1
|
Nosalova N, Majirska M, Keselakova A, Martinkova M, Fabianova D, Mirossay A, Pilatova MB, Kello M. Pyrrolidine SS13 induces oxidative stress and autophagy-mediated cell death in colorectal cancer cells. Eur J Pharm Sci 2025; 205:106982. [PMID: 39644983 DOI: 10.1016/j.ejps.2024.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION Pyrrolidines, nitrogenous organic compounds, are among the most intensively studied agents because of their antibacterial, antiviral, neurological, and promising antitumor effects. Moreover, many medicinal drugs contain pyrrolidine moiety such as sunitinib (anticancer drug), telaprevir and ombitasvir (antiviral drugs) or ramipril (antihypertensive drug). RATIONALE OF THE STUDY Based on the pro-apoptotic effect of pyrrolidine SS13, this study focuses on the pro-oxidative properties of the tested pyrrolidine SS13 on colorectal cancer cells to deepen the understanding of its mechanisms of action. RESEARCH HYPOTHESIS We hypothesize that SS13 induces oxidative stress and autophagy activation in HCT116 and Caco-2 cell lines, thus contributing to antiproliferative effects. METHODS Flow cytometry, western blot, fluorescence microscopy and qRT-PCR were used to evaluate the effect of pyrrolidine SS13. CONCLUSION AND FUTURE DIRECTIONS Pyrrolidine SS13 induced oxidative stress through the accumulation of reactive oxygen and nitrogen species in both cell lines and the modulation of both superoxide dismutase isoenzymes (SOD1, SOD2). Oxidative stress was also associated with the activation of DNA damage response system and modulation of stress/survival pathways. We demonstrated for the first time that pyrrolidine SS13 is involved in the induction of autophagy accompanied by increased levels of autophagic markers (p-AMPK, p-ULK, LC3I/II and ATG7) and a significant decrease in p62 protein levels in both cell lines. Finally, chloroquine, an inhibitor of autophagy, enhanced cell survival and suppressed the cytotoxic effect of SS13 in HCT116 and Caco-2 cells, indicating that SS13 contributes to autophagy-mediated cell death. Taken together, our results suggest that oxidative stress and autophagy participate in the antiproliferative effect of pyrrolidine SS13 on colorectal cancer cells. Further research using primary cell cultures obtained from different animal tissues as well as performing in vivo experiments is needed to understand these processes in detail and to investigate the potential therapeutic application of new pyrrolidine derivatives.
Collapse
Affiliation(s)
- Natalia Nosalova
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| | - Monika Majirska
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| | - Alexandra Keselakova
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| | - Miroslava Martinkova
- Institute of Chemical Sciences, Department of Organic Chemistry, Faculty of Science, P.J. Šafárik University, Košice, Slovakia.
| | - Dominika Fabianova
- Institute of Chemical Sciences, Department of Organic Chemistry, Faculty of Science, P.J. Šafárik University, Košice, Slovakia.
| | - Andrej Mirossay
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| | - Martina Bago Pilatova
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| |
Collapse
|
2
|
Rodriguez R, Müller S, Colombeau L, Solier S, Sindikubwabo F, Cañeque T. Metal Ion Signaling in Biomedicine. Chem Rev 2025; 125:660-744. [PMID: 39746035 PMCID: PMC11758815 DOI: 10.1021/acs.chemrev.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/10/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Complex multicellular organisms are composed of distinct tissues involving specialized cells that can perform specific functions, making such life forms possible. Species are defined by their genomes, and differences between individuals within a given species directly result from variations in their genetic codes. While genetic alterations can give rise to disease-causing acquisitions of distinct cell identities, it is now well-established that biochemical imbalances within a cell can also lead to cellular dysfunction and diseases. Specifically, nongenetic chemical events orchestrate cell metabolism and transcriptional programs that govern functional cell identity. Thus, imbalances in cell signaling, which broadly defines the conversion of extracellular signals into intracellular biochemical changes, can also contribute to the acquisition of diseased cell states. Metal ions exhibit unique chemical properties that can be exploited by the cell. For instance, metal ions maintain the ionic balance within the cell, coordinate amino acid residues or nucleobases altering folding and function of biomolecules, or directly catalyze specific chemical reactions. Thus, metals are essential cell signaling effectors in normal physiology and disease. Deciphering metal ion signaling is a challenging endeavor that can illuminate pathways to be targeted for therapeutic intervention. Here, we review key cellular processes where metal ions play essential roles and describe how targeting metal ion signaling pathways has been instrumental to dissecting the biochemistry of the cell and how this has led to the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Raphaël Rodriguez
