1
|
Santiago FS, Sanchez-Guerrero E, Zhang G, Zhong L, Raftery MJ, Khachigian LM. Extracellular signal-regulated kinase-1 phosphorylates early growth response-1 at serine 26. Biochem Biophys Res Commun 2019; 510:345-351. [PMID: 30711252 DOI: 10.1016/j.bbrc.2019.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/04/2019] [Indexed: 11/30/2022]
Abstract
Egr-1, an immediate-early gene product and master regulator was originally described as a phosphoprotein following its discovery in the 1980s. However specific residue(s) phosphorylated in Egr-1 remain elusive. Here we phosphorylated recombinant Egr-1 in vitro with ERK1 prior to mass spectrometry, which identified phosphorylation of Ser12 and Ser26 with the latter ∼12 times more abundant than Ser12. Phosphorylation of wild-type recombinant Egr-1 (as compared with Ser26>Ala26 mutant Egr-1) revealed that Ser26 accounts for the majority of phosphