1
|
Song J, Han B, Du X, Chen H, Li M, Tang Z, Xu C, Wei W, Jia F, Wang X, Sun S, Zhong D. Ubiquitination of ALOX15 regulates endoplasmic reticulum stress in Schwann cells and experimental autoimmune neuritis (EAN) models. Free Radic Biol Med 2025; 234:141-150. [PMID: 40222426 DOI: 10.1016/j.freeradbiomed.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
In the pathogenesis of experimental autoimmune neuritis (EAN), Schwann cells execute critical myelination functions through their characteristic axonal ensheathment, thereby facilitating saltatory conduction via myelin sheath formation. Our investigations reveal that arachidonate 15-lipoxygenase (ALOX15) modulates endoplasmic reticulum (ER) stress dynamics in both in vitro Schwann cell cultures and in vivo EAN models. Genetic silencing of ALOX15 significantly attenuated clathrin-mediated ER stress activation in Schwann cells, with mechanistic studies implicating 15-hydroxyeicosatetraenoic acid (15-HETE), the principal catalytic metabolite of ALOX15, as a key mediator of ER stress potentiation. Notably, we identified a self-reinforcing oxidative stress circuit involving mitochondrial-ER crosstalk, characterized by mitochondrial calcium overload and subsequent activation of the mitochondrial permeability transition pore (mPTP). This pathological interplay was corroborated by elevated expression of ER stress markers and increased reactive oxygen species (ROS) production in EAN neural tissues. Through integrated mass spectrometry analysis and molecular validation, we established RBX1 (RING-box protein 1) as the cognate E3 ubiquitin ligase responsible for ALOX15 regulation in rat models. The observed upregulation of RBX1 expression in EAN-affected Schwann cells suggests a novel regulatory mechanism for ALOX15 protein homeostasis. In summary, the present study offers novel insights into the mechanism by which ALOX15 regulates ER stress in Schwann cells and the EAN model.
Collapse
Affiliation(s)
- Jihe Song
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Baichao Han
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinshu Du
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongping Chen
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Meng Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhanbin Tang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chen Xu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wan Wei
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Feihong Jia
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinrui Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuanghong Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Di Zhong
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
2
|
Wang J, Hu S, Xu Y, Wang T. Omega-6 polyunsaturated fatty acids and their metabolites: a potential targeted therapy for pulmonary hypertension. Respir Res 2025; 26:102. [PMID: 40089708 PMCID: PMC11909876 DOI: 10.1186/s12931-025-03172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Pulmonary hypertension (PH) is a progressive and life-threatening cardiopulmonary disease that is not uncommon. The modulation of the pulmonary artery (PA) involves various fatty acids, including omega-6 polyunsaturated fatty acids (ω-6 PUFAs) and ω-6 PUFAs-derived oxylipins. These lipid mediators are produced through cyclooxygenase (COX), lipoxygenase (LOX), cytochrome P450 (CYP450), and non-enzymatic pathways. They play a crucial role in the occurrence and development of PH by regulating the function and phenotype of pulmonary artery endothelial cells (PAECs), pulmonary artery smooth muscle cells (PASMCs), pulmonary fibroblasts, alveolar macrophages, and inflammatory cells. The alterations in ω-6 PUFAs and oxylipins are pivotal in causing vasoconstriction, pulmonary remodeling, and ultimately leading to right heart failure in PH. Despite the limited understanding of the PH pathophysiology, there is potential for novel interventions through dietary and pharmacological approaches targeting ω-6 PUFAs and oxylipins. The aim of this review is to summarize the significant advances in clinical and basic research on omega-6 PUFAs and oxylipins in pulmonary vascular disease, particularly PH, and to propose a potential targeted therapeutic modality against omega-6 PUFAs.