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sebastian Müller
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Ludovic Colombeau
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Stéphanie Solier
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Université
Paris-Saclay, UVSQ, 78180 Montigny-le-Bretonneux, France
| | | | - Tatiana Cañeque
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
3
|
Yang Y, Li M, Chen G, Liu S, Guo H, Dong X, Wang K, Geng H, Jiang J, Li X. Dissecting copper biology and cancer treatment: ‘Activating Cuproptosis or suppressing Cuproplasia’. Coord Chem Rev 2023; 495:215395. [DOI: 10.1016/j.ccr.2023.215395] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
|
4
|
Nosalova N, Keselakova A, Kello M, Martinkova M, Fabianova D, Pilatova MB. Involvement of Both Extrinsic and Intrinsic Apoptotic Pathways in Tridecylpyrrolidine-Diol Derivative-Induced Apoptosis In Vitro. Int J Mol Sci 2023; 24:11696. [PMID: 37511455 PMCID: PMC10380684 DOI: 10.3390/ijms241411696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Despite the decreasing trend in mortality from colorectal cancer, this disease still remains the third most common cause of death from cancer. In the present study, we investigated the antiproliferative and pro-apoptotic effects of (2S,3S,4R)-2-tridecylpyrrolidine-3,4-diol hydrochloride on colon cancer cells (Caco-2 and HCT116). The antiproliferative effect and IC50 values were determined by the MTT and BrdU assays. Flow cytometry, qRT-PCR and Western blot were used to study the cellular and molecular mechanisms involved in the induction of apoptotic pathways. Colon cancer cell migration was monitored by the scratch assay. Concentration-dependent cytotoxic and antiproliferative effects on both cell lines, with IC50 values of 3.2 ± 0.1 μmol/L (MTT) vs. 6.46 ± 2.84 μmol/L (BrdU) for HCT116 and 2.17 ± 1.5 μmol/L (MTT) vs. 1.59 ± 0.72 μmol/L (BrdU), for Caco-2 were observed. The results showed that tridecylpyrrolidine-induced apoptosis was associated with the externalization of phosphatidylserine, reduced mitochondrial membrane potential (MMP) accompanied by the activation of casp-3/7, the cleavage of PARP and casp-8, the overexpression of TNF-α and FasL and the dysregulation of Bcl-2 family proteins. Inhibition of the migration of treated cells across the wound area was detected. Taken together, our data show that the anticancer effects of tridecylpyrrolidine analogues in colon cancer cells are mediated by antiproliferative activity, the induction of both extrinsic and intrinsic apoptotic pathways and the inhibition of cell migration.
Collapse
Affiliation(s)
- Natalia Nosalova
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, 040 01 Košice, Slovakia
| | - Alexandra Keselakova
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, 040 01 Košice, Slovakia
| | - Miroslava Martinkova
- Department of Organic Chemistry, Faculty of Science, Institute of Chemical Sciences, P.J. Šafárik University, 040 01 Košice, Slovakia
| | - Dominika Fabianova
- Department of Organic Chemistry, Faculty of Science, Institute of Chemical Sciences, P.J. Šafárik University, 040 01 Košice, Slovakia
| | - Martina Bago Pilatova
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
5
|
Aishajiang R, Liu Z, Wang T, Zhou L, Yu D. Recent Advances in Cancer Therapeutic Copper-Based Nanomaterials for Antitumor Therapy. Molecules 2023; 28:molecules28052303. [PMID: 36903549 PMCID: PMC10005215 DOI: 10.3390/molecules28052303] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Copper serves as a vital microelement which is widely present in the biosystem, functioning as multi-enzyme active site, including oxidative stress, lipid oxidation and energy metabolism, where oxidation and reduction characteristics are both beneficial and lethal to cells. Since tumor tissue has a higher demand for copper and is more susceptible to copper homeostasis, copper may modulate cancer cell survival through reactive oxygen species (ROS) excessive accumulation, proteasome inhibition and anti-angiogenesis. Therefore, intracellular copper has attracted great interest that multifunctional copper-based nanomaterials can be exploited in cancer diagnostics and antitumor therapy. Therefore, this review explains the potential mechanisms of copper-associated cell death and investigates the effectiveness of multifunctional copper-based biomaterials in the field of antitumor therapy.
