1
|
Bastien K, Muckle G, Ayotte P, Dodge NC, Jacobson JL, Jacobson SW, Saint-Amour D. Developmental exposure to legacy environmental contaminants, medial temporal lobe volumes and spatial navigation memory in late adolescents. ENVIRONMENTAL RESEARCH 2025; 268:120830. [PMID: 39800296 DOI: 10.1016/j.envres.2025.120830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/20/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Exposure to lead, mercury, and polychlorinated biphenyls (PCBs) has been causally linked to spatial memory deficits and hippocampal changes in animal models. The Inuit community in Northern Canada is exposed to higher concentrations of these contaminants compared to the general population. This study aimed to 1) investigate associations between prenatal and current contaminant exposures and medial temporal brain volumes in Inuit late adolescents; 2) examine the relationship between these brain structures and spatial memory; and 3) assess the mediating role of brain structures in the association between contaminant exposure and spatial memory. Prenatal and current exposures were assessed from blood samples collected at birth and at the time of testing in 71 participants aged 16-22. Volumetric measurements of the hippocampi, entorhinal, and parahippocampal cortices from T1-weighted images were obtained using the Automatic Segmentation of Hippocampal Subfields method. Spatial navigation memory was evaluated using a computerized Morris Water Maze task. Prenatal lead exposure was associated with a smaller left hippocampal volume (β = -0.30, 95% CI = -0.56, -0.05), while current mercury (β = -0.34, 95% CI = -0.62, -0.06) and PCB-153 (β = -0.36, 95% CI = -0.70, -0.01) exposures were linked to a smaller left entorhinal cortex. The volume of the left entorhinal cortex positively correlated with spatial navigation memory performance (β = 0.26, 95% CI = 0.01, 0.51). These findings suggest specific windows of brain vulnerability to these contaminants, with the entorhinal cortex playing a key role in spatial navigation memory and potentially mediating the effects of exposure.
Collapse
Affiliation(s)
- Kevin Bastien
- Département de Psychologie, Université du Québec à Montréal, C.P. 8888 succursale Centre-ville, Montréal, Québec, H3C 3P8, Canada
| | - Gina Muckle
- École de Psychologie, Université Laval, Pavillon Félix-Antoine-Savard, Local 1116, 2325, Rue des Bibliothèques, Québec, Québec, G1V 0A6, Canada; Centre de Recherche du CHU de Québec-Université Laval, 2400 Av. D'Estimauville, Québec, Québec, G1E 6W2, Canada
| | - Pierre Ayotte
- Département de Médecine Sociale et Préventive, Université Laval, Pavillon Ferdinand-Vandry, 1050, Avenue de La Médecine, Local 4889, Québec, Québec, G1V 0A6, Canada
| | - Neil C Dodge
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Tolan Park Medical Building, 3901 Chrysler Service Drive, Detroit MI 48201-2167, USA
| | - Joseph L Jacobson
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Tolan Park Medical Building, 3901 Chrysler Service Drive, Detroit MI 48201-2167, USA
| | - Sandra W Jacobson
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Tolan Park Medical Building, 3901 Chrysler Service Drive, Detroit MI 48201-2167, USA
| | - Dave Saint-Amour
- Département de Psychologie, Université du Québec à Montréal, C.P. 8888 succursale Centre-ville, Montréal, Québec, H3C 3P8, Canada; Centre de Recherche du CHU Sainte-Justine, 3175, Chemin de La Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada.
| |
Collapse
|
2
|
Wang K, Sartor MA, Colacino JA, Dolinoy DC, Svoboda LK. Sex-Specific Deflection of Age-Related DNA Methylation and Gene Expression in Mouse Heart by Perinatal Toxicant Exposures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591125. [PMID: 38712146 PMCID: PMC11071472 DOI: 10.1101/2024.04.25.591125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background Global and site-specific changes in DNA methylation and gene expression are associated with cardiovascular aging and disease, but how toxicant exposures during early development influence the normal trajectory of these age-related molecular changes, and whether there are sex differences, has not yet been investigated. Objectives We used an established mouse model of developmental exposures to investigate the effects of perinatal exposure to either lead (Pb) or diethylhexyl phthalate (DEHP), two ubiquitous environmental contaminants strongly associated with CVD, on age-related cardiac DNA methylation and gene expression. Methods Dams were randomly assigned to receive human physiologically relevant levels of Pb (32 ppm in water), DEHP (25 mg/kg chow), or control water and chow. Exposures started two weeks prior to mating and continued until weaning at postnatal day 21 (3 weeks of age). Approximately one male and one female offspring per litter were followed to 3 weeks, 5 months, or 10 months of age, at which time whole hearts were collected (n ≥ 5 per sex per exposure). Enhanced reduced representation bisulfite sequencing (ERRBS) was used to assess the cardiac DNA methylome at 3 weeks and 10 months, and RNA-seq was conducted at all 3 time points. MethylSig and edgeR were used to identify age-related differentially methylated regions (DMRs) and differentially expressed genes (DEGs), respectively, within each sex and exposure group. Cell type deconvolution of bulk RNA-seq data was conducted using the MuSiC algorithm and publicly available single cell RNA-seq data. Results Thousands of DMRs and hundreds of DEGs were identified in control, DEHP, and Pb-exposed hearts across time between 3 weeks and 10 months of age. A closer look at the genes and pathways showing differential DNA methylation revealed that the majority were unique to each sex and exposure group. Overall, pathways governing development and differentiation were most frequently altered with age in all conditions. A small number of genes in each group showed significant changes in DNA methylation and gene expression with age, including several that were altered by both toxicants but were unchanged in control. We also observed subtle, but significant changes in the proportion of several cell types due to age, sex, and developmental exposure. Discussion Together these data show that perinatal Pb or DEHP exposures deflect normal age-related gene expression, DNA methylation programs, and cellular composition across the life course, long after cessation of exposure, and highlight potential biomarkers of developmental toxicant exposures. Further studies are needed to investigate how these epigenetic and transcriptional changes impact cardiovascular health across the life course.
Collapse
|
3
|
Zhao Y, Zhang Y, Meng S, Chen B, Dong X, Guo X, Guo F, Zhang R, Cui H, Li S. Effects of S-Adenosylmethionine on Cognition in Animals and Humans: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Alzheimers Dis 2023; 94:S267-S287. [PMID: 36970898 PMCID: PMC10473070 DOI: 10.3233/jad-221076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND There is increasing evidence that supplementation of S-adenosylmethionine (SAM) can improve cognitive function in animals and humans, although the outcomes are not always inconsistent. OBJECTIVE We conducted a systematic review and meta-analysis to evaluate the correlation between SAM supplementation and improved cognitive function. METHODS We searched studies in the PubMed, Cochrane Library, Embase, Web of Science, and Clinical Trials databases from January 1, 2002 to January 1, 2022. Risk of bias was assessed using the Cochrane risk of bias 2.0 (human studies) and the Systematic Review Center for Laboratory Animal Experimentation risk of bias (animal studies) tools; and evidence quality was evaluated using the Grading of Recommendations Assessment, Development, and Evaluation. STATA software was employed to perform meta-analysis, and the random-effects models was used to evaluate the standardized mean difference with 95% confidence intervals. RESULTS Out of the 2,375 studies screened, 30 studies met the inclusion criteria. Meta-analyses of animal (p = 0.213) and human (p = 0.047) studies showed that there were no significant differences between the SAM supplementation and control groups. The results of the subgroup analyses showed that the animals aged ≤8 weeks (p = 0.027) and the intervention duration >8 weeks (p = 0.009) were significantly different compared to the controls. Additionally, the Morris water maze test (p = 0.005) used to assess the cognitive level of the animals revealed that SAM could enhance spatial learning and memory in animals. CONCLUSION SAM supplementation showed no significant improvement in cognition. Therefore, further studies are needed to assess the effectiveness of SAM supplementation.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Yizhou Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Sijia Meng
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Bingyu Chen
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Xinyi Dong
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Xiaojing Guo
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Fangzhen Guo
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Runjiao Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| |
Collapse
|
4
|
Zheng Y, Li L, Cheng H, Huang S, Feng X, Huang L, Wei L, Cao D, Wang S, Tian L, Tang W, He C, Shen C, Luo B, Zhu M, Liang T, Pang B, Li M, Liu C, Chen X, Wang F, Mo Z, Yang X. Gender-specific effects of prenatal mixed exposure to serum phthalates on neurodevelopment of children aged 2-3 years:the Guangxi Birth Cohort Study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85547-85558. [PMID: 35794332 DOI: 10.1007/s11356-022-21769-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Phthalates have been shown to have adverse effects on neurodevelopment, which may be gender-specific. However, the association between prenatal mixed exposure to phthalates and children's neurodevelopment remains inconsistent. We measured 15 prenatal serum phthalate levels and evaluated children's neurodevelopmental indicators using Gesell Developmental Schedule (GDS) (n = 750). Generalized linear regression was fitted to examine the association. Among boys, mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP) had adverse effects on gross motor [odds ratio (OR): 7.38, 95% confidence interval (CI):1.42, 38.46]. For gross motor in boys, joint effect was discovered between mono-2-ethylhexyl phthalate (MEHP) and MEHHP. Moreover, synergistic effects were found for MEHP with vanadium and cadmium, and antagonistic effects for MEHP with magnesium, calcium, titanium, iron, copper, selenium, rubidium, and strontium. We did not find statistically significant relationships in girls. In the 1st trimester, adverse effects were identified between mono-2-ethyl-5-oxoyhexyl phthalate (MEOHP) and adaptation (P = 0.024), and monomethyl phthalate (MMP) with social area (P = 0.017). In the 2nd trimester, MEHHP had adverse effects on social area (P = 0.035). In summary, we found boys may be more vulnerable to the neurotoxicity than girls in gross motor, and we also discovered the detrimental effects of phthalates on children's neurodevelopment in the 1st and 2nd trimesters. Therefore, the supplementation of appropriate elements in the 1st and 2nd trimesters may help reduce the adverse effects of phthalates on children's neurodevelopment, especially among boys.
Collapse
Affiliation(s)
- Yuan Zheng
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Longman Li
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hong Cheng
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shengzhu Huang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiuming Feng
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lulu Huang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Luyun Wei
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dehao Cao
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Sida Wang
- Department of Medical Ultrasonics, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Long Tian
- Maternal & Child Health Hospital of Qinzhou, Qinzhou, 535099, Guangxi, China
| | - Weijun Tang
- Maternal & Child Health Hospital of Qinzhou, Qinzhou, 535099, Guangxi, China
| | - Caitong He
- Maternal & Child Health Hospital of Yulin, Yulin, 537000, Guangxi, China
| | - Chunhua Shen
- Liuzhou Maternity and Child Healthcare Hospital; Liuzhou Institute of Reproduction and Genetics, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, China
| | - Bangzhu Luo
- Department of Medical Services Section, Maternal & Child Health Hospital of Guigang, Guigang, 537000, Guangxi, China
| | - Maoling Zhu
- Department of Obstetrics, Maternal & Child Health Hospital of Nanning, Nanning, 530021, Guangxi, China
| | - Tao Liang
- Department of Pediatrics, Maternal & Child Health Hospital of Wuzhou, Wuzhou, 543000, Guangxi, China
| | - Baohong Pang
- Maternal & Child Health Hospital of Yuzhou, Yulin, 537000, Guangxi, China
| | - Mujun Li
- Department of Reproductive Center, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chaoqun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xing Chen
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaobo Yang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
5
|
Bastien K, Muckle G, Ayotte P, Courtemanche Y, Dodge NC, Jacobson JL, Jacobson SW, Saint-Amour D. Associations between developmental exposure to environmental contaminants and spatial navigation in late adolescence. New Dir Child Adolesc Dev 2022; 2022:11-35. [PMID: 36044011 PMCID: PMC9590243 DOI: 10.1002/cad.20478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Inuit communities in Northern Quebec (Canada) are exposed to environmental contaminants, particularly to mercury, lead and polychlorinated biphenyls (PCBs). Previous studies reported adverse associations between these neurotoxicants and memory performance. Here we aimed to determine the associations of pre- and postnatal exposures to mercury, lead and PCB-153 on spatial navigation memory in 212 Inuit adolescents (mean age = 18.5 years) using a computer task which requires learning the location of a hidden platform based on allocentric spatial representation. Contaminant concentrations were measured in cord blood at birth and blood samples at 11 years of age and at time of testing. Multivariate regression models showed that adolescent mercury and prenatal PCB-153 exposures were associated with poorer spatial learning, whereas current exposure to PCB-153 was associated with altered spatial memory retrieval at the probe test trial. These findings suggest that contaminants might be linked to different aspects of spatial navigation processing at different stages.
Collapse
Affiliation(s)
- Kevin Bastien
- Département de Psychologie, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Gina Muckle
- École de Psychologie, Université Laval, Québec, Québec, Canada
- Centre de Recherche du CHU de Québec, Université Laval, Québec, Québec, Canada
| | - Pierre Ayotte
- Département de Médecine Sociale et Préventive, Université Laval, Québec, Québec, Canada
| | - Yohann Courtemanche
- Centre de Recherche du CHU de Québec, Université Laval, Québec, Québec, Canada
| | - Neil C Dodge
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Joseph L Jacobson
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sandra W Jacobson
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dave Saint-Amour
- Département de Psychologie, Université du Québec à Montréal, Montréal, Québec, Canada
- Centre de Recherche, Centre hospitalier universitaire Sainte-Justine, Montréal, Québec, Canada
| |
Collapse
|
6
|
Sharma VK, Mehta V, Singh TG. Alzheimer's Disorder: Epigenetic Connection and Associated Risk Factors. Curr Neuropharmacol 2021; 18:740-753. [PMID: 31989902 PMCID: PMC7536832 DOI: 10.2174/1570159x18666200128125641] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/26/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
The gene based therapeutics and drug targets have shown incredible and appreciable advances in alleviating human sufferings and complexities. Epigenetics simply means above genetics or which controls the organism beyond genetics. At present it is very clear that all characteristics of an individual are not determined by DNA alone, rather the environment, stress, life style and nutrition play a vital part in determining the response of an organism. Thus, nature (genetic makeup) and nurture (exposure) play equally important roles in the responses observed, both at the cellular and organism levels. Epigenetics influence plethora of complications at cellular and molecular levels that includes cancer, metabolic and cardiovascular complications including neurological (psychosis) and neurodegenerative disorders (Alzheimer’s disease, Parkinson disease etc.). The epigenetic mechanisms include DNA methylation, histone modification and non coding RNA which have substantial impact on progression and pathways linked to Alzheimer’s disease. The epigenetic mechanism gets deregulated in Alzheimer’s disease and is characterized by DNA hyper methylation, deacetylation of histones and general repressed chromatin state which alter gene expression at the transcription level by upregulation, downregulation or silencing of genes. Thus, the processes or modulators of these epigenetic processes have shown vast potential as a therapeutic target in Alzheimer’s disease.
Collapse
Affiliation(s)
| | - Vineet Mehta
- Govt. College of Pharmacy, Rohru, District Shimla, Himachal Pradesh-171207, India
| | | |
Collapse
|
7
|
Sex-Specific Alterations in Cardiac DNA Methylation in Adult Mice by Perinatal Lead Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020577. [PMID: 33445541 PMCID: PMC7826866 DOI: 10.3390/ijerph18020577] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/27/2020] [Accepted: 01/04/2021] [Indexed: 12/27/2022]
Abstract
Environmental factors play an important role in the etiology of cardiovascular diseases. Cardiovascular diseases exhibit marked sexual dimorphism; however, the sex-specific effects of environmental exposures on cardiac health are incompletely understood. Perinatal and adult exposures to the metal lead (Pb) are linked to several adverse cardiovascular outcomes, but the sex-specific effects of this toxicant on the heart have received little attention. Perinatal environmental exposures can lead to disease through disruption of the normal epigenetic programming that occurs during early development. Using a mouse model of human-relevant perinatal environmental exposure, we investigated the effects of exposure to Pb during gestation and lactation on DNA methylation in the hearts of adult offspring mice (n = 6 per sex). Two weeks prior to mating, dams were assigned to control or Pb acetate (32 ppm) water, and exposure continued until offspring were weaned at three weeks of age. Enhanced reduced-representation bisulfite sequencing was used to measure DNA methylation in the hearts of offspring at five months of age. Although Pb exposure stopped at three weeks of age, we discovered hundreds of differentially methylated cytosines (DMCs) and regions (DMRs) in males and females at five months of age. DMCs/DMRs and their associated genes were sex-specific, with a small, but statistically significant subset overlapping between sexes. Pathway analysis revealed altered methylation of genes important for cardiac and other tissue development in males, and histone demethylation in females. Together, these data demonstrate that perinatal exposure to Pb induces sex-specific changes in cardiac DNA methylation that are present long after cessation of exposure, and highlight the importance of considering sex in environmental epigenetics and mechanistic toxicology studies.
Collapse
|
8
|
Svoboda LK, Neier K, Wang K, Cavalcante RG, Rygiel CA, Tsai Z, Jones TR, Liu S, Goodrich JM, Lalancette C, Colacino JA, Sartor MA, Dolinoy DC. Tissue and sex-specific programming of DNA methylation by perinatal lead exposure: implications for environmental epigenetics studies. Epigenetics 2020; 16:1102-1122. [PMID: 33164632 DOI: 10.1080/15592294.2020.1841872] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Early developmental environment can influence long-term health through reprogramming of the epigenome. Human environmental epigenetics studies rely on surrogate tissues, such as blood, to assess the effects of environment on disease-relevant but inaccessible target tissues. However, the extent to which environment-induced epigenetic changes are conserved between these tissues is unclear. A better understanding of this conservation is imperative for effective design and interpretation of human environmental epigenetics studies. The Toxicant Exposures and Responses by Genomic and Epigenomic Regulators of Transcription (TaRGET II) consortium was established by the National Institute of Environmental Health Sciences to address the utility of surrogate tissues as proxies for toxicant-induced epigenetic changes in target tissues. We and others have recently reported that perinatal exposure to lead (Pb) is associated with adverse metabolic outcomes. Here, we investigated the sex-specific effects of perinatal exposure to a human environmentally relevant level of Pb on DNA methylation in paired liver and blood samples from adult mice using enhanced reduced-representation bisulphite sequencing. Although Pb exposure ceased at 3 weeks of age, we observed thousands of sex-specific differentially methylated cytosines in the blood and liver of Pb-exposed animals at 5 months of age, including 44 genomically imprinted loci. We observed significant tissue overlap in the genes mapping to differentially methylated cytosines. A small but significant subset of Pb-altered genes exhibit basal sex differences in gene expression in the mouse liver. Collectively, these data identify potential molecular targets for Pb-induced metabolic diseases, and inform the design of more robust human environmental epigenomics studies.
Collapse
Affiliation(s)
- Laurie K Svoboda
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Kari Neier
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School Palmer Commons, Ann Arbor, MI, USA
| | | | - Christine A Rygiel
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Zing Tsai
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School Palmer Commons, Ann Arbor, MI, USA
| | - Tamara R Jones
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Siyu Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School Palmer Commons, Ann Arbor, MI, USA
| | - Jaclyn M Goodrich
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Claudia Lalancette
- Epigenomics Core, University of Michigan, Medical School, Ann Arbor, MI, USA
| | - Justin A Colacino
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.,Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Maureen A Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School Palmer Commons, Ann Arbor, MI, USA.,Department of Biostatistics, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.,Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Li L, Li H, Qu P, Xiao M, Zhang G, Zhang Q, Cai Y, Jin C, Yang J, Wu S, Lu X. An Antagonism Joint Action of Lead and Di-2-Ethylhexyl Phthalate Explains an Improved Ability of Learning and Memory after Combined Exposure in Weaning Rats. Biol Trace Elem Res 2019; 191:126-134. [PMID: 30523571 DOI: 10.1007/s12011-018-1586-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/19/2018] [Indexed: 12/30/2022]
Abstract
Lead and di-2-ethylhexyl phthalate (DEHP) are widely distributed in the environment, and their neurotoxicity has caused a widespread concern. The complexity of environmental exposure provides the possibility of their combined exposure. The present study aims to describe a joint neurotoxicity and clarify the potential mechanism after combined exposure to lead and DEHP. A 2 × 3 factorial design was used to analyze either single effects or their interaction by a subchronic lead and DEHP exposure model of the male weaning rats. Similar to the previous study, lead or DEHP single exposure showed an increased neurotoxicity. Interestingly, our neurobehavioral test showed the rats in the combined exposure groups had a better ability of learning and memory compared with the single-exposure ones. It seemed to reflect an antagonism joint action in neurotoxicity after combined exposure. The content of dehydroepiandrosterone (DHEA) in serum and the mRNA level of brain-derived neurotrophic factor (Bdnf) in the hippocampus showed a similar trend to the ability of learning and memory. However, there was insufficient evidence to support the joint action on some indexes of oxidative stress such as malondialdehyde (MDA), the ratio of reduced glutathione(GSH) to oxidized glutathione(GSSG), γglutamylcysteine synthetase (γ-GCS), glutathione-s transferase (GST), and nuclear factor E2-related factor 2 (Nrf2) mRNA expression in the hippocampus. In a word, our current study reminded a unique antagonism joint action of neurotoxicity after combined exposure to lead and DEHP, which may contribute to understanding some shallow mechanism of the joint toxicity due to the complexity of environmental pollutant exposure.
Collapse
Affiliation(s)
- Liuli Li
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Hao Li
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Peng Qu
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Mingyang Xiao
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Guopei Zhang
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Qianye Zhang
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Yuan Cai
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
10
|
Bihaqi SW. Early life exposure to lead (Pb) and changes in DNA methylation: relevance to Alzheimer’s disease. REVIEWS ON ENVIRONMENTAL HEALTH 2019; 34:187-195. [DOI: 10.1515/reveh-2018-0076] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/09/2019] [Indexed: 05/08/2023]
Abstract
Abstract
Recent advances in neuroepigenetics have revealed its essential role in governing body function and disease. Epigenetics regulates an array of mechanisms that are susceptible to undergoing alteration by intracellular or extracellular factors. DNA methylation, one of the most extensively studied epigenetic markers is involved in the regulation of gene expression and also plays a vital role in neuronal development. The epigenome is most vulnerable during early the embryonic stage and perturbation in DNA methylation during this period can result in a latent outcome which can persist during the entire lifespan. Accumulating evidence suggests that environmental insults during the developmental phase can impart changes in the DNA methylation landscape. Based on reports on human subjects and animal models this review will explore the evidence on how developmental exposure of the known environmental pollutant, lead (Pb), can induce changes in the DNA methylation of genes which later can induce development of neurodegenerative disorders like Alzheimer’s disease (AD).
Collapse
Affiliation(s)
- Syed Waseem Bihaqi
- George and Anne Ryan Institute for Neuroscience , University of Rhode Island , Avedisian Hall, Lab: 390, 7 Greenhouse Road , Kingston, RI 02881 , USA
| |
Collapse
|
11
|
Liu X, Jiao B, Shen L. The Epigenetics of Alzheimer's Disease: Factors and Therapeutic Implications. Front Genet 2018; 9:579. [PMID: 30555513 PMCID: PMC6283895 DOI: 10.3389/fgene.2018.00579] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/08/2018] [Indexed: 02/05/2023] Open
Abstract
Alzheimer’s disease (AD) is a well-known neurodegenerative disorder that imposes a great burden on the world. The mechanisms of AD are not yet fully understood. Current insight into the role of epigenetics in the mechanism of AD focuses on DNA methylation, remodeling of chromatin, histone modifications and non-coding RNA regulation. This review summarizes the current state of knowledge regarding the role of epigenetics in AD and the possibilities for epigenetically based therapeutics. The general conclusion is that epigenetic mechanisms play a variety of crucial roles in the development of AD, and there are a number of viable possibilities for treatments based on modulating these effects, but significant advances in knowledge and technology will be needed to move these treatments from the bench to the bedside.
Collapse
Affiliation(s)
- Xiaolei Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
12
|
Epigenetics in Alzheimer's Disease: Perspective of DNA Methylation. Mol Neurobiol 2017; 55:1026-1044. [PMID: 28092081 DOI: 10.1007/s12035-016-0357-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/28/2016] [Indexed: 12/12/2022]
Abstract
Research over the years has shown that causes of Alzheimer's disease are not well understood, but over the past years, the involvement of epigenetic mechanisms in the developing memory formation either under pathological or physiological conditions has become clear. The term epigenetics represents the heredity of changes in phenotype that are independent of altered DNA sequences. Different studies validated that cytosine methylation of genomic DNA decreases with age in different tissues of mammals, and therefore, the role of epigenetic factors in developing neurological disorders in aging has been under focus. In this review, we summarized and reviewed the involvement of different epigenetic mechanisms especially the DNA methylation in Alzheimer's disease (AD), late-onset Alzheimer's disease (LOAD), familial Alzheimer's disease (FAD), and autosomal dominant Alzheimer's disease (ADAD). Down to the minutest of details, we tried to discuss the methylation patterns like mitochondrial DNA methylation and ribosomal DNA (rDNA) methylation. Additionally, we mentioned some therapeutic approaches related to epigenetics, which could provide a potential cure for AD. Moreover, we reviewed some recent studies that validate DNA methylation as a potential biomarker and its role in AD. We hope that this review will provide new insights into the understanding of AD pathogenesis from the epigenetic perspective especially from the perspective of DNA methylation.
Collapse
|
13
|
Naninck EFG, Oosterink JE, Yam K, Vries LP, Schierbeek H, Goudoever JB, Verkaik‐Schakel R, Plantinga JA, Plosch T, Lucassen PJ, Korosi A. Early micronutrient supplementation protects against early stress‐induced cognitive impairments. FASEB J 2016; 31:505-518. [DOI: 10.1096/fj.201600834r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Eva F. G. Naninck
- Swammerdam Institute for Life Sciences, Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - J. Efraim Oosterink
- Department of Mother and Child, Emma Children's HospitalAcademic Medical CenterAmsterdamThe Netherlands
| | - Kit‐Yi Yam
- Swammerdam Institute for Life Sciences, Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Lennart P. Vries
- Swammerdam Institute for Life Sciences, Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Henk Schierbeek
- Department of Mother and Child, Emma Children's HospitalAcademic Medical CenterAmsterdamThe Netherlands
| | - Johannes B. Goudoever
- Department of Mother and Child, Emma Children's HospitalAcademic Medical CenterAmsterdamThe Netherlands
| | - Rikst‐Nynke Verkaik‐Schakel
- Department of Obstetrics and GynecologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Josèe A. Plantinga
- Department of Obstetrics and GynecologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Torsten Plosch
- Department of Obstetrics and GynecologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Paul J. Lucassen
- Swammerdam Institute for Life Sciences, Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
14
|
Rescue of Early bace-1 and Global DNA Demethylation by S-Adenosylmethionine Reduces Amyloid Pathology and Improves Cognition in an Alzheimer's Model. Sci Rep 2016; 6:34051. [PMID: 27681803 PMCID: PMC5041108 DOI: 10.1038/srep34051] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/05/2016] [Indexed: 02/04/2023] Open
Abstract
General DNA hypomethylation is associated with Alzheimer's disease (AD), but it is unclear when DNA hypomethylation starts or plays a role in AD pathology or whether DNA re-methylation would rescue early amyloid-related cognitive impairments. In an APP transgenic mouse model of AD-like amyloid pathology we found that early intraneuronal amyloid beta build-up is sufficient to unleash a global and beta-site amyloid precursor protein cleaving enzyme 1 (bace-1) DNA demethylation in AD-vulnerable brain regions. S-adenosylmethionine administration at these early stages abolished this hypomethylation, diminished the amyloid pathology and restored cognitive capabilities. To assess a possible human significance of findings, we examined the methylation at 12 CpGs sites in the bace-1 promoter, using genome-wide DNA methylation data from 740 postmortem human brains. Thus, we found significant associations of bace-1 promoter methylation with β-amyloid load among persons with AD dementia, and PHFtau tangle density. Our results support a plausible causal role for the earliest amyloid beta accumulation to provoke DNA hypomethylation, influencing AD pathological outcomes.
Collapse
|
15
|
Parrish RR, Buckingham SC, Mascia KL, Johnson JJ, Matyjasik MM, Lockhart RM, Lubin FD. Methionine increases BDNF DNA methylation and improves memory in epilepsy. Ann Clin Transl Neurol 2015; 2:401-16. [PMID: 25909085 PMCID: PMC4402085 DOI: 10.1002/acn3.183] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) patients exhibit signs of memory impairments even when seizures are pharmacologically controlled. Surprisingly, the underlying molecular mechanisms involved in TLE-associated memory impairments remain elusive. Memory consolidation requires epigenetic transcriptional regulation of genes in the hippocampus; therefore, we aimed to determine how epigenetic DNA methylation mechanisms affect learning-induced transcription of memory-permissive genes in the epileptic hippocampus. METHODS Using the kainate rodent model of TLE and focusing on the brain-derived neurotrophic factor (Bdnf) gene as a candidate of DNA methylation-mediated transcription, we analyzed DNA methylation levels in epileptic rats following learning. After detection of aberrant DNA methylation at the Bdnf gene, we investigated functional effects of altered DNA methylation on hippocampus-dependent memory formation in our TLE rodent model. RESULTS We found that behaviorally driven BdnfDNA methylation was associated with hippocampus-dependent memory deficits. Bisulfite sequencing revealed that decreased BdnfDNA methylation levels strongly correlated with abnormally high levels of BdnfmRNA in the epileptic hippocampus during memory consolidation. Methyl supplementation via methionine (Met) increased BdnfDNA methylation and reduced BdnfmRNA levels in the epileptic hippocampus during memory consolidation. Met administration reduced interictal spike activity, increased theta rhythm power, and reversed memory deficits in epileptic animals. The rescue effect of Met treatment on learning-induced BdnfDNA methylation, Bdnf gene expression, and hippocampus-dependent memory, were attenuated by DNA methyltransferase blockade. INTERPRETATION Our findings suggest that manipulation of DNA methylation in the epileptic hippocampus should be considered as a viable treatment option to ameliorate memory impairments associated with TLE.
Collapse
Affiliation(s)
- R Ryley Parrish
- Department of Neurobiology, University of Alabama - Birmingham Birmingham, Alabama
| | - Susan C Buckingham
- Department of Neurobiology, University of Alabama - Birmingham Birmingham, Alabama
| | - Katherine L Mascia
- Department of Neurobiology, University of Alabama - Birmingham Birmingham, Alabama
| | - Jarvis J Johnson
- Department of Neurobiology, University of Alabama - Birmingham Birmingham, Alabama
| | | | - Roxanne M Lockhart
- Department of Neurobiology, University of Alabama - Birmingham Birmingham, Alabama
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama - Birmingham Birmingham, Alabama
| |
Collapse
|
16
|
Wang J, Yu JT, Tan MS, Jiang T, Tan L. Epigenetic mechanisms in Alzheimer's disease: implications for pathogenesis and therapy. Ageing Res Rev 2013; 12:1024-41. [PMID: 23688931 DOI: 10.1016/j.arr.2013.05.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/08/2013] [Indexed: 12/14/2022]
Abstract
The vast majority of Alzheimer's disease (AD) are late-onset forms (LOAD) likely due to the interplay of environmental influences and individual genetic susceptibility. Epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNAs, constitute dynamic intracellular processes for translating environmental stimuli into modifications in gene expression. Over the past decade it has become increasingly clear that epigenetic mechanisms play a pivotal role in aging the pathogenesis of AD. Here, we provide a review of the major mechanisms for epigenetic modification and how they are reportedly altered in aging and AD. Moreover, we also consider how aberrant epigenetic modifications may lead to AD pathogenesis, and we review the therapeutic potential of epigenetic treatments for AD.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, China
| | | | | | | | | |
Collapse
|
17
|
Cao X, Huang S, Cao J, Chen T, Zhu P, Zhu R, Su P, Ruan D. The timing of maternal separation affects morris water maze performance and long-term potentiation in male rats. Dev Psychobiol 2013; 56:1102-9. [DOI: 10.1002/dev.21130] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 03/29/2013] [Indexed: 02/05/2023]
Affiliation(s)
- Xiujing Cao
- Department of Child and Maternal Health Care; School of Public Health, Anhui Medical University; Hefei, Anhui 230032, P.R. China
| | - Shenghai Huang
- Department of Microbiology; Anhui Medical University; Hefei, Anhui 230032, P.R. China
| | - Jiejie Cao
- Department of Child and Maternal Health Care; School of Public Health, Anhui Medical University; Hefei, Anhui 230032, P.R. China
| | - Tingting Chen
- Department of Child and Maternal Health Care; School of Public Health, Anhui Medical University; Hefei, Anhui 230032, P.R. China
| | - Ping Zhu
- Department of Child and Maternal Health Care; School of Public Health, Anhui Medical University; Hefei, Anhui 230032, P.R. China
| | - Rui Zhu
- Department of Child and Maternal Health Care; School of Public Health, Anhui Medical University; Hefei, Anhui 230032, P.R. China
| | - Puyu Su
- Department of Child and Maternal Health Care; School of Public Health, Anhui Medical University; Hefei, Anhui 230032, P.R. China
| | - Diyun Ruan
- School of Life Science; University of Science and Technology of China; Hefei, Anhui 230027, P.R. China
| |
Collapse
|
18
|
The effect of lead exposure on brain iron homeostasis and the expression of DMT1/FP1 in the brain in developing and aged rats. Toxicol Lett 2012; 216:108-23. [PMID: 23219683 DOI: 10.1016/j.toxlet.2012.11.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 11/21/2022]
Abstract
The relation between lead (Pb) and iron (Fe) becomes increasingly concerned because they are both divalent metals that are absorbed by the same intestinal mechanism, and Pb exposure and Fe deficiency in the developmental brain, as well as Fe overload in the aged brain, can cause cognitive deficits. However, the interaction between Pb exposure and Fe status in the brain has not been established. Therefore, in the current study, we examined the effects of maternal ingestion of Pb in drinking water during gestation and lactation on the Fe status and the expression of divalent metal transporter 1 (DMT1) and ferroportin 1 (FP1) in the brain of offspring. The offspring were followed through old age, with measurements taken at postnatal week 3 (PNW3), 41 (PNW41) and 70 (PNW70). Pb exposure increases the Fe content in the old-aged rats' brain, which might be not subjected to DMT1 mediating, but may be associated with the decrease expression of FP1. Furthermore, the effect of Pb on FP1 expression is regulated at transcriptional and posttranscriptional levels. The perturbation in Fe homeostasis may contribute to the neurotoxicology consequences induced by Pb exposure, and FP1 may play a role in Pb-induced Fe cumulation in the brain.
Collapse
|
19
|
Luo W, Ruan D, Yan C, Yin S, Chen J. Effects of chronic lead exposure on functions of nervous system in Chinese children and developmental rats. Neurotoxicology 2012; 33:862-71. [DOI: 10.1016/j.neuro.2012.03.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 03/09/2012] [Accepted: 03/20/2012] [Indexed: 01/23/2023]
|
20
|
Rahman A, Khan KM, Al-Khaledi G, Khan I, Al-Shemary T. Over activation of hippocampal serine/threonine protein phosphatases PP1 and PP2A is involved in lead-induced deficits in learning and memory in young rats. Neurotoxicology 2012; 33:370-83. [DOI: 10.1016/j.neuro.2012.02.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/15/2012] [Accepted: 02/21/2012] [Indexed: 11/27/2022]
|
21
|
Régnier V, Billard JM, Gupta S, Potier B, Woerner S, Paly E, Ledru A, David S, Luilier S, Bizot JC, Vacano G, Kraus JP, Patterson D, Kruger WD, Delabar JM, London J. Brain phenotype of transgenic mice overexpressing cystathionine β-synthase. PLoS One 2012; 7:e29056. [PMID: 22253703 PMCID: PMC3257219 DOI: 10.1371/journal.pone.0029056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 11/20/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The cystathionine β-synthase (CBS) gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS) cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA) metabolism, a pathway important for several brain physiological processes. METHODOLOGY/PRINCIPAL FINDINGS Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1) expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∼2-fold increase in total CBS proteins in different brain areas and a ∼1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line. CONCLUSION/SIGNIFICANCE We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS.
Collapse
Affiliation(s)
- Vinciane Régnier
- Unité de Biologie Fonctionnelle et Adaptative, CNRS EAC 4413, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, Deng Y, Blennerhassett P, Macri J, McCoy KD, Verdu EF, Collins SM. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 2011; 141:599-609, 609.e1-3. [PMID: 21683077 DOI: 10.1053/j.gastro.2011.04.052] [Citation(s) in RCA: 1196] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 03/28/2011] [Accepted: 04/15/2011] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Alterations in the microbial composition of the gastrointestinal tract (dysbiosis) are believed to contribute to inflammatory and functional bowel disorders and psychiatric comorbidities. We examined whether the intestinal microbiota affects behavior and brain biochemistry in mice. METHODS Specific pathogen-free (SPF) BALB/c mice, with or without subdiaphragmatic vagotomy or chemical sympathectomy, or germ-free BALB/c mice received a mixture of nonabsorbable antimicrobials (neomycin, bacitracin, and pimaricin) in their drinking water for 7 days. Germ-free BALB/c and NIH Swiss mice were colonized with microbiota from SPF NIH Swiss or BALB/c mice. Behavior was evaluated using step-down and light preference tests. Gastrointestinal microbiota were assessed using denaturing gradient gel electrophoresis and sequencing. Gut samples were analyzed by histologic, myeloperoxidase, and cytokine analyses; levels of serotonin, noradrenaline, dopamine, and brain-derived neurotropic factor (BDNF) were assessed by enzyme-linked immunosorbent assay. RESULTS Administration of oral antimicrobials to SPF mice transiently altered the composition of the microbiota and increased exploratory behavior and hippocampal expression of BDNF. These changes were independent of inflammatory activity, changes in levels of gastrointestinal neurotransmitters, and vagal or sympathetic integrity. Intraperitoneal administration of antimicrobials to SPF mice or oral administration to germ-free mice did not affect behavior. Colonization of germ-free BALB/c mice with microbiota from NIH Swiss mice increased exploratory behavior and hippocampal levels of BDNF, whereas colonization of germ-free NIH Swiss mice with BALB/c microbiota reduced exploratory behavior. CONCLUSIONS The intestinal microbiota influences brain chemistry and behavior independently of the autonomic nervous system, gastrointestinal-specific neurotransmitters, or inflammation. Intestinal dysbiosis might contribute to psychiatric disorders in patients with bowel disorders.
Collapse
Affiliation(s)
- Premysl Bercik
- The Farncombe Family Digestive Health Institute, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lei Y, Fu W, Chen J, Xiong C, Wu G, Wei H, Ruan J. Neuroprotective effects of Abacopterin E from Abacopteris penangiana against oxidative stress-induced neurotoxicity. JOURNAL OF ETHNOPHARMACOLOGY 2011; 134:275-280. [PMID: 21167928 DOI: 10.1016/j.jep.2010.10.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 10/10/2010] [Accepted: 10/18/2010] [Indexed: 05/30/2023]
Abstract
AIM OF THE STUDY Abacopterin E (AE) was isolated from Abacopteris penangiana (Hook.) Ching. This study was to elucidate its neuroprotective effects against hydrogen peroxide (H(2)O(2)) induced oxidative damage in PC12 cells and d-galactose (d-Gal) induced neurotoxicity in mice brain. MATERIALS AND METHODS In vitro, the protective effect of AE against H(2)O(2)-induced oxidative damage in the PC12 was investigated by the method of MTT (3,(4,5-dimethylthiazole-2-yl)2,5-diphenyl-tetrazolium bromide). In vivo, the protective effect of AE against d-Gal-induced neurotoxicity in mice was studied. The mice in the model group and the AE treatment groups were injected with the d-Gal 150 mg/(kg d) for 7 weeks while the mice in the control group were injected with the same volume of saline (0.9%). From the sixth week, the treatment groups were subcutaneously injected 4 or 8 mg/(kg d) of AE. In order to explore the potential mechanism of AE's action, the mice were assessed by behavioral and electrophysiological tests at the end of the administration. Then the mice brain tissues were measured for the levels of superoxide dismutases (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA). RESULTS This study showed that AE lowered the H(2)O(2)-induced cytotoxicity, and AE significantly improved the learning and memory ability in behavioral performance. The biochemical examination revealed that AE restored the activities of SOD and GSH-Px, and attenuated the increase of MDA. Moreover, the electrophysiological analysis evidently showed that AE ameliorated the long-term potentiation (LTP). CONCLUSIONS These results suggested that AE had neuroprotective effects, and its beneficial effects may be linked with inhibiting the generation of free radical and enhancing the activities of endogenous antioxidant enzymes.
Collapse
Affiliation(s)
- Yongfang Lei
- Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation of Hubei Province, College of Pharmacy, Tongji Medical Center, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, Hubei Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
24
|
Pilsner JR, Hu H, Wright RO, Kordas K, Ettinger AS, Sánchez BN, Cantonwine D, Lazarus AL, Cantoral A, Schnaas L, Téllez-Rojo MM, Hernández-Avila M. Maternal MTHFR genotype and haplotype predict deficits in early cognitive development in a lead-exposed birth cohort in Mexico City. Am J Clin Nutr 2010; 92:226-34. [PMID: 20504979 PMCID: PMC2884326 DOI: 10.3945/ajcn.2009.28839] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Maternal folate nutritional status and prenatal lead exposure can influence fetal development and subsequent health. The methylenetetrahydrofolate reductase (MTHFR) gene is important for folate metabolism, and 2 common polymorphisms, C677T and A1298C, reduce enzymatic activity; C677T is present at high penetrance in Mexican populations. OBJECTIVE The objective of this study was to examine potential links between maternal and child MTHFR polymorphisms and child neurodevelopment in a lead-exposed population. DESIGN Data regarding MTHFR polymorphisms C677T and A1298C, peri- and postnatal lead measures, and Bayley Mental Development Index at 24 mo of age (MDI-24) scores were available for 255 mother-child pairs who participated in the ELEMENT (Early Life Exposures in Mexico to Environmental Toxicants) study during 1994-1995. RESULTS In covariate-adjusted regression models, maternal MTHFR 677 genotype predicted MDI-24 scores, in which each copy of the maternal MTHFR 677T variant allele was associated with lower MDI-24 scores (beta = -3.52; 95% CI: -6.12, -0.93; P = 0.004). Maternal MTHFR haplotype also predicted MDI-24 scores (mean +/- SE: 93.3 +/- 1.2 for 677C-1298A compared with 89.9 +/- 0.8 for 677T-1298A; P < 0.05). MDI-24 scores were not associated with maternal MTHFR 1298 genotype or child MTHFR genotypes. We did not observe significant MTHFR genotype x lead interactions with respect to any of the subject biomarkers of lead exposure. CONCLUSIONS The maternal MTHFR 677T allele is an independent predictor of poorer child neurodevelopment at 24 mo. These results suggest that maternal genetic variations in folate metabolism during pregnancy may program offspring neurodevelopment trajectories. Further research is warranted to determine the generalizability of these results across other populations.
