1
|
Fukuyama K, Motomura E, Okada M. Enhanced L-β-Aminoisobutyric Acid Is Involved in the Pathophysiology of Effectiveness for Treatment-Resistant Schizophrenia and Adverse Reactions of Clozapine. Biomolecules 2023; 13:biom13050862. [PMID: 37238731 DOI: 10.3390/biom13050862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Clozapine is an effective antipsychotic for the treatment of antipsychotic-resistant schizophrenia; however, specific types of A/B adverse effects and clozapine-discontinuation syndromes are also well known. To date, both the critical mechanisms of clinical actions (effective for antipsychotic-resistant schizophrenia) and the adverse effects of clozapine remain to be elucidated. Recently, we demonstrated that clozapine increased the synthesis of L-β-aminoisobutyric acid (L-BAIBA) in the hypothalamus. L-BAIBA is an activator of the adenosine monophosphate-activated protein kinase (AMPK), glycine receptor, GABAA receptor, and GABAB receptor (GABAB-R). These targets of L-BAIBA overlap as potential targets other than the monoamine receptors of clozapine. However, the direct binding of clozapine to these aminoacidic transmitter/modulator receptors remains to be clarified. Therefore, to explore the contribution of increased L-BAIBA on the clinical action of clozapine, this study determined the effects of clozapine and L-BAIBA on tripartite synaptic transmission, including GABAB-R and the group-III metabotropic glutamate receptor (III-mGluR) using cultured astrocytes, as well as on the thalamocortical hyper-glutamatergic transmission induced by impaired glutamate/NMDA receptors using microdialysis. Clozapine increased astroglial L-BAIBA synthesis in time/concentration-dependent manners. Increased L-BAIBA synthesis was observed until 3 days after clozapine discontinuation. Clozapine did not directly bind III-mGluR or GABAB-R, whereas L-BAIBA activated these receptors in the astrocytes. Local administration of MK801 into the reticular thalamic nucleus (RTN) increased L-glutamate release in the medial frontal cortex (mPFC) (MK801-evoked L-glutamate release). Local administration of L-BAIBA into the mPFC suppressed MK801-evoked L-glutamate release. These actions of L-BAIBA were inhibited by antagonists of III-mGluR and GABAB-R, similar to clozapine. These in vitro and in vivo analyses suggest that increased frontal L-BAIBA signaling likely plays an important role in the pharmacological actions of clozapine, such as improving the effectiveness of treating treatment-resistant schizophrenia and several clozapine discontinuation syndromes via the activation of III-mGluR and GABAB-R in the mPFC.
Collapse
Affiliation(s)
- Kouji Fukuyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Eishi Motomura
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan
| |
Collapse
|
2
|
Abstract
Gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain, acts at the ionotropic GABAA and GABAC receptors, and the metabotropic GABAB receptor. This chapter summarizes the studies that have investigated the role of the GABAB receptor in stress-related psychiatric disorders including anxiety and mood disorders. Overall, clinical and preclinical evidences strongly suggest that the GABAB receptor is a therapeutic candidate for depression and anxiety disorders. However, the clinical development of GABAB receptor-based drugs to treat these disorders has been hampered by their potential side-effects, particularly those of agonists. Nevertheless, the discovery of novel GABAB receptor allosteric modulators, and increasing understanding of the influence of specific intracellular GABAB receptor-associated proteins on GABAB receptor activity, may now pave the way towards GABAB receptor therapeutics in the treatment of mood and anxiety disorders.