Collapse
Affiliation(s)
- Reyida Aishajiang
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China
| | - Zhongshan Liu
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China
| | - Tiejun Wang
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China
- Correspondence: (T.W.); (L.Z.); (D.Y.)
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Correspondence: (T.W.); (L.Z.); (D.Y.)
| | - Duo Yu
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China
- Correspondence: (T.W.); (L.Z.); (D.Y.)
| |
Collapse
|
6
|
Paca AM, Singh M, Ajibade PA. Synthesis, characterization and in vitro anticancer studies of Ru(III) dithiocarbamate complexes. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2145472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Athandwe M. Paca
- School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, South Africa
| | - Moganavelli Singh
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Peter A. Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, South Africa
| |
Collapse
|
7
|
Kelley KC, Grossman KF, Brittain-Blankenship M, Thorne KM, Akerley WL, Terrazas MC, Kosak KM, Boucher KM, Buys SS, McGregor KA, Werner TL, Agarwal N, Weis JR, Sharma S, Ward JH, Kennedy TP, Sborov DW, Shami PJ. A Phase 1 dose-escalation study of disulfiram and copper gluconate in patients with advanced solid tumors involving the liver using S-glutathionylation as a biomarker. BMC Cancer 2021; 21:510. [PMID: 33957901 PMCID: PMC8103752 DOI: 10.1186/s12885-021-08242-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/15/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Disulfiram and metals inactivate key oncoproteins resulting in anti-neoplastic activity. The goal of this study was to determine the maximum tolerated dose of copper when administered with disulfiram in patients with advanced solid tumors and liver involvement. METHODS Disulfiram 250 mg was administered daily in 28-day cycles. Four doses of copper gluconate were tested (2, 4, 6, and 8 mg of elemental copper) in a standard 3 + 3 dose escalation design. Patients were evaluated for dose limiting toxicities and response. Protein S-glutathionylation was evaluated as a pharmacodynamic marker. RESULTS Twenty-one patients were enrolled and 16 patients were evaluable for dose limiting toxicities. Among the 21 patients, there was a median of 4 lines of prior chemotherapy. Five Grade 3 toxicities were observed (anorexia, elevated aspartate aminotransferase or AST, elevated alkaline phosphatase, fever, and fatigue). Response data was available for 15 patients. Four patients had stable disease with the longest duration of disease control being 116 days. The median duration of treatment for evaluable patients was 55 days (range 28-124). Reasons for discontinuation included functional decline, disease progression, and disease-associated death. Increased S-glutathionylation of serum proteins was observed with treatment. CONCLUSION Disulfiram 250 mg daily with copper gluconate (8 mg of elemental copper) was well-tolerated in patients with solid tumors involving the liver and was not associated with dose limiting toxicities. While temporary disease stabilization was noted in some patients, no objective responses were observed. Treatment was associated with an increase in S-glutathionylation suggesting that this combination could exert a suppressive effect on cellular growth and protein function. TRIAL REGISTRATION NCT00742911 , first posted 28/08/2008.
Collapse
Affiliation(s)
- Kristen C Kelley
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Kenneth F Grossman
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | | | - Kelli M Thorne
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Wallace L Akerley
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Moises C Terrazas
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah, USA
| | - Ken M Kosak
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah, USA
| | - Kenneth M Boucher
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Saundra S Buys
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Kimberly A McGregor
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Theresa L Werner
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Neeraj Agarwal
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - John R Weis
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Sunil Sharma
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - John H Ward
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Thomas P Kennedy
- Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University, New Orleans, USA
| | - Douglas W Sborov
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah, USA
| | - Paul J Shami
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah, USA.
