1
|
Xie WS, Shehzadi K, Ma HL, Liang JH. A Potential Strategy for Treatment of Neurodegenerative Disorders by Regulation of Adult Hippocampal Neurogenesis in Human Brain. Curr Med Chem 2022; 29:5315-5347. [DOI: 10.2174/0929867329666220509114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/13/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Adult hippocampal neurogenesis is a multistage mechanism that continues throughout the lifespan of human and non-human mammals. These adult-born neurons in the central nervous system (CNS) play a significant role in various hippocampus-dependent processes, including learning, mood regulation, pattern recognition, etc. Reduction of adult hippocampal neurogenesis, caused by multiple factors such as neurological disorders and aging, would impair neuronal proliferation and differentiation and result in memory loss. Accumulating studies have indicated that functional neuron impairment could be restored by promoting adult hippocampal neurogenesis. In this review, we summarized the small molecules that could efficiently promote the process of adult neurogenesis, particularly the agents that have the capacity of crossing the blood-brain barrier (BBB), and showed in vivo efficacy in mammalian brains. This may pave the way for the rational design of drugs to treat humnan neurodegenerative disorders in the future.
Collapse
Affiliation(s)
- Wei-Song Xie
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Kiran Shehzadi
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Hong-Le Ma
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jian-Hua Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| |
Collapse
|
2
|
Zhou Y, Tao X, Wang Z, Feng L, Wang L, Liu X, Pan R, Liao Y, Chang Q. Hippocampus Metabolic Disturbance and Autophagy Deficiency in Olfactory Bulbectomized Rats and the Modulatory Effect of Fluoxetine. Int J Mol Sci 2019; 20:ijms20174282. [PMID: 31480539 PMCID: PMC6747550 DOI: 10.3390/ijms20174282] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
An olfactory bulbectomy (OBX) rodent is a widely-used model for depression (especially for agitated depression). The present study aims to investigate the hippocampus metabolic profile and autophagy-related pathways in OBX rats and to explore the modulatory roles of fluoxetine. OBX rats were given a 30-day fluoxetine treatment after post-surgery rehabilitation, and then behavioral changes were evaluated. Subsequently, the hippocampus was harvested for metabonomics analysis and Western blot detection. As a result, OBX rats exhibited a significantly increased hyperemotionality score and declined spatial memory ability. Fluoxetine reduced the hyperemotional response, but failed to restore the memory deficit in OBX rats. Sixteen metabolites were identified as potential biomarkers for the OBX model including six that were rectified by fluoxetine. Disturbed pathways were involved in amino acid metabolism, fatty acid metabolism, purine metabolism, and energy metabolism. In addition, autophagy was markedly inhibited in the hippocampus of OBX rats. Fluoxetine could promote autophagy by up-regulating the expression of LC3 II, beclin1, and p-AMPK/AMPK, and down-regulating the levels of p62, p-Akt/Akt, p-mTOR/mTOR, and p-ULK1/ULK1. Our findings indicated that OBX caused marked abnormalities in hippocampus metabolites and autophagy, and fluoxetine could partly redress the metabolic disturbance and enhance autophagy to reverse the depressive-like behavior, but not the memory deficits in OBX rats.
Collapse
Affiliation(s)
- Yunfeng Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xue Tao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhi Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Li Feng
- School of Medicine, the Open University of China, Beijing 100039, China
| | - Lisha Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xinmin Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ruile Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yonghong Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
3
|
Kious BM, Kondo DG, Renshaw PF. Creatine for the Treatment of Depression. Biomolecules 2019; 9:E406. [PMID: 31450809 PMCID: PMC6769464 DOI: 10.3390/biom9090406] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/28/2022] Open
Abstract
Depressed mood, which can occur in the context of major depressive disorder, bipolar disorder, and other conditions, represents a serious threat to public health and wellness. Conventional treatments are not effective for a significant proportion of patients and interventions that are often beneficial for treatment-refractory depression are not widely available. There is, therefore, an immense need to identify novel antidepressant strategies, particularly strategies that target physiological pathways that are distinct from those addressed by conventional treatments. There is growing evidence from human neuroimaging, genetics, epidemiology, and animal studies that disruptions in brain energy production, storage, and utilization are implicated in the development and maintenance of depression. Creatine, a widely available nutritional supplement, has the potential to improve these disruptions in some patients, and early clinical trials indicate that it may have efficacy as an antidepressant agent.
Collapse
Affiliation(s)
- Brent M Kious
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA.
| | - Douglas G Kondo
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA
- George E. Wahlen Veterans Affairs Medical Center, 500 Foothill Drive, Salt Lake City, UT 84148, USA
| | - Perry F Renshaw
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA
- George E. Wahlen Veterans Affairs Medical Center, 500 Foothill Drive, Salt Lake City, UT 84148, USA
| |
Collapse
|
4
|
Pazini FL, Cunha MP, Rodrigues ALS. The possible beneficial effects of creatine for the management of depression. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:193-206. [PMID: 30193988 DOI: 10.1016/j.pnpbp.2018.08.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 01/23/2023]
Abstract
Depression, a highly prevalent neuropsychiatric disorder worldwide, causes a heavy burden for the society and is associated with suicide risk. The treatment of this disorder remains a challenge, since currently available antidepressants provide a slow and, often, incomplete response and cause several side effects that contribute to diminish the adhesion of patients to treatment. In this context, several nutraceuticals have been investigated regarding their possible beneficial effects for the management of this neuropsychiatric disorder. Creatine stands out as a supplement frequently used for ergogenic purpose, but it also is a neuroprotective compound with potential to treat or mitigate a broad range of central nervous systems diseases, including depression. This review presents preclinical and clinical evidence that creatine may exhibit antidepressant properties. The focus is given on the possible molecular mechanisms underlying its effects based on the results obtained with different animal models of depression. Finally, evidence obtained in animal models of depression addressing the possibility that creatine may produce rapid antidepressant effect, similar to ketamine, are also presented and discussed.
Collapse
Affiliation(s)
- Francis L Pazini
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Mauricio P Cunha
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
5
|
Shen F, Qi K, Duan Y, Li Y, Liang J, Meng X, Li M, Sui N. Differential effects of clomipramine on depression-like behaviors induced by the chronic social defeat paradigm in tree shrews. J Psychopharmacol 2018; 32:1141-1149. [PMID: 30182783 DOI: 10.1177/0269881118793560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Anhedonia is a hallmark symptom in major depression that reflects deficits in hedonic capacity and it is also linked to motivation for reward. However, studies of the features of motivation in depressed tree shrews are rather sparse. AIMS The study aimed to investigate the core feature of depression including lack of interest, motivation reduction, and social avoidance in tree shrews. Furthermore, the effects of the treatment using clomipramine on these depression-like behaviors were assessed. METHODS The paradigm of chronic social defeat in tree shrews was used to evaluate the core feature of depression through examining their sucrose preference, break-point for reward, and social interaction. RESULTS The results showed that social defeat lowered the curves of the sucrose preference and the break-point, as well as decreased social interaction. The results suggested that the subordinate animals exhibited interest loss, motivational reduction, and social avoidance. After oral treatment with clomipramine (50 mg/kg/day) for four weeks, most of the depression-like behaviors were reversed, whereas the motivational reduction was not clearly affected. Notably, the motivational reduction appeared obviously during the first week after the social defeat, and the conventional tricyclic antidepressant clomipramine did not reverse the reduced motivation. CONCLUSIONS These findings imply that motivational variation might be applied as a more sensitive behavioral index in subordinate animals and could furthermore be used to evaluate potential agents as antidepressants.
Collapse
Affiliation(s)
- Fang Shen
- 1 CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,2 Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Keke Qi
- 3 Department of Philosophy, Anhui University, Hefei, China
| | - Ying Duan
- 1 CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,2 Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yonghui Li
- 1 CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,2 Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Liang
- 1 CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,2 Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolu Meng
- 1 CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,2 Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- 4 Department of Psychology, University of Nebraska-Lincoln, Lincoln, USA
| | - Nan Sui
- 1 CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,2 Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Parésys L, Hoffmann K, Froger N, Bianchi M, Villey I, Baulieu EE, Fuchs E. Effects of the Synthetic Neurosteroid: 3β-Methoxypregnenolone (MAP4343) on Behavioral and Physiological Alterations Provoked by Chronic Psychosocial Stress in Tree Shrews. Int J Neuropsychopharmacol 2015; 19:pyv119. [PMID: 26476437 PMCID: PMC4851265 DOI: 10.1093/ijnp/pyv119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/14/2015] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Most currently available active antidepressant drugs are selective serotonin/noradrenaline reuptake inhibitors. However, as their clinical efficacy is not immediate, long-term administration is often accompanied by substantial side effects, and numerous patients remain non- or partial responders. We have recently found that the synthetic neurosteroid derivative 3β-methoxypregnenolone, which binds to the microtubule-associated protein-2, can provide a novel therapeutic approach in experimental model of depressive disorders in rats. To further validate the antidepressant-like efficacy of 3β-methoxypregnenolone, we investigated effects of a longer treatment (4-week oral administration; 50mg/kg/d) in a nonrodent species, the tree shrew, exposed to psychosocial stress that elicits close-to-human alterations observed in patients with depressive disorders. METHODS During the experimental period, physiological parameters were registered, including core body temperature and electroencephalogram, while animals were videotaped to analyze their avoidance behavior. Morning urine samples were collected for measurements of cortisol and noradrenaline levels. RESULTS We found that treatment with 3β-methoxypregnenolone abolished stress-triggered avoidance behavior and prevented hormone hypersecretion, hypothermia, and sleep disturbances, further suggesting its antidepressant-like efficacy. Comparative treatment with fluoxetine also prevented some of the physiological alterations, while the hypersecretion of cortisol and sleep disturbances were not or partially restored by fluoxetine, suggesting a better efficacy of 3β-methoxypregnenolone. Alpha-tubulin isoforms were measured in hippocampi: we found that 3β-methoxypregnenolone reversed the specific decrease in acetylation of α-tubulin induced by psychosocial stress, while it did not modify the psychosocial stress-elicited reduction of tyrosinated α-tubulin. CONCLUSIONS Taken together, these data strongly suggest a potent antidepressant-like effect of 3β-methoxypregnenolone on translational parameters.
Collapse
Affiliation(s)
| | | | - Nicolas Froger
- MAPREG SAS, Le Kremlin-Bicêtre, France (Drs Parésys, Froger, Bianchi, Villey, and Baulieu); German Primate Center, Göttingen, Germany (Drs Hoffmann and Fuchs).
| | | | | | | | | |
Collapse
|
7
|
Farb DH, Ratner MH. Targeting the modulation of neural circuitry for the treatment of anxiety disorders. Pharmacol Rev 2014; 66:1002-32. [PMID: 25237115 DOI: 10.1124/pr.114.009126] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anxiety disorders are a major public health concern. Here, we examine the familiar area of anxiolysis in the context of a systems-level understanding that will hopefully lead to revealing an underlying pharmacological connectome. The introduction of benzodiazepines nearly half a century ago markedly improved the treatment of anxiety disorders. These agents reduce anxiety rapidly by allosterically enhancing the postsynaptic actions of GABA at inhibitory type A GABA receptors but side effects limit their use in chronic anxiety disorders. Selective serotonin reuptake inhibitors and serotonin/norepinephrine reuptake inhibitors have emerged as an effective first-line alternative treatment of such anxiety disorders. However, many individuals are not responsive and side effects can be limiting. Research into a relatively new class of agents known as neurosteroids has revealed novel modulatory sites and mechanisms of action that are providing insights into the pathophysiology of certain anxiety disorders, potentially bridging the gap between the GABAergic and serotonergic circuits underlying anxiety. However, translating the pharmacological activity of compounds targeted to specific receptor subtypes in rodent models of anxiety to effective therapeutics in human anxiety has not been entirely successful. Since modulating any one of several broad classes of receptor targets can produce anxiolysis, we posit that a systems-level discovery platform combined with an individualized medicine approach based on noninvasive brain imaging would substantially advance the development of more effective therapeutics.
Collapse
Affiliation(s)
- David H Farb
- Laboratory of Molecular Neurobiology, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - Marcia H Ratner
- Laboratory of Molecular Neurobiology, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
8
|
Ye N, Neumeyer JL, Baldessarini RJ, Zhen X, Zhang A. Update 1 of: Recent Progress in Development of Dopamine Receptor Subtype-Selective Agents: Potential Therapeutics for Neurological and Psychiatric Disorders. Chem Rev 2013; 113:PR123-78. [DOI: 10.1021/cr300113a] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Na Ye
- CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory (SOMCL), Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| | - John L. Neumeyer
- Medicinal Chemistry Laboratory,
McLean Hospital, Harvard Medical School, Massachusetts 02478, United States
| | | | - Xuechu Zhen
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China 215123
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory (SOMCL), Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| |
Collapse
|
9
|
Wilhelm CJ, Choi D, Huckans M, Manthe L, Loftis JM. Adipocytokine signaling is altered in Flinders sensitive line rats, and adiponectin correlates in humans with some symptoms of depression. Pharmacol Biochem Behav 2012; 103:643-51. [PMID: 23153628 DOI: 10.1016/j.pbb.2012.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/27/2012] [Accepted: 11/03/2012] [Indexed: 10/27/2022]
Abstract
Major depression is a complex multi-factorial disorder with a lifetime diagnosis of nearly 1 out of 6. We used the Flinders Sensitive Line (FSL) of rats, a model of depression, and the parent Sprague-Dawley (SD) rats to identify genes, gene ontology categories and pathways associated with depression. Depression-like behavior was verified in the FSL line by forced swim testing, with FSL animals exhibiting greater immobility compared to SD rats. RNA samples from the hippocampus were isolated from a group of experimentally naïve FSL and SD rats for microarray analysis. Microarray analysis yielded a total of 361 genes that were differentially regulated between FSL and SD rats, with catechol-O-methyltransferase (COMT) being the most up-regulated. The genes that were differentially regulated between FSL and SD rats were subjected to bioinformatic analysis using the Database for Annotation, Visualization and Integrated Discovery (DAVID), which yielded several gene ontology categories that were overrepresented. Subsequent pathway analysis indicated dysregulation of the adipocytokine signaling pathway. To test the translational impact of this pathway, metabolic factors and psychiatric symptoms were evaluated in a sample of human research participants. Results from our human subjects indicated that anxiety and a subset of depressive symptoms were correlated with adiponectin levels (but not leptin levels). Our results and those of others suggest that disruption of the adipocytokine signaling pathway may be a critical component of the depressive-like behaviors observed in the FSL rats and may also be an important indicator of depressive and anxiety symptoms in humans.
Collapse
Affiliation(s)
- Clare J Wilhelm
- Research and Development Service, Portland Veterans Affairs Medical Center, Portland, OR 97239, United States
| | | | | | | | | |
Collapse
|
10
|
Sex-specific antidepressant effects of dietary creatine with and without sub-acute fluoxetine in rats. Pharmacol Biochem Behav 2012; 101:588-601. [PMID: 22429992 DOI: 10.1016/j.pbb.2012.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/01/2012] [Accepted: 03/05/2012] [Indexed: 12/14/2022]
Abstract
The potential role of metabolic impairments in the pathophysiology of depression is motivating researchers to evaluate the treatment efficacy of creatine, a naturally occurring energetic and neuroprotective compound found in brain and muscle tissues. Growing evidence is demonstrating the benefit of oral creatine supplements for reducing depressive symptoms in humans and animals. A novel question is whether dietary creatine, when combined with antidepressant drug therapy, would be more effective than either compound alone. To answer this question, four studies were conducted to investigate the behavioral effects of combined creatine and low-dose fluoxetine treatment using the forced swim test in male and female rats. Sprague-Dawley rats were fed powdered rodent chow supplemented with 0%, 2% or 4% w/w creatine monohydrate for 5 weeks. Rats were injected with fluoxetine (5.0 or 10.0 mg/kg) or saline according to a sub-acute dosing schedule. Female rats maintained on a 4% creatine diet displayed antidepressant-like effects compared to non-supplemented females prior to fluoxetine treatment. In contrast, creatine did not alter behavior reliably in males. Following drug treatment and a second forced swim trial, the antidepressant-like profile of creatine remained significant only in females co-administered 5.0 mg/kg fluoxetine. Moreover, in females only, supplementation with 4% creatine produced a more robust antidepressant-like behavioral profile compared to either dose of fluoxetine alone. Estrous cycle data indicated that ovarian hormones influenced the antidepressant-like effects of creatine. Addressing the issue of sex differences in response to treatment may affect our understanding of creatine, its relationship with depressive behavior, and may lead to sex-specific therapeutic strategies.