Collapse
Affiliation(s)
- Daniela Felice
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
3
|
Vlachou S. A Brief History and the Significance of the GABA B Receptor. Curr Top Behav Neurosci 2021; 52:1-17. [PMID: 34595739 DOI: 10.1007/7854_2021_264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. GABA type B (GABAB) receptors (GABABRs) are the only metabotropic G protein-coupled receptors for GABA and can be found distributed not only in the central nervous system, but also in the periphery. This chapter introduces important, fundamental knowledge related to GABABR function and the various potential therapeutic applications of the development of novel GABABR-active compounds, as documented through extensive studies presented in subsequent chapters of this Current Topic in Behavioral Neurosciences volume on the role of the neurobiology of GABABR function. The compounds that have received increased attention in the last few years compared to GABABR agonists and antagonists - the positive allosteric modulators - exhibit better pharmacological profiles and fewer side effects. As we continue to unveil the mystery of GABABRs at the molecular and cellular levels, we further understand the significance of these receptors. Future directions should aim for developing highly selective GABABR compounds for treating neuropsychiatric disorders and their symptomatology.
Collapse
Affiliation(s)
- Styliani Vlachou
- Neuropsychopharmacology Division, Behavioural Neuroscience Laboratory, School of Psychology, Faculty of Science and Health, Dublin City University, Dublin, Ireland.
| |
Collapse
|
4
|
GABA B Receptor Chemistry and Pharmacology: Agonists, Antagonists, and Allosteric Modulators. Curr Top Behav Neurosci 2021; 52:81-118. [PMID: 34036555 DOI: 10.1007/7854_2021_232] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The GABAB receptors are metabotropic G protein-coupled receptors (GPCRs) that mediate the actions of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA). In the CNS, GABA plays an important role in behavior, learning and memory, cognition, and stress. GABA is also located throughout the gastrointestinal (GI) tract and is involved in the autonomic control of the intestine and esophageal reflex. Consequently, dysregulated GABAB receptor signaling is associated with neurological, mental health, and gastrointestinal disorders; hence, these receptors have been identified as key therapeutic targets and are the focus of multiple drug discovery efforts for indications such as muscle spasticity disorders, schizophrenia, pain, addiction, and gastroesophageal reflex disease (GERD). Numerous agonists, antagonists, and allosteric modulators of the GABAB receptor have been described; however, Lioresal® (Baclofen; β-(4-chlorophenyl)-γ-aminobutyric acid) is the only FDA-approved drug that selectively targets GABAB receptors in clinical use; undesirable side effects, such as sedation, muscle weakness, fatigue, cognitive deficits, seizures, tolerance and potential for abuse, limit their therapeutic use. Here, we review GABAB receptor chemistry and pharmacology, presenting orthosteric agonists, antagonists, and positive and negative allosteric modulators, and highlight the therapeutic potential of targeting GABAB receptor modulation for the treatment of various CNS and peripheral disorders.
Collapse
|
5
|
Xia S, He C, Zhu Y, Wang S, Li H, Zhang Z, Jiang X, Liu J. GABA BR-Induced EGFR Transactivation Promotes Migration of Human Prostate Cancer Cells. Mol Pharmacol 2017; 92:265-277. [PMID: 28424220 DOI: 10.1124/mol.116.107854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/14/2017] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) act in concert to regulate cell growth, proliferation, survival, and migration. Metabotropic GABAB receptor (GABABR) is the GPCR for the main inhibitory neurotransmitter GABA in the central nervous system. Increased expression of GABABR has been detected in human cancer tissues and cancer cell lines, but the role of GABABR in these cells is controversial and the underlying mechanism remains poorly understood. Here, we investigated whether GABABR hijacks RTK signaling to modulate the fates of human prostate cancer cells. RTK array analysis revealed that the GABABR-specific agonist baclofen selectively induced the transactivation of EGFR in PC-3 cells. EGFR transactivation resulted in the activation of ERK1/2 by a mechanism that is dependent on Gi/o protein and that requires matrix metalloproteinase-mediated proligand shedding. Positive allosteric modulators (PAMs) of GABABR, such as CGP7930, rac-BHFF, and GS39783, can function as PAM agonists to induce EGFR transactivation and subsequent ERK1/2 activation. Moreover, both baclofen and CGP7930 promoted cell migration and invasion through EGFR signaling. In summary, our observations demonstrated that GABABR transactivated EGFR in a ligand-dependent mechanism to promote prostate cancer cell migration and invasion, thus providing new insights into developing a novel strategy for prostate cancer treatment by targeting neurotransmitter signaling.