| |
Collapse
|
8
|
Chen X, Chen H, Zhang Z, Fu Y, Han X, Zhang Y, Xu J, Ding H, Cui H, Dong T, Shang H, Jiang Y. Elevated CD54 Expression Renders CD4+ T Cells Susceptible to Natural Killer Cell-Mediated Killing. J Infect Dis 2020; 220:1892-1903. [PMID: 31433832 DOI: 10.1093/infdis/jiz413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/14/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Natural killer (NK) cells are an important type of effector cell in the innate immune response, and also have a role in regulation of the adaptive immune response. Several studies have indicated that NK cells may influence CD4+ T cells during HIV infection. METHODS In total, 51 HIV-infected individuals and 15 healthy controls participated in this study. We performed the flow cytometry assays and real-time PCR for the phenotypic analysis and the functional assays of NK cell-mediated deletion of CD4+ T cells, phosphorylation of nuclear factor-κB (NF-κB/p65) and the intervention of metformin. RESULTS Here we detected high CD54 expression on CD4+ T cells in HIV-infected individuals, and demonstrate that upregulated CD54 is associated with disease progression in individuals infected with HIV. We also show that CD54 expression leads to the deletion of CD4+ T cells by NK cells in vitro, and that this is modulated by NF-κB/p65 signaling. Further, we demonstrate that metformin can suppress CD54 expression on CD4+ T cells by inhibiting NF-κB/p65 phosphorylation. CONCLUSIONS Our data suggest that further studies to evaluate the potential role of metformin as adjunctive therapy to reconstitute immune function in HIV-infected individuals are warranted.
Collapse
Affiliation(s)
- Xi Chen
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Huihui Chen
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine.,Clinical Laboratory, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Zining Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yajing Fu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yue Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Junjie Xu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Haibo Ding
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hualu Cui
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Tao Dong
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Oxford University, United Kingdom
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yongjun Jiang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
9
|
Equilibrium studies of diethyltin(IV) dichloride and divinyltin(IV) dichloride with 1-(2-aminoethyl)-pyrrolidine. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Viola-Rhenals M, Patel KR, Jaimes-Santamaria L, Wu G, Liu J, Dou QP. Recent Advances in Antabuse (Disulfiram): The Importance of its Metal-binding Ability to its Anticancer Activity. Curr Med Chem 2018; 25:506-524. [PMID: 29065820 PMCID: PMC6873226 DOI: 10.2174/0929867324666171023161121] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/05/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Considerable evidence demonstrates the importance of dithiocarbamates especially disulfiram as anticancer drugs. However there are no systematic reviews outlining how their metal-binding ability is related to their anticancer activity. This review aims to summarize chemical features and metal-binding activity of disulfiram and its metabolite DEDTC, and discuss different mechanisms of action of disulfiram and their contributions to the drug's anticancer activity. METHODS We undertook a disulfiram-related search on bibliographic databases of peerreviewed research literature, including many historic papers and in vitro, in vivo, preclinical and clinical studies. The selected papers were carefully reviewed and summarized. RESULTS More than five hundreds of papers were obtained in the initial search and one hundred eighteen (118) papers were included in the review, most of which deal with chemical and biological aspects of Disulfiram and the relationship of its chemical and biological properties. Eighty one (81) papers outline biological aspects of dithiocarbamates, and fifty seven (57) papers report biological activity of Disulfiram as an inhibitor of proteasomes or inhibitor of aldehyde dehydrogenase enzymes, interaction with other anticancer drugs, or mechanism of action related to reactive oxygen species. Other papers reviewed focus on chemical aspects of dithiocarbamates. CONCLUSION This review confirms the importance of chemical features of compounds such as Disulfiram to their biological activities, and supports repurposing DSF as a potential anticancer agent.