Collapse
|
11
|
Loftis JM. Sertoli cell therapy: a novel possible treatment strategy for treatment-resistant major depressive disorder. Med Hypotheses 2011; 77:35-42. [PMID: 21454019 DOI: 10.1016/j.mehy.2011.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 03/03/2011] [Accepted: 03/07/2011] [Indexed: 12/27/2022]
Abstract
By the year 2020, depression will be the 2nd most common health problem in the world. Current medications to treat depression are effective in less than 50% of patients. There is the need for novel treatments for depression to address the high rates of resistance to current treatment and the chronic residual symptoms in many patients treated for depression. The heterogeneity of major depressive disorder suggests that multiple neurocircuits and neurochemicals are involved in its pathogenesis thus, finding an alternative to neurotransmitter agonist- or antagonist-based treatments offers an important new approach. Cellular therapy is an emerging treatment strategy for multiple diseases, including depression. Based upon their in vivo function as "nurse cells" within the testis and the documented viability, efficacy, and safety of Sertoli cells transplanted into multiple tissues, including brain, the potential for these cells to provide a neuroprotective, anti-inflammatory, and trophic environment for neurons should be considered. It is proposed that the combination of self-protective, immunoregulatory and trophic properties of Sertoli cells may confer a unique potential for depression treatment and avoid many of the risks and challenges associated with stem cell therapies. At the very least, studies of the effects of Sertoli cell transplantation will add substantially to our understanding of the cellular and molecular processes that underlie depression.
Collapse
Affiliation(s)
- J M Loftis
- Research & Development Service, Portland VA Medical Center, 3710 SW U.S. Veterans Hospital Rd., Portland, OR 97239, USA.
| |
Collapse
|
12
|
Is subcortical-cortical midline activity in depression mediated by glutamate and GABA? A cross-species translational approach. Neurosci Biobehav Rev 2009; 34:592-605. [PMID: 19958790 DOI: 10.1016/j.neubiorev.2009.11.023] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 10/28/2009] [Accepted: 11/26/2009] [Indexed: 01/10/2023]
Abstract
Major depressive disorder has recently been characterized by abnormal resting state hyperactivity in anterior midline regions. The neurochemical mechanisms underlying resting state hyperactivity remain unclear. Since animal studies provide an opportunity to investigate subcortical regions and neurochemical mechanisms in more detail, we used a cross-species translational approach comparing a meta-analysis of human data to animal data on the functional anatomy and neurochemical modulation of resting state activity in depression. Animal and human data converged in showing resting state hyperactivity in various ventral midline regions. These were also characterized by abnormal concentrations of glutamate and gamma-aminobutyric acid (GABA) as well as by NMDA receptor up-regulation and AMPA and GABA receptor down-regulation. This cross-species translational investigation suggests that resting state hyperactivity in depression occurs in subcortical and cortical midline regions and is mediated by glutamate and GABA metabolism. This provides insight into the biochemical underpinnings of resting state activity in both depressed and healthy subjects.
Collapse
|