Collapse
Affiliation(s)
- Shuai Xia
- Cell Signaling Laboratory, College of Life Science and Technology, Collaborative Innovation Center for Genetics and Development, and Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Cong He
- Cell Signaling Laboratory, College of Life Science and Technology, Collaborative Innovation Center for Genetics and Development, and Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yini Zhu
- Cell Signaling Laboratory, College of Life Science and Technology, Collaborative Innovation Center for Genetics and Development, and Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Suyun Wang
- Cell Signaling Laboratory, College of Life Science and Technology, Collaborative Innovation Center for Genetics and Development, and Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Huiping Li
- Cell Signaling Laboratory, College of Life Science and Technology, Collaborative Innovation Center for Genetics and Development, and Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhongling Zhang
- Cell Signaling Laboratory, College of Life Science and Technology, Collaborative Innovation Center for Genetics and Development, and Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xinnong Jiang
- Cell Signaling Laboratory, College of Life Science and Technology, Collaborative Innovation Center for Genetics and Development, and Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jianfeng Liu
- Cell Signaling Laboratory, College of Life Science and Technology, Collaborative Innovation Center for Genetics and Development, and Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
6
|
Raveh A, Turecek R, Bettler B. Mechanisms of fast desensitization of GABA(B) receptor-gated currents. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 73:145-65. [PMID: 25637440 DOI: 10.1016/bs.apha.2014.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GABA(B) receptors (GABA(B)Rs) regulate the excitability of most neurons in the central nervous system by modulating the activity of enzymes and ion channels. In the sustained presence of the neurotransmitter γ-aminobutyric acid, GABA(B)Rs exhibit a time-dependent decrease in the receptor response-a phenomenon referred to as homologous desensitization. Desensitization prevents excessive receptor influences on neuronal activity. Much work focused on the mechanisms of GABA(B)R desensitization that operate at the receptor and control receptor expression at the plasma membrane. Over the past few years, it became apparent that GABA(B)Rs additionally evolved mechanisms for faster desensitization. These mechanisms operate at the G protein rather than at the receptor and inhibit G protein signaling within seconds of agonist exposure. The mechanisms for fast desensitization are ideally suited to regulate receptor-activated ion channel responses, which influence neuronal activity on a faster timescale than effector enzymes. Here, we provide an update on the mechanisms for fast desensitization of GABA(B)R responses and discuss physiological and pathophysiological implications.
Collapse
Affiliation(s)
- Adi Raveh
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Basel, Switzerland
| | - Rostislav Turecek
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Basel, Switzerland; Department of Auditory Neuroscience, Institute of Experimental Medicine, ASCR, Prague, Czech Republic
| | - Bernhard Bettler
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
7
|
Filip M, Frankowska M, Sadakierska-Chudy A, Suder A, Szumiec Ł, Mierzejewski P, Bienkowski P, Przegaliński E, Cryan JF. GABAB receptors as a therapeutic strategy in substance use disorders: Focus on positive allosteric modulators. Neuropharmacology 2015; 88:36-47. [DOI: 10.1016/j.neuropharm.2014.06.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/10/2014] [Accepted: 06/15/2014] [Indexed: 12/16/2022]
|
8
|
Chen LH, Sun B, Zhang Y, Xu TJ, Xia ZX, Liu JF, Nan FJ. Discovery of a Negative Allosteric Modulator of GABAB Receptors. ACS Med Chem Lett 2014; 5:742-7. [PMID: 25050158 PMCID: PMC4094264 DOI: 10.1021/ml500162z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 05/27/2014] [Indexed: 12/11/2022] Open
Abstract
Initialized from the scaffold of CGP7930, an allosteric agonist of GABAB receptors, a series of noncompetitive antagonists were discovered. Among these compounds, compounds 3, 6, and 14 decreased agonist GABA-induced maximal effect of IP3 production in HEK293 cells overexpressing GABAB receptors and Gqi9 proteins without changing the EC50. Compounds 3, 6, and 14 not only inhibited agonist baclofen-induced ERK1/2 phosphorylation but also blocked CGP7930-induced ERK1/2 phosphorylation in HEK293 cells overexpressing GABAB receptors. The results suggested that compounds 3, 6, and 14 are negative allosteric modulators of GABAB receptors. The representative compound 14 decreased GABA-induced IP3 production with IC50 of 37.9 μM and had no effect on other GPCR Class C members such as mGluR1, mGluR2, and mGluR5. Finally, we showed that compound 14 did not bind to the orthosteric binding sites of GABAB receptors, demonstrating that compound 14 negatively modulated GABAB receptors activity as a negative allosteric modulator.
Collapse
Affiliation(s)
- Lin-Hai Chen
- National
Center for Drug Screening, State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese
Academy of Sciences, Shanghai, China
| | - Bing Sun
- Cellular
Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry
of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Zhang
- Cellular
Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry
of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tong-Jie Xu
- Cellular
Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry
of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhi-Xiong Xia
- Cellular
Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry
of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian-Feng Liu
- Cellular
Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry
of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fa-Jun Nan
- National
Center for Drug Screening, State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese
Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Lu FF, Su P, Liu F, Daskalakis ZJ. Activation of GABA(B) receptors inhibits protein kinase B/glycogen synthase kinase 3 signaling. Mol Brain 2012. [PMID: 23192081 PMCID: PMC3547758 DOI: 10.1186/1756-6606-5-41] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Accumulated evidence has suggested that potentiation of cortical GABAergic inhibitory neurotransmission may be a key mechanism in the treatment of schizophrenia. However, the downstream molecular mechanisms related to GABA potentiation remain unexplored. Recent studies have suggested that dopamine D2 receptor antagonists, which are used in the clinical treatment of schizophrenia, modulate protein kinase B (Akt)/glycogen synthase kinase (GSK)-3 signaling. Here we report that activation of GABAB receptors significantly inhibits Akt/GSK-3 signaling in a β-arrestin-dependent pathway. Agonist stimulation of GABAB receptors enhances the phosphorylation of Akt (Thr-308) and enhances the phosphorylation of GSK-3α (Ser-21)/β (Ser-9) in both HEK-293T cells expressing GABAB receptors and rat hippocampal slices. Furthermore, knocking down the expression of β-arrestin2 using siRNA abolishes the GABAB receptor-mediated modulation of GSK-3 signaling. Our data may help to identify potentially novel targets through which GABAB receptor agents may exert therapeutic effects in the treatment of schizophrenia.