Collapse
Affiliation(s)
- Jiayao Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- The Center for Biomedical Research, Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, National Health Committee (NHC), Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shunlian Hu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- The Center for Biomedical Research, Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, National Health Committee (NHC), Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yahan Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- The Center for Biomedical Research, Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, National Health Committee (NHC), Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
- The Center for Biomedical Research, Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, National Health Committee (NHC), Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
3
|
Yang J, Wang R, Cheng X, Qu H, Qi J, Li D, Xing Y, Bai Y, Zheng X. The vascular dilatation induced by Hydroxysafflor yellow A (HSYA) on rat mesenteric artery through TRPV4-dependent calcium influx in endothelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2020; 256:112790. [PMID: 32234595 DOI: 10.1016/j.jep.2020.112790] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hydroxysafflor yellow A (HSYA) is the principal constituent of the flowers of Carthamus tinctorius L., a traditional Chinese herbal medicine, which has been used for the treatment of cerebrovascular and cardiovascular diseases due to its property of promoting blood circulation and removing blood stasis. It is dominated in the water extract of Carthamus tinctorius L., which has been used in the clinical treatment for cardiovascular diseases. HSYA exerts a variety of pharmacological efficacy upon the vascular system. However, the underlying mechanisms remain unclear. AIM OF THE STUDY To investigate the vascular dilatation effect of HSYA on rat mesenteric artery (MA) and its potential mechanism. MATERIALS AND METHODS Adult male Wistar rats were applied to the study. Tension studies were conducted to determine the dilatation activity of HSYA against pre-contracted mesenteric arterial (MA) rings by U 46619 and Phenylephrine (PE). The vascular activities were measured with or without incubation with some selective inhibitors, including L-N(ω)-nitro-L-arginine methyl ester (L-NAME, a nitro oxide synthase inhibitor), HC-067047 (a selective TRPV4 antagonist), BaCl2 (a Kir channel blocker), and Indomethacin (Indo, a nonselective cyclooxygenase inhibitor), respectively. Immunocytochemistry, Calcium Imaging, NO Production detection, and Western Blot were also employed to further study the underlying mechanism. RESULTS HSYA reversed the constriction of MAs induced by U 46619 in a manner of concentration dependency, and the dilatation capability was reversed by L-NAME. This effect was significantly dependent on the intactness of MA endothelium, accompanying an increment of NO production in mesenteric arterial endothelium cells. The increment of NO production was reversed by inhibiting the PKA. Also, the expression of p-eNOS was activated by HSYA shown in Western Blot assays. The cells imaging revealed a significant increase and drop of the influx of Ca2+ before and after treatment with HC-067047. CONCLUSIONS These findings suggest that HSYA exerts vessel dilation effect on MAs via a TRPV4-dependent influx of Ca2+ in endothelium cells, PKA-dependent eNOS phosphorylation and NO production mechanism. The present study indicates that HSYA has the potential to be a future candidate for the treatment of hypertension.
Collapse
Affiliation(s)
- Jianfeng Yang
- College of Pharmacy, Harbin Medical University - Daqing, Daqing, 163319, China.
| | - Rui Wang
- College of Pharmacy, Harbin Medical University - Daqing, Daqing, 163319, China.
| | - Xiaohan Cheng
- College of Pharmacy, Harbin Medical University - Daqing, Daqing, 163319, China.
| | - HuiChong Qu
- College of Pharmacy, Harbin Medical University - Daqing, Daqing, 163319, China.
| | - Jing Qi
- College of Basic Medicine, Harbin Medical University - Daqing, Daqing, Heilongjiang, 163319, PR China.
| | - Dan Li
- College of Pharmacy, Harbin Medical University - Daqing, Daqing, 163319, China.
| | - Yan Xing
- College of Basic Medicine, Harbin Medical University - Daqing, Daqing, Heilongjiang, 163319, PR China.
| | - Yuhua Bai
- College of Pharmacy, Harbin Medical University - Daqing, Daqing, 163319, China.
| | - Xiaodong Zheng
- College of Basic Medicine, Harbin Medical University - Daqing, Daqing, Heilongjiang, 163319, PR China.
| |
Collapse
|
4
|
Kaßmann M, Szijártó IA, García‐Prieto CF, Fan G, Schleifenbaum J, Anistan Y, Tabeling C, Shi Y, le Noble F, Witzenrath M, Huang Y, Markó L, Nelson MT, Gollasch M. Role of Ryanodine Type 2 Receptors in Elementary Ca 2+ Signaling in Arteries and Vascular Adaptive Responses. J Am Heart Assoc 2019; 8:e010090. [PMID: 31030596 PMCID: PMC6512102 DOI: 10.1161/jaha.118.010090] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/07/2019] [Indexed: 12/29/2022]
Abstract
Background Hypertension is the major risk factor for cardiovascular disease, the most common cause of death worldwide. Resistance arteries are capable of adapting their diameter independently in response to pressure and flow-associated shear stress. Ryanodine receptors (RyRs) are major Ca2+-release channels in the sarcoplasmic reticulum membrane of myocytes that contribute to the regulation of contractility. Vascular smooth muscle cells exhibit 3 different RyR isoforms (RyR1, RyR2, and RyR3), but the impact of individual RyR isoforms on adaptive vascular responses is largely unknown. Herein, we generated tamoxifen-inducible smooth muscle cell-specific RyR2-deficient mice and tested the hypothesis that vascular smooth muscle cell RyR2s play a specific role in elementary Ca2+ signaling and adaptive vascular responses to vascular pressure and/or flow. Methods and Results Targeted deletion of the Ryr2 gene resulted in a complete loss of sarcoplasmic reticulum-mediated Ca2+-release events and associated Ca2+-activated, large-conductance K+ channel currents in peripheral arteries, leading to increased myogenic tone and systemic blood pressure. In the absence of RyR2, the pulmonary artery pressure response to sustained hypoxia was enhanced, but flow-dependent effects, including blood flow recovery in ischemic hind limbs, were unaffected. Conclusions Our results establish that RyR2-mediated Ca2+-release events in VSCM s specifically regulate myogenic tone (systemic circulation) and arterial adaptation in response to changes in pressure (hypoxic lung model), but not flow. They further suggest that vascular smooth muscle cell-expressed RyR2 deserves scrutiny as a therapeutic target for the treatment of vascular responses in hypertension and chronic vascular diseases.
Collapse
Affiliation(s)
- Mario Kaßmann
- Experimental and Clinical Research Centera joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular MedicineCharité–Universitätsmedizin BerlinBerlinGermany
- DZHK (German Centre for Cardiovascular Research), partner site BerlinBerlinGermany
| | - István András Szijártó
- Experimental and Clinical Research Centera joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular MedicineCharité–Universitätsmedizin BerlinBerlinGermany
| | - Concha F. García‐Prieto
- Experimental and Clinical Research Centera joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular MedicineCharité–Universitätsmedizin BerlinBerlinGermany
- Department of Pharmaceutical and Health SciencesFacultad de FarmaciaUniversidad CEU San PabloMadridSpain
| | - Gang Fan
- Experimental and Clinical Research Centera joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular MedicineCharité–Universitätsmedizin BerlinBerlinGermany
| | - Johanna Schleifenbaum
- Experimental and Clinical Research Centera joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular MedicineCharité–Universitätsmedizin BerlinBerlinGermany
| | - Yoland‐Marie Anistan
- Experimental and Clinical Research Centera joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular MedicineCharité–Universitätsmedizin BerlinBerlinGermany
| | - Christoph Tabeling
- Department of Infectious Diseases and Pulmonary MedicineCharité–Universitätsmedizin BerlinBerlinGermany
| | - Yu Shi
- Medical Clinic for Hematology, Oncology and Tumor ImmunologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Ferdinand le Noble
- Department of Cell and Developmental BiologyITG (Institute of Toxicology and Genetics)Karlsruhe Institute of TechnologyKarlsruheGermany
| | - Martin Witzenrath
- Department of Infectious Diseases and Pulmonary MedicineCharité–Universitätsmedizin BerlinBerlinGermany
| | - Yu Huang
- Institute of Vascular Medicine and School of Biomedical SciencesChinese University of Hong KongChina
| | - Lajos Markó
- Medical Clinic for Hematology, Oncology and Tumor ImmunologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Mark T. Nelson
- Department of PharmacologyCollege of MedicineThe University of VermontBurlingtonVT
| | - Maik Gollasch
- Experimental and Clinical Research Centera joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular MedicineCharité–Universitätsmedizin BerlinBerlinGermany
- DZHK (German Centre for Cardiovascular Research), partner site BerlinBerlinGermany
- Medical Clinic for Nephrology and Internal Intensive CareCharité–Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
5
|
Vasodilation effect of volatile oil from Allium macrostemon Bunge are mediated by PKA/NO pathway and its constituent dimethyl disulfide in isolated rat pulmonary arterials. Fitoterapia 2017; 120:52-57. [DOI: 10.1016/j.fitote.2017.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 02/01/2023]
|
6
|
Li SS, Ran YJ, Zhang DD, Li SZ, Zhu D. MicroRNA-190 regulates hypoxic pulmonary vasoconstriction by targeting a voltage-gated K⁺ channel in arterial smooth muscle cells. J Cell Biochem 2014; 115:1196-205. [PMID: 24446351 DOI: 10.1002/jcb.24771] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/16/2014] [Indexed: 01/02/2023]
Abstract
Pulmonary arterial hypertension (PAH) is associated with sustained vasoconstriction, profound structural remodeling of vasculatures and alterations in Ca(2+) homeostasis in arterial smooth muscle cells (SMCs), while the underlying mechanisms are still elusive. By regulating the expression of proteins, microRNAs (miRNAs) are known to play an important role in cell fates including differentiation, apoptosis and proliferation, and may be involved in the development of PAH. Based on our previous study, hypoxia produced a significant increase of the miR-190 level in the pulmonary artery (PA), here, we used synthetic miR-190 to mimic the increase in hypoxic conditions and showed evidence for the effects of miR-190 on pulmonary arterial vasoconstriction and Ca(2+) influx in arterial SMCs. Synthetic miR-190 remarkably enhanced the vasoconstriction responses to phenylephrine (PE) and KCl. The voltage-gated K(+) channel subfamily member, Kcnq5, mRNA was shown to be a target for miR-190. Meanwhile, miR-190 antisense oligos can partially reverse the effects of miR-190 on PASMCs and PAs. Therefore, these results suggest that miR-190 appears to be a positive regulator of Ca(2+) influx, and plays an important role in hypoxic pulmonary vascular constriction.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, China; Department of Biopharmaceutical Key Laboratory of Heilongjiang Province, 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, PR China
| | | | | | | | | |
Collapse
|
7
|
MicroRNA-138 plays a role in hypoxic pulmonary vascular remodelling by targeting Mst1. Biochem J 2013; 452:281-91. [PMID: 23485012 DOI: 10.1042/bj20120680] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Unbalanced apoptosis is a major cause of structural remodelling of vasculatures associated with PAH (pulmonary arterial hypertension), whereas the underlying mechanisms are still elusive. miRNAs (microRNAs) regulate the expression of several proteins that are important for cell fate, including differentiation, proliferation and apoptosis. It is possible that these regulatory RNA molecules play a role in the development of PAH. To test this hypothesis, we studied the effect of several miRNAs on the apoptosis of cultured PASMCs (pulmonary artery smooth muscle cells) and identified miR-138 to be an important player. miR-138 was expressed in PASMCs, and its expression was subjected to regulation by hypoxia. Expression of exogenous miR-138 suppressed PASMC apoptosis, prevented caspase activation and disrupted Bcl-2 signalling. The serine/threonine kinase Mst1, an amplifier of cell apoptosis, seemed to be a target of miR-138, and the activation of the Akt pathway was necessary for the anti-apoptotic effect of miR-138. Therefore the results of the present study suggest that miR-138 appears to be a negative regulator of PASMC apoptosis, and plays an important role in HPVR (hypoxic pulmonary vascular remodelling).
Collapse
|
8
|
Sun J, He W, Bai SZ, Peng X, Zhang N, Li HX, Zhang WH, Wang LN, Shao XQ, He YQ, Yang GD, Wu LY, Wang R, Xu CQ. The expression of calcium-sensing receptor in mouse embryonic stem cells (mESCs) and its influence on differentiation of mESC into cardiomyocytes. Differentiation 2013; 85:32-40. [PMID: 23314289 DOI: 10.1016/j.diff.2012.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 11/16/2012] [Accepted: 11/27/2012] [Indexed: 01/22/2023]
Abstract
The calcium-sensing receptor (CaSR), a G protein coupled receptor, is involved in a number of physiological and pathological processes. Embryonic stem cells (ESCs) have a potential role to differentiate into all types of cells. Whether CaSR is functionally expressed in ESCs is unclear. In this study, the expression and distribution of CaSR in 129 mouse ES-D3 cell lines were detected by Western blotting and immunofluorescence; and the intracellular calcium concentration ([Ca(2+)]i) was measured using Laser Confocal Scanning Microscopy. Mouse embryonic stem cells (mESCs) were cultured to embryoid bodies (EBs) and the differentiation of EBs into cardiomyocytes was induced by icariin (ICA). The cardiac specific proteins, a-Actinin and cardiac troponin-I (cTnI), were analyzed by immunofluorescence, and the differentiation rate was analyzed by flow cytometry. The expression of cardiac-specific transcription factors, Nkx2.5 and GATA-4, was detected by Western blotting. We found that the CaSR protein exists in both mESCs and mESC-derived cardiomyocytes (mESC-CMs). Increasing extracellular calcium or neomycin (an agonist of CaSR) increased [Ca(2+)]i and the differentiation rate. These effects were abolished by inhibition of CaSR, phospholipase C, IP3 receptor and Ca(2+) ATPase, or by depletion of the sarcoplasmic reticulum Ca(2+) store, respectively. Activation of CaSR up-regulated protein expression of Nkx2.5 and GATA4 in EBs at an early stage of ICA-induced differentiation. In conclusion, CaSR is functionally expressed in mESCs, and activation of CaSR is involved in the differentiation of mESCs into cardiomyocytes by facilitating the expression of NKx2.5 and GATA-4.