Collapse
Affiliation(s)
- Maricela Viola-Rhenals
- Biochemistry and Cell Biology of Cancer Group, Exacts and Natural Science Faculty, University of Cartagena, Cartagena, Colombia
| | - Kush R. Patel
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, United States
| | - Laura Jaimes-Santamaria
- Biochemistry and Cell Biology of Cancer Group, Exacts and Natural Science Faculty, University of Cartagena, Cartagena, Colombia
| | - Guojun Wu
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, United States
| | - Jinbao Liu
- Guangzhou Medical University, Protein Modification and Degradation Lab, Dongfeng Xi road 195#, Guangzhou, Guangdong 510182, China
| | - Q. Ping Dou
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, United States
- Guangzhou Medical University, Protein Modification and Degradation Lab, Dongfeng Xi road 195#, Guangzhou, Guangdong 510182, China
| |
Collapse
|
11
|
Tahata S, Yuan B, Kikuchi H, Takagi N, Hirano T, Toyoda H. Cytotoxic effects of pyrrolidine dithiocarbamate in small-cell lung cancer cells, alone and in combination with cisplatin. Int J Oncol 2014; 45:1749-59. [PMID: 25070243 DOI: 10.3892/ijo.2014.2564] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/01/2014] [Indexed: 11/06/2022] Open
Abstract
The cytocidal effect of pyrrolidine dithiocarbamate (PDTC) was investigated by focusing on cell viability, cell cycle arrest and apoptosis induction in small-cell lung cancer (SCLC) cell lines (NCI-H196 and NCI-H889). PDTC exhibited a much stronger dose-dependent cytotoxic activity against NCI-H196 compared to NCI-H889, while no such activity was observed in normal human embryonal lung fibroblast MRC-5 cells. Cell cycle arrest in S phase paralleled with suppression of c-myc expression without accompanying DNA fragmentation was observed in NCI-H196 cells. A transient increase in the intracellular ROS accompanied with an alteration of expression of oxidative stress-related genes was also confirmed in NCI-H196 cells. Furthermore, the addition of N-acetyl-l-cysteine (NAC), a free radical scavenger, not only abolished PDTC-trigger alterations of expression of these oxidative-related genes, but also almost completely abrogated PDTC-induced reduction in cell viability and morphological changes associated with cell damage. These results thus suggest that PDTC-induced cytotoxicity is attributed to its pro-oxidant activity. PDTC-induced cytotoxicity was further enhanced by CuCl2, however, abolished by bathocuproine disulfonate (BCPS), a non-permeable copper-specific chelator, supporting the plausibility that accumulation of intracellular Cu plays an important role in the cytotoxicity. Importantly, we demonstrated for the first time that PDTC downregulated the expression of ATP7A, known to be responsible for Cu efflux, but did not affect the expression of CTR1, known as a copper uptake transporter. Intriguingly, combination of much lower dose of cisplatin (5 µM) and non-toxic dose of PDTC (0.1 µM) synergistically induced a significant cytotoxicity in NCI-H196 cells. Given that ATP7A plays a critical role in the resistance of platinum-drug (such as cisplatin) representing a first-line treatment for SCLC, PDTC could be a promising candidate of adjunct therapeutic reagent for the patients requiring treatment with platinum-based regimens.
Collapse
Affiliation(s)
- Shinichi Tahata
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Bo Yuan
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hidetomo Kikuchi
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Toshihiko Hirano
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hiroo Toyoda
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
12
|
Abstract
Copper is an essential element in many biological processes. The critical functions associated with copper have resulted from evolutionary harnessing of its potent redox activity. This same property also places copper in a unique role as a key modulator of cell signal transduction pathways. These pathways are the complex sequence of molecular interactions that drive all cellular mechanisms and are often associated with the interplay of key enzymes including kinases and phosphatases but also including intracellular changes in pools of smaller molecules. A growing body of evidence is beginning to delineate the how, when and where of copper-mediated control over cell signal transduction. This has been driven by research demonstrating critical changes to copper homeostasis in many disorders including cancer and neurodegeneration and therapeutic potential through control of disease-associated cell signalling changes by modulation of copper-protein interactions. This timely review brings together for the first time the diverse actions of copper as a key regulator of cell signalling pathways and discusses the potential strategies for controlling disease-associated signalling processes using copper modulators. It is hoped that this review will provide a valuable insight into copper as a key signal regulator and stimulate further research to promote our understanding of copper in disease and therapy.
Collapse
|
13
|
Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C. Advances in Copper Complexes as Anticancer Agents. Chem Rev 2013; 114:815-62. [DOI: 10.1021/cr400135x] [Citation(s) in RCA: 1128] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Carlo Santini
- Scuola
di Scienze e Tecnologie−Sez. Chimica, Università di Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | - Maura Pellei
- Scuola
di Scienze e Tecnologie−Sez. Chimica, Università di Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | - Valentina Gandin
- Dipartimento
di Scienze del Farmaco, Università di Padova, via Marzolo
5, 35131 Padova, Italy
| | | | | | - Cristina Marzano
- Dipartimento
di Scienze del Farmaco, Università di Padova, via Marzolo
5, 35131 Padova, Italy
| |
Collapse
|
14
|
D-penicillamine and other low molecular weight thiols: review of anticancer effects and related mechanisms. Cancer Lett 2013; 337:8-21. [PMID: 23727371 DOI: 10.1016/j.canlet.2013.05.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 01/13/2023]
Abstract
Low molecular weight thiols (LMWTs) like N-acetyl cysteine, D-penicillamine, captopril, Disulfiram and Amifostine, etc. have been used as chemo-preventive agents. Recent studies have reported cell growth inhibition and cytotoxicity in several different types of cancer cells following treatment with several LMWTs. Cytotoxic and cytostatic effects of LMWTs may involve interaction of the thiol group with cellular lipids, proteins, intermediates or enzymes. Some of the mechanisms that have been proposed include a p53 mediated apoptosis, thiyl radical induced DNA damage, membrane damage through lipid peroxidation, anti-angiogenic effects induced by inhibition of matrix metalloproteinase enzymes and angiostatin generation. LMWTs are strong chelators of transition metals like copper, nickel, zinc, iron and cobalt and may cause metal co-factor depletion resulting in cytotoxicity. Oxidation of thiol group can also generate cytotoxic reactive oxygen species (ROS).
