balance, and gait. Because diabetes is more prevalent in older individuals, the effects of ageing will be examined. Beginning with endothelial dysfunction, blood vessels have impairment in their ability to vasodilate. With this and synaptic damage, the autonomic nervous system cannot compensate for effectors such as pressure on and heating of the skin. This and reduced ability of the heart to respond to stress, reduces autonomic orthostatic compensation. Diminished sweating causes the skin and core temperature to be high during whole body heating. Impaired orthostatic tolerance, impaired vision and vestibular sensing, causes poor balance and impaired gait. Overall, people with T2D must be made aware and counseled relative to the potential consequence of these impairments.
Collapse
|
8
|
Petrofsky J, Berk L, Alshammari F, Lee H, Hamdan A, Yim JE, Patel D, Kodawala Y, Shetye G, Chen WT, Moniz H, Pathak K, Somanaboina K, Desai R, Dave B, Malthane S, Alshaharani M, Neupane S, Shenoy S, Nevgi B, Cho S, Al-Nakhli H. The effect of moist air on skin blood flow and temperature in subjects with and without diabetes. Diabetes Technol Ther 2012; 14:105-16. [PMID: 22017463 DOI: 10.1089/dia.2011.0128] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Endothelial function is known to be impaired in response to heat in people with diabetes, but little has been done to see how air humidity alters the skin blood flow response to heat. METHODS Seventeen male and female subjects were divided in two groups, one with type 2 diabetes and the other the control subjects without diabetes, age-matched to the diabetes group. All subjects participated in a series of experiments to determine the effect of the warming of the skin by air on skin temperature and skin blood flow. On different days, skin temperature was warmed with air that was 38°C, 40°C, or 42°C for 20 min. Also, on different days, at each temperature, the air humidity was adjusted to 0%, 25%, 50%, 75%, or 100% humidity. Skin blood flow and temperature were measured throughout the exposure period. This allowed the interactions between air humidity and temperature to be assessed. RESULTS For the control subjects, the moisture in the air had no different effect on skin blood flow at air temperatures of 38°C and 40°C (analysis of variance, P>0.05), although skin blood flow progressively increased at each air temperature that was applied. But for the warmest air temperature, 42°C, although the four lower humidities had the same effect on skin blood flow, air at 100% humidity caused the largest increase in skin blood flow. In contrast, in the subjects with diabetes, blood flow was always significantly less at any air temperature applied to the skin than was observed in the control subjects (P<0.05), and skin blood flow was significantly higher for the two higher humidities for the two higher air temperatures. Skin temperature paralleled these findings. CONCLUSION These data show that individuals with diabetes do not tolerate moist, warm air above 50% humidity as well as controls without diabetes.
Collapse
Affiliation(s)
- Jerrold Petrofsky
- Department of Physical Therapy, School of Allied Health Professions, Loma Linda University, Loma Linda, California 92350, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Petrofsky JS. The effect of type-2-diabetes-related vascular endothelial dysfunction on skin physiology and activities of daily living. J Diabetes Sci Technol 2011; 5:657-67. [PMID: 21722580 PMCID: PMC3192631 DOI: 10.1177/193229681100500319] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A common factor contributing to organ damage in type 2 diabetes mellitus (T2DM) is impaired tissue blood flow caused by damage to vascular endothelial cells (VECs). Damage can occur even before the clinical diagnosis of diabetes. It can be caused by both a high average blood glucose concentration and/or large daily spikes in blood glucose. While much of the present literature focuses on the damage to VECs and organs from these large glucose excursions, this review will focus on the consequence of this damage, that is, how endothelial cell damage in diabetes affects normal daily activities (e.g., exercise, reaction to typical stimuli) and various treatment modalities (e.g.. contrast baths and electrical stimulation therapy). It is important to understand the effects of VEC damage such as poor skin blood flow, compromised thermoregulation, and altered response to skin pressure in designing diabetes technologies as simple as heating pads and as complex as continuous glucose monitors. At the simplest level, people with diabetes have poor circulation to the skin and other organs. In the skin, even the blood flow response to locally applied pressure, such as during standing, is different than for people who do not have T2DM. Simple weight bearing on the foot can occlude the skin circulation. This makes the skin more susceptible to damage. In addition, endothelial damage has far-reaching effects on the whole body during normal activities of daily living, including an impaired response to local heat, such as hot packs and contrast baths, and higher body temperatures during whole body heating due to impaired blood flow and a reduced ability to sweat. Finally, because of multiple organ damage, people with T2DM have poor balance and gait and impaired exercise performance.
Collapse
Affiliation(s)
- Jerrold Scott Petrofsky
- Department of Physical Therapy, School of Allied Health Professions, Loma Linda University, Loma Linda, California, USA.
| |
Collapse
|