Collapse
Affiliation(s)
- Jian Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhang D, Ma C, Li S, Ran Y, Chen J, Lu P, Shi S, Zhu D. Effect of Mitofusin 2 on smooth muscle cells proliferation in hypoxic pulmonary hypertension. Microvasc Res 2012; 84:286-96. [PMID: 22771393 DOI: 10.1016/j.mvr.2012.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 06/25/2012] [Accepted: 06/25/2012] [Indexed: 12/28/2022]
Abstract
Mitofusin 2 (Mfn2) is an important mitochondrial protein in maintaining mitochondrial network and bioenergetics. Recently, Mfn2 has been reported to have a potential role in regulating cell proliferation, apoptosis, and differentiation in many cell types. In this study, we performed immunohistochemistry, pulmonary artery smooth muscle cells (PASMCs) DNA analysis, proliferating cell nuclear antigen expression and cell cycle analysis to determine the role of Mfn2 in hypoxia-induced pulmonary vascular remodeling. Our results showed that hypoxia promoted the proliferation of pulmonary artery smooth muscle cells, including regulating more cells at G(2)/M+S phase, increasing proliferating cell nuclear antigen and Cyclin A expression, whereas all these effects of hypoxia were suppressed after the cells were treated with siRNA against Mfn2. Our results also proved that PI3K/Akt signaling pathway was involved in Mfn2-induced smooth muscle cell proliferation. Thus, these results indicate that Mfn2 mediates PASMC proliferation in hypoxic pulmonary hypertension via the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, Heilongjiang Province, PR China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhu D, Ran Y. Role of 15-lipoxygenase/15-hydroxyeicosatetraenoic acid in hypoxia-induced pulmonary hypertension. J Physiol Sci 2012; 62:163-72. [PMID: 22331435 PMCID: PMC10717549 DOI: 10.1007/s12576-012-0196-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 01/25/2012] [Indexed: 12/01/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease with a complex aetiology characterized by elevated pulmonary artery resistance, which leads to right heart ventricular afterload and ultimately progressing to right ventricular failure and often death. In addition to other factors, metabolites of arachidonic acid cascade play an important role in the pulmonary vasculature, and disruption of signaling pathways of arachidonic acid plays a central role in the pathogenesis of PAH. 15-Lipoxygenase (15-LO) is upregulated in pulmonary artery endothelial cells and smooth muscle cells of PAH patients, and its metabolite 15-hydroxyeicosatetraenoic acid (15-HETE) in particular seems to play a central role in the contractile machinery, and in the initiation and propagation of cell proliferation via its effects on signal pathways, mitogens, and cell cycle components. Here, we focus on our important research into the role played by 15-LO/15-HETE, which promotes a proliferative, antiapoptotic, and vasoconstrictive physiological milieu leading to hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Daling Zhu
- College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, Heilongjiang, People's Republic of China.
| | | |
Collapse
|
11
|
Xing WJ, Kong FJ, Li GW, Qiao K, Zhang WH, Zhang L, Bai SZ, Xi YH, Li HX, Tian Y, Ren H, Wu LY, Wang R, Xu CQ. Calcium-sensing receptors induce apoptosis during simulated ischaemia-reperfusion in Buffalo rat liver cells. Clin Exp Pharmacol Physiol 2012; 38:605-12. [PMID: 21692826 DOI: 10.1111/j.1440-1681.2011.05559.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
1. Calcium-sensing receptors (CaSR) exist in a variety of tissues. In 2010, we first identified its functional expression in Buffalo rat liver (BRL) cells and demonstrated that the activation of CaSR was involved in an increased intracellular calcium through the Gq subunit-phospholipase C-inositol triphosphate pathway. However, its role and related mechanism in hepatic ischaemia/reperfusion (I/R) injury is still unclear. 2. Therefore, in the present study, BRL cells were incubated in ischaemia-mimetic solution for 4 h, then reincubated in the normal culture medium for 10 h to establish a simulated I/R model. We assayed the apoptotic ratio of BRL cells by flow cytometry and Hoechst 33342 staining; analyzed the expression of CaSR, cytochrome c (Cyt-c), caspase-3, Bcl-2, Bax, extracellular signal-regulated protein kinase (ERK), and p38 by Western blotting; and measured the concentration of intracellular calcium by laser-scanning confocal microscopy. 3. The results showed that simulated I/R increased the expression of CaSR and induced apoptosis in BRL cells. GdCl(3), a specific activator of CaSR, further increased CaSR expression, intracellular calcium, and apoptosis in BRL cells during I/R. The activation of CaSR downregulated Bcl-2 expression, upregulated Cyt-c, caspase-3, and Bax expressions, and promoted p38 and ERK-1/2 phosphorylation. 4. In conclusion, increased CaSR expression plays a vital role in apoptosis induced by I/R injury, in which its mechanism is related with calcium overload and the activation of the mitochondrial and mitogen-activated protein kinase apoptotic pathways. The regulation of CaSR activity might serve as a novel pharmacological target to prevent and treat liver disease.
Collapse
Affiliation(s)
- Wen-Jing Xing
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yu L, Liu Y, Qiu Z, Liu S, Gao X, Zhu D. Cellular mechanisms and intracellular signaling pathways for the modulation of eNOS in pulmonary arteries by 15-HETE. J Recept Signal Transduct Res 2012; 32:87-95. [DOI: 10.3109/10799893.2012.660530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
13
|
Li GW, Wang QS, Hao JH, Xing WJ, Guo J, Li HZ, Bai SZ, Li HX, Zhang WH, Yang BF, Yang GD, Wu LY, Wang R, Xu CQ. The functional expression of extracellular calcium-sensing receptor in rat pulmonary artery smooth muscle cells. J Biomed Sci 2011; 18:16. [PMID: 21314926 PMCID: PMC3050794 DOI: 10.1186/1423-0127-18-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 02/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The extracellular calcium-sensing receptor (CaSR) belongs to family C of the G protein coupled receptors. Whether the CaSR is expressed in the pulmonary artery (PA) is unknown. METHODS The expression and distribution of CaSR were detected by RT-PCR, Western blotting and immunofluorescence. PA tension was detected by the pulmonary arterial ring technique, and the intracellular calcium concentration ([Ca2+]i) was detected by a laser-scanning confocal microscope. RESULTS The expressions of CaSR mRNA and protein were found in both rat pulmonary artery smooth muscle cells (PASMCs) and PAs. Increased levels of [Ca2+]o (extracellular calcium concentration) or Gd3+ (an agonist of CaSR) induced an increase of [Ca2+]i and PAs constriction in a concentration-dependent manner. In addition, the above-mentioned effects of Ca2+ and Gd3+ were inhibited by U73122 (specific inhibitor of PLC), 2-APB (specific antagonist of IP3 receptor), and thapsigargin (blocker of sarcoplasmic reticulum calcium ATPase). CONCLUSIONS CaSR is expressed in rat PASMCs, and is involved in regulation of PA tension by increasing [Ca2+]i through G-PLC-IP3 pathway.
Collapse
Affiliation(s)
- Guang-wei Li
- Department of Pathophysiology, Qiqihar Medical University, Qiqihar 161006, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Stable EET urea agonist and soluble epoxide hydrolase inhibitor regulate rat pulmonary arteries through TRPCs. Hypertens Res 2011; 34:630-9. [PMID: 21307870 DOI: 10.1038/hr.2011.5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epoxyeicosatrienoic acids (EETs), cytochrome P450-derived metabolites of arachidonic acid, have been reported to increase intracellular calcium concentration in aortic vascular smooth muscle cells (SMCs). As EETs are labile, we synthesized a new stable urea EET analog with agonist and soluble epoxide hydrolase (sEH) inhibitor properties. We refer to this analog, 12-(3-hexylureido)dodec-8-enoic acid, as 8-HUDE. Measuring tension of vascular rings, intracellular calcium signaling by confocal laser scanning microscopy and gene expression by reverse-transcription-PCR and western blots, we examined the effects of 8-HUDE on pulmonary vascular tone and calcium signaling in rat pulmonary artery (PA) SMCs (PASMCs). 8-HUDE increased the tension of rat PAs to 145% baseline, whereas it had no effect on the tension of mesenteric arteries (MAs). The 8-HUDE-induced increase in vascular tone was abolished by removal of extracellular Ca(2+) or by pretreatment with either La(3+) or SKF96365, which are inhibitors of canonical transient receptor potential channels (TRPCs). Furthermore, 8-HUDE-evoked increases in [Ca(2+)](i) in PASMCs could be blunted by inhibition of TRPC with SKF96365, removal of extracellular calcium or depletion of intracellular calcium stores with caffeine, cyclopiazonic acid or 2-aminoethoxydiphenyl borate, but not by the voltage-activated calcium channel blocker nifedipine. In addition to immediate effects on calcium signaling, 8-HUDE upregulated the expression of TRPC1 and TRPC6 at both mRNA and protein levels in rat PASMCs, whereas it suppressed the expression of sEH. Our observations suggest that 8-HUDE increases PA vascular tone through increased release of calcium from intracellular stores, enhanced [Ca(2+)](i) influx in PASMCs through store-operated Ca(2+) channels and modulated the expression of TRPC and sEH proteins in a proconstrictive manner.
Collapse
|
15
|
Zhang L, Ma J, Li Y, Guo L, Ran Y, Liu S, Jiang C, Zhu D. 15-Hydroxyeicosatetraenoic acid (15-HETE) protects pulmonary artery smooth muscle cells against apoptosis via HSP90. Life Sci 2010; 87:223-31. [DOI: 10.1016/j.lfs.2010.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 05/20/2010] [Accepted: 06/14/2010] [Indexed: 01/11/2023]
|
16
|
15-HETE mediates sub-acute hypoxia-induced TRPC1 expression and enhanced capacitative calcium entry in rat distal pulmonary arterial myocytes. Prostaglandins Other Lipid Mediat 2010; 93:60-74. [PMID: 20599518 DOI: 10.1016/j.prostaglandins.2010.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 06/03/2010] [Accepted: 06/24/2010] [Indexed: 12/28/2022]
Abstract
Sub-acute hypoxia causes pulmonary vasoconstriction (HPV) is associated with increased intracellular Ca(2+) concentration ([Ca(2+)](i)) and contraction of pulmonary arterial smooth muscle cells (PASMCs). We previous have demonstrated that 15-hydroxyeicosatetraenoic acid (15-HETE), a metabolite of arachidonic acid by 15-lipoxygenase (15-LO), causes elevated [Ca(2+)](i) in PASMCs partly through Ca(2+) entry via other than L-type Ca(2+) channels. In this study, we used SKF96365/La(3+) (SOCC antagonists) and Nordihydro-guiairetic acid (NDGA, a blockage of 15-LO) to examine the effect of 15-HETE on capacitative Ca(2+) entry and activity/expression of store-operated Ca(2+) channels (SOCCs) during sub-acute hypoxic procedure and the contribution of SOCCs on the maintenance of vascular tones. The results showed that the 15-HETE induced constriction of PA rings from normoxic and sub-acute hypoxic rats can be abolished by SKF96365 and La(3+). Capacitative Ca(2+) entry (CCE) was also enhanced in PASMCs cultured with 15-HETE under sub-acute hypoxic condition (3% O(2), 48h) and incubation with NDGA in PASMCs can greatly suppress this enhancement. Moreover, TRPC1, not TRPC4 and TRPC6, mRNA and protein expression were increased in PASMCs during these procedures. Meanwhile, the effect of 15-HETE on CCE and TRPC1 expression under sub-acute hypoxic cultivation were greatly suppressed in 15-LO knockdown PASMCs and PAs. These results suggest that 15-HETE mediated HPV through increased TRPC1 expression, leading to enhanced CCE, contributing to the maintenance of vascular tone.
Collapse
|
17
|
Xing W, Li G, Xi Y, Guo J, Li H, Li H, Zhang W, Zhang L, Wu L, Wang R, Xu C. The functional expression of calcium-sensing receptors in BRL cells and related signal transduction pathway responsible for intracellular calcium elevation. Mol Cell Biochem 2010; 343:13-9. [DOI: 10.1007/s11010-010-0493-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/05/2010] [Indexed: 11/29/2022]
|
18
|
The functional expression of calcium-sensing receptor in the differentiated THP-1 cells. Mol Cell Biochem 2010; 342:233-40. [PMID: 20473557 DOI: 10.1007/s11010-010-0489-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/04/2010] [Indexed: 10/19/2022]
Abstract
The expression and function of calcium-sensing receptor (CaSR) in differentiated THP-1 (human acute monocytic leukemia cell line) cells are unknown currently. This study investigated above-mentioned issues using TRAP staining, immunofluorescence staining, Western blotting, ELISA, and Laser Confocal Scanning Microscopy techniques. We found that CaSR protein was expressed, and mainly located in the membrane and cytoplasm in differentiated THP-1 cells. Elevated extracellular calcium or GdCl(3) (an agonist of CaSR) raised intracellular calcium concentration. And this increase was inhibited or abolished by NPS2390 (an inhibitor of CaSR), U73122 (a specific inhibitor of phospholipase C, PLC) or thapsigargin (a Ca(2+)-ATPase inhibitor). The extracellular GdCl(3) elevation stimulated both of IL-1beta and TNFalpha release, and this effect of GdCl(3) was inhibited by NPS2390. In conclusion, CaSR is functionally expressed in differentiated THP-1 cells, and the activated CaSR contributes to intracellular calcium increment through Gq-PLC- inositol triphosphate (IP3) pathway and commits to cytokine secretion. These results suggest that CaSR might be involved in a variety of pathological processes mediated by activated monocyte-macrophages.
Collapse
|
19
|
Affiliation(s)
- Peter H. Hackett
- Institute for Altitude Medicine, Telluride, CO and Altitude Research Center, University of Colorado, Denver School of Medicine, Aurora, CO
| |
Collapse
|
20
|
Wang Y, Liang D, Wang S, Qiu Z, Chu X, Chen S, Li L, Nie X, Zhang R, Wang Z, Zhu D. Role of the G-protein and tyrosine kinase--Rho/ROK pathways in 15-hydroxyeicosatetraenoic acid induced pulmonary vasoconstriction in hypoxic rats. J Biochem 2010; 147:751-64. [DOI: 10.1093/jb/mvq010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Guo L, Tang X, Chu X, Sun L, Zhang L, Qiu Z, Chen S, Li Y, Zheng X, Zhu D. Role of protein kinase C in 15-HETE-induced hypoxic pulmonary vasoconstriction. Prostaglandins Leukot Essent Fatty Acids 2009; 80:115-23. [PMID: 19186045 DOI: 10.1016/j.plefa.2008.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 11/15/2008] [Accepted: 11/17/2008] [Indexed: 11/18/2022]
Abstract
The aim of the present study was to investigate the roles of protein kinase C (PKC) signal transduction pathway in the 15-hydroxyeicosatetraenoic acid (15-HETE)-induced down-regulation expression of K(V) 1.5, K(V) 2.1 and K(V) 3.4, and pulmonary vasoconstriction under hypoxia. Tension measurements on rat pulmonary artery (PA) rings, Western blots, semi-quantitative PCR and whole-cell patch-clamp technique were employed to investigate the effects of 15-HETE on PKC and K(V) channels. Hypericin (6.8 micromol/L), a PKC inhibitor, significantly attenuated the constriction of PA rings to 15-HETE under hypoxia. The down-regulation of K(V) 1.5, K(V) 2.1 and K(V) 3.4 channel expression and inhibition of whole-cell K currents (I(K)(V)) induced by 15-HETE were rescued and restored, respectively, by hypericin. These studies indicate that the PKC signal transduction pathway is involved in 15-HETE-induced rat pulmonary vasoconstriction under hypoxia. 15-HETE suppresses the expression of K(V) 1.5, K(V) 2.1 and K(V) 3.4 channels and inhibits I(K)(V) through the PKC signaling pathway in pulmonary arterial smooth muscle cells.
Collapse
Affiliation(s)
- Lei Guo
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|