Collapse
|
15
|
Matias AC, Manieri TM, Cipriano SS, Carioni VM, Nomura CS, Machado CM, Cerchiaro G. Diethyldithiocarbamate induces apoptosis in neuroblastoma cells by raising the intracellular copper level, triggering cytochrome c release and caspase activation. Toxicol In Vitro 2013; 27:349-57. [DOI: 10.1016/j.tiv.2012.08.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 08/09/2012] [Accepted: 08/09/2012] [Indexed: 01/09/2023]
|
16
|
Huang CF, Liu SH, Lin-Shiau SY. Pyrrolidine dithiocarbamate augments Hg(2+)-mediated induction of macrophage cell death via oxidative stress-induced apoptosis and necrosis signaling pathways. Toxicol Lett 2012; 214:33-45. [PMID: 22909951 DOI: 10.1016/j.toxlet.2012.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 11/29/2022]
Abstract
Exposure to mercury can lead to several injuries in mammals, including immune system dysfunction, and pyrrolidine dithiocarbamate (PDTC), as a metal chelator and antioxidant, has been indicated to increase the cytotoxic effects of toxic metals. However, the toxicological effects and possible mechanisms of mercury in combination with PDTC are mostly unclear. In this study, we showed that PDTC dramatically increase the cytotoxic effect of HgCl(2) on cultured murine macrophages (RAW 264.7 cells). PDTC augmented HgCl(2)-induced cytotoxic effects by facilitating the entry of mercury into the cells. The Hg(2+)/PDTC complex significantly and rapidly increased the formation of reactive oxygen species (ROS) and decreased intracellular glutathione (GSH) levels in these cells. Flow cytometry analysis showed that the numbers of sub-G1 hypodiploid cells and annexin V-FITC binding cells increased after Hg(2+)/PDTC complex exposure, and several features of mitochondria-dependent apoptosis were also induced, including mitochondrial membrane depolarization, cytosolic cytochrome c release, poly(ADP-ribose) polymerase (PARP) and caspase 3/7 activation, and DNA fragmentation. Moreover, both apoptotic and necrotic cells were detected using acridine orange/ethidium bromide dual staining. Meanwhile, depleted intracellular ATP levels and increased lactate dehydrogenase (LDH) release were observed, suggesting the induction of necrotic cell death processes. These Hg(2+)/PDTC complex-induced cytotoxicity-related signals could be reversed by pretreatment with the antioxidant N-acetylcysteine. In conclusion, these results suggest that Hg(2+)/PDTC complex-induced oxidative stress causes macrophage cell death via both apoptosis and necrosis. These findings imply for the first time that PDTC dramatically increases the uptake and toxicological effects of Hg(2+) instead of detoxification.
Collapse
Affiliation(s)
- Chun-Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, 404 Taichung, Taiwan; Institute of Toxicology, College of Medicine, National Taiwan University, 100 Taipei, Taiwan
| | | | | |
Collapse
|
17
|
Yang CW, Chang CL, Lee HC, Chi CW, Pan JP, Yang WC. Curcumin induces the apoptosis of human monocytic leukemia THP-1 cells via the activation of JNK/ERK pathways. Altern Ther Health Med 2012; 12:22. [PMID: 22443687 PMCID: PMC3342909 DOI: 10.1186/1472-6882-12-22] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 03/24/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Curcumin is a principal compound of turmeric, commonly used to treat tumors and other diseases. However, its anti-cancer activity in human acute monocytic leukemia THP-1 cells is not clear. This study aimed to study the anti-cancer effect and action of curcumin on THP-1 cells. METHODS THP-1 parental cells and PMA-treated THP-1 cells, were used as in vitro models to evaluate the anti-cancer effect and mechanism of curcumin. Apoptosis and its mechanism were evaluated by WST-1, flow cytometry and Western blotting. MAPK inhibitors were used to further confirm the molecular mechanism of curcumin-induced THP-1 cell apoptosis. RESULTS Curcumin induced cell apoptosis of THP-1 cells as shown by cell viability, cell cycle analysis and caspase activity. Curcumin significantly increased the phosphorylation of ERK, JNK and their downstream molecules (c-Jun and Jun B). Inhibitor of JNK and ERK reduced the pro-apoptotic effect of curcumin on THP-1 cells as evidenced by caspase activity and the activation of ERK/JNK/Jun cascades. On the contrary, the pro-apoptotic effect of curcumin was abolished in the differentiated THP-1 cells mediated by PMA. CONCLUSIONS This study demonstrates that curcumin can induce the THP-1 cell apoptosis through the activation of JNK/ERK/AP1 pathways. Besides, our data suggest its novel use as an anti-tumor agent in acute monocytic leukemia.
Collapse
|
18
|
Involvement of oxidative stress-induced ERK/JNK activation in the Cu2+/pyrrolidine dithiocarbamate complex-triggered mitochondria-regulated apoptosis in pancreatic β-cells. Toxicol Lett 2012; 208:275-85. [DOI: 10.1016/j.toxlet.2011.10.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/29/2011] [Accepted: 10/31/2011] [Indexed: 12/26/2022]
|
19
|
Saha B, Mukherjee A, Samanta S, Paul S, Bhattacharya D, Santra CR, Karmakar P. A novel Cu(ii)–mal–picoline complex induces mitotic catastrophe mediated by deacetylation of histones and α-tubulin leading to apoptosis in human cell lines. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md00285j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Arnal N, Tacconi de Alaniz MJ, Marra CA. Natural polyphenols may ameliorate damage induced by copper overload. Food Chem Toxicol 2011; 50:415-22. [PMID: 22036966 DOI: 10.1016/j.fct.2011.10.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/03/2011] [Accepted: 10/05/2011] [Indexed: 10/16/2022]
Abstract
The effect of the simultaneous exposure to transition metals and natural antioxidants frequently present in food is a question that needs further investigation. We aimed to explore the possible use of the natural polyphenols caffeic acid (CA), resveratrol (RES) and curcumin (CUR) to prevent damages induced by copper-overload on cellular molecules in HepG2 and A-549 human cells in culture. Exposure to 100μM/24h copper (Cu) caused extensive pro-oxidative damage evidenced by increased TBARS, protein carbonyls and nitrite productions in both cell types. Damage was aggravated by simultaneous incubation with 100μM of CA or RES, and it was also reflected in a decrease on cellular viability explored by trypan blue dye exclusion test and LDH leakage. Co-incubation with CUR produced opposite effects demonstrating a protective action which restored the level of biomarkers and cellular viability almost to control values. Thus, while CA and RES might aggravate the oxidative/nitrative damage of Cu, CUR should be considered as a putative protective agent. These results could stimulate further research on the possible use of natural polyphenols as neutralizing substances against the transition metal over-exposure in specific populations such as professional agrochemical sprayers and women using Cu-intrauterine devices.