Collapse
Affiliation(s)
- J Richard Pilsner
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Li N, Yu ZL, Wang L, Zheng YT, Jia JX, Wang Q, Zhu MJ, Liu XL, Xia X, Li WJ. Increased tau phosphorylation and beta amyloid in the hipocampus of mouse pups by early life lead exposure. ACTA BIOLOGICA HUNGARICA 2010; 61:123-34. [PMID: 20519167 DOI: 10.1556/abiol.61.2010.2.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to investigate the effects of maternal lead exposure on the learning and memory ability and expression of tau protein phosphorylation (P-tau) and beta amyloid protein (Abeta) in hippocampus of mice offspring. Pb exposure initiated from beginning of gestation to weaning. Pb acetate administered in drinking solutions was dissolved in distilled deionized water at the concentrations of 0.1%, 0.5% and 1% groups. On the 21 th of postnatal day, the learning and memory ability of the mouse pups was tested by Water Maze test and the Pb levels in blood and hippocampus of the offspring were also determined. The expression of P-tau and Abeta in hippocampus was measured by immunohistochemistry and Western blotting. The Pb levels in blood and hippocampus of all exposure groups were significantly higher than that of the control group ( P < 0.05). In Water Maze test, the performances of 0.5% and 1% groups were worse than that of the control group ( P < 0.05). The expression of P-tau and Abeta was increased in Pb exposed groups than that of the control group ( P < 0.05). Tau hyper-phosphorylation and Abeta increase in the hippocampus of pups may contribute to the impairment of learning and memory associated with maternal Pb exposure.
Collapse
Affiliation(s)
- N Li
- Zhengzhou University College of Public Health Zhengzhou 450001 China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fan G, Feng C, Wu F, Ye W, Lin F, Wang C, Yan J, Zhu G, Xiao Y, Bi Y. Methionine choline reverses lead-induced cognitive and N-methyl-d-aspartate receptor subunit 1 deficits. Toxicology 2010; 272:23-31. [DOI: 10.1016/j.tox.2010.03.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 03/27/2010] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
|
27
|
Wu C. Overview of developmental and reproductive toxicity research in China: history, funding mechanisms, and frontiers of the research. BIRTH DEFECTS RESEARCH. PART B, DEVELOPMENTAL AND REPRODUCTIVE TOXICOLOGY 2010; 89:9-17. [PMID: 20135688 DOI: 10.1002/bdrb.20231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Reproductive and developmental toxicology (DART) is the discipline that deals with adverse effects on male and female resulting from exposures to harmful chemical and physical agents. DART research in China boasted a long history, but presently has fallen behind the western world in education and research. The funding mechanisms for DART research in China were similar to that for other toxicological disciplines, and the funding has come from research grants and fellowships provided by national, ministerial, and provincial institutions. Finally, the frontiers of DART research in China could be summarized as follows: (1) use of model animals such as the zebrafish and roundworm, and use of cutting-edge techniques such as stem cell culture, as well as transgenic, metabonomic, and virtual screening to study the mechanisms of developmental toxicity for some important toxicants in China; (2) use of model animals and other lower-level sentinel organisms to evaluate and monitor the developmental toxicogical risk of environmental chemicals or pollutants; (3) epidemiological studies of some important reproductive hazards; (4) in-depth studying of the reproductive and developmental toxicity of some important environmental chemicals; and (5) evaluation and study of the reproductive and developmental toxicity of traditional Chinese medicines.
Collapse
Affiliation(s)
- Chunqi Wu
- National Beijing Center for Drug Safety Evaluation and Research, Beijing Institute of Toxicology and Pharmacology, PR China.
| |
Collapse
|
28
|
Xing XJ, Rui Q, Du M, Wang DY. Exposure to lead and mercury in young larvae induces more severe deficits in neuronal survival and synaptic function than in adult nematodes. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 56:732-741. [PMID: 19288233 DOI: 10.1007/s00244-009-9307-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 03/01/2009] [Indexed: 05/27/2023]
Abstract
In the present study, we investigated the possibly neurotoxic effects of metal (Pb and Hg) exposure at different developmental stages on neuronal loss in the GABAergic nervous system and synaptic functions in the nematode Caenorhabditis elegans. Our data suggest that neuronal survival in GABAergic neurons and cholinergic transmission were relatively stable during development in nematodes. Moreover, neurodegeneration, as shown by the neuronal loss and dorsal/ventral cord gaps, was more severely induced by Pb and Hg exposure at the L1 through L3 larval stages than at the L4 larval and young-adult stages. Similarly, pre- and postsynaptic functions were more severely impaired by Pb and Hg exposure at the L1 through L3 larval stages than at the L4 larval and young-adult stages. Furthermore, both aldicarb and levamisole resistance were significantly correlated with neuronal loss, dorsal cord gap, and ventral cord gap in Pb- and Hg-exposed nematodes, suggesting that neuronal survival was noticeably correlated with synaptic function in metal-exposed nematodes during development. Therefore, younger (L1-L3) larvae show more sensitivity to neurotoxicity of neuronal survival and synaptic function than L4 larvae and young adult nematodes.
Collapse
Affiliation(s)
- X-J Xing
- Department of Genetics and Developmental Biology, Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Southeast University Medical School, Nanjing, China
| | | | | | | |
Collapse
|