Collapse
|
10
|
Cooke JE, Mathers DA, Puil E. R-Isovaline: a subtype-specific agonist at GABA(B)-receptors? Neuroscience 2011; 201:85-95. [PMID: 22079439 DOI: 10.1016/j.neuroscience.2011.10.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 02/02/2023]
Abstract
The R-enantiomer of isovaline, an analgesic amino acid, has a chemical structure similar to glycine and GABA. Although its actions on thalamic neurons are strychnine-resistant and independent of the Cl(-) gradient, R-isovaline increases membrane conductance for K(+). The purpose of this study was to determine if R-isovaline activated metabotropic GABA(B) receptors. We used whole-cell voltage-clamp recordings to characterize the effects of R-isovaline applied by bath perfusion and local ejection from a micropipette to thalamic neurons in 250 μm thick slices of rat brain. The immunocytochemical methods that we employed to visualize GABA(B1) and GABA(B2) receptor subunits showed extensive staining for both subunits in ventrobasal nuclei, which were the recording sites. Bath or local application of R-isovaline caused a slowly developing increase in conductance and outward rectification in 70% (54/77) of neurons, both effects reversing near the K(+) Nernst potential. As with the GABA(B) agonist baclofen, G proteins likely mediated the R-isovaline effects because they were susceptible to blockade by non-hydrolyzable substrates of guanosine triphosphate. The GABA(B) antagonists CGP35348 and CGP52432 prevented the conductance increase induced by R-isovaline, applied by bath or local ejection. The GABA(B) allosteric modulator CGP7930 enhanced the R-isovaline induced increase in conductance. At high doses, antagonists of GABA(A), GABA(C), glycine(A), μ-opioid, and nicotinic receptors did not block R-isovaline responses. The observations establish that R-isovaline increases the conductance of K(+) channels coupled to metabotropic GABA(B) receptors. Remarkably, not all neurons that were responsive to baclofen responded to R-isovaline. The R-isovaline-induced currents outlasted the fast baclofen responses and persisted for a 1-2-h period. Despite some similar actions, R-isovaline and baclofen do not act at identical GABA(B) receptor sites. The binding of R-isovaline and baclofen to the GABA(B) receptor may not induce the same conformational changes in receptor proteins or components of the intracellular signaling pathways.
Collapse
Affiliation(s)
- J E Cooke
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
11
|
Gannon RL, Millan MJ. Positive allosteric modulators at GABAB receptors exert intrinsic actions and enhance the influence of baclofen on light-induced phase shifts of hamster circadian activity rhythms. Pharmacol Biochem Behav 2011; 99:712-7. [DOI: 10.1016/j.pbb.2011.06.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/20/2011] [Accepted: 06/24/2011] [Indexed: 11/28/2022]
|
12
|
Urwyler S. Allosteric modulation of family C G-protein-coupled receptors: from molecular insights to therapeutic perspectives. Pharmacol Rev 2011; 63:59-126. [PMID: 21228259 DOI: 10.1124/pr.109.002501] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Allosteric receptor modulation is an attractive concept in drug targeting because it offers important potential advantages over conventional orthosteric agonism or antagonism. Allosteric ligands modulate receptor function by binding to a site distinct from the recognition site for the endogenous agonist. They often have no effect on their own and therefore act only in conjunction with physiological receptor activation. This article reviews the current status of allosteric modulation at family C G-protein coupled receptors in the light of their specific structural features on the one hand and current concepts in receptor theory on the other hand. Family C G-protein-coupled receptors are characterized by a large extracellular domain containing the orthosteric agonist binding site known as the "venus flytrap module" because of its bilobal structure and the dynamics of its activation mechanism. Mutational analysis and chimeric constructs have revealed that allosteric modulators of the calcium-sensing, metabotropic glutamate and GABA(B) receptors bind to the seven transmembrane domain, through which they modify signal transduction after receptor activation. This is in contrast to taste-enhancing molecules, which bind to different parts of sweet and umami receptors. The complexity of interactions between orthosteric and allosteric ligands is revealed by a number of adequate biochemical and electrophysiological assay systems. Many allosteric family C GPCR modulators show in vivo efficacy in behavioral models for a variety of clinical indications. The positive allosteric calcium sensing receptor modulator cinacalcet is the first drug of this type to enter the market and therefore provides proof of principle in humans.
Collapse
Affiliation(s)
- Stephan Urwyler
- Department of Chemistry and Biochemistry, University of Berne, P/A Weissensteinweg 3, CH-3303 Jegenstorf, Berne, Switzerland.
| |
Collapse
|
13
|
|
14
|
Froestl W. Chemistry and Pharmacology of GABAB Receptor Ligands. GABABRECEPTOR PHARMACOLOGY - A TRIBUTE TO NORMAN BOWERY 2010; 58:19-62. [DOI: 10.1016/s1054-3589(10)58002-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|