Collapse
Affiliation(s)
- Nathalie Arnal
- INIBIOLP (Instituto de Investigaciones Bioquímicas de La Plata), CCT La Plata, CONICET-UNLP, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120 (1900) La Plata, Argentina
| | | | | |
Collapse
|
21
|
Kanninen K, White AR, Koistinaho J, Malm T. Targeting Glycogen Synthase Kinase-3β for Therapeutic Benefit against Oxidative Stress in Alzheimer's Disease: Involvement of the Nrf2-ARE Pathway. Int J Alzheimers Dis 2011; 2011:985085. [PMID: 21629716 PMCID: PMC3100734 DOI: 10.4061/2011/985085] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 03/01/2011] [Indexed: 12/30/2022] Open
Abstract
Specific regions of the Alzheimer's disease (AD) brain are burdened with extracellular protein deposits, the accumulation of which is concomitant with a complex cascade of overlapping events. Many of these pathological processes produce oxidative stress. Under normal conditions, oxidative stress leads to the activation of defensive gene expression that promotes cell survival. At the forefront of defence is the nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that regulates a broad spectrum of protective genes. Glycogen synthase kinase-3β (GSK-3β) regulates Nrf2, thus making this kinase a potential target for therapeutic intervention aiming to boost the protective activation of Nrf2. This paper aims to review the neuroprotective role of Nrf2 in AD, with special emphasis on the role of GSK-3β in the regulation of the Nrf2 pathway. We also examine the potential of inducing GSK-3β by small-molecule activators, dithiocarbamates, which potentially exert their beneficial therapeutic effects via the activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Katja Kanninen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | | | | | | |
Collapse
|
22
|
Pyrrolidine dithiocarbamate (PDTC)/Cu complex induces lung epithelial cell apoptosis through mitochondria and ER-stress pathways. Toxicol Lett 2010; 199:333-40. [DOI: 10.1016/j.toxlet.2010.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 01/08/2023]
|
23
|
Wang F, Zhai S, Liu X, Li L, Wu S, Dou QP, Yan B. A novel dithiocarbamate analogue with potentially decreased ALDH inhibition has copper-dependent proteasome-inhibitory and apoptosis-inducing activity in human breast cancer cells. Cancer Lett 2010; 300:87-95. [PMID: 21035945 DOI: 10.1016/j.canlet.2010.09.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 09/17/2010] [Accepted: 09/22/2010] [Indexed: 11/28/2022]
Abstract
Dithiocarbamates are a class of sulfur-based metal-chelating compounds with various applications in medicine. We reported previously that certain members of dithiocarbamates, such as diethyldithiocarbamate, disulfiram (DSF) and pyrrolidine dithiocarbamate (PDTC), were able to bind with tumor cellular copper to inhibit tumor growth through the inhibition of proteasome activity and induction of cancer cell apoptosis. Since the DSF is an irreversible inhibitor of aldehyde dehydrogenase (ALDH), its ALDH-inhibitory activity might potentially affect its usefulness as an anti-cancer drug. For the purpose of selecting potent anti-cancer compounds that are not ALDH inhibitors and mapping out preliminary structure-activity relationship trends for these novel compounds, we synthesized a series of PDTC analogues and chose three novel compounds to study their ALDH-inhibitory activity, proteasome-inhibitory activity as well as the cancer cell apoptosis-inducing activity. The results showed that compared to DSF, compound 9 has less ALDH inhibition activity, and the in vitro results also proved the positive effects of 9-Cu in proteasome inhibition and apoptosis induction in breast cancer cells, suggesting that 9 as a lead compound could be developed into a novel proteasome inhibitor anti-cancer drug.
Collapse
Affiliation(s)
- Fei Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, PR China
| | | | | | | | | | | | | |
Collapse
|
24
|
Zhang P, Chen J, Liang Y. DNA binding, cytotoxicity, and apoptotic-inducing activity of ruthenium(II) polypyridyl complex. Acta Biochim Biophys Sin (Shanghai) 2010; 42:440-9. [PMID: 20705582 DOI: 10.1093/abbs/gmq040] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is considerable interest in the interactions of ruthenium (Ru)(II) complexes with DNA as well as the biological impact of the interactions. Here, by using isothermal titration calorimetry, viscosity measurement, and circular dichroism, we investigated the interactions of a new Ru(II) complex, [Ru(dmp)(2)PMIP](2+){dmp = 2,9-dimethyl-1,10-phenanthroline, PMIP = 2-(4-methylphenyl)imidazo[4,5-f]1,10-phenanthroline}, with calf thymus DNA (CT DNA). The Ru(II) polypyridyl complex and CT DNA formed a tight 1:1 complex with a binding constant of exceeding 10(6) M(-1) and with a binding mode of intercalation. Cell viability experiments indicated that the Ru(II) complex showed significant dose-dependent cytotoxicity to human lung tumor cell line A549. Further flow cytometry experiments showed that the cytotoxic Ru(II) complex induced apoptosis of human lung cancer cell line A549. Our data demonstrated that the Ru(II) polypyridyl complex binds to DNA and thereby induces apoptosis in tumor cells, suggesting that anti-tumor activity of the Ru(II) complex could be related to its interaction with DNA.
Collapse
|
25
|
Singh P, Singh M, Singh AK. Half sandwich complexes of Ru(II) and complexes of Pd(II) and Pt(II) with seleno and thio derivatives of pyrrolidine: Synthesis, structure and applications as catalysts for organic reactions. J Organomet Chem 2009. [DOI: 10.1016/j.jorganchem.2009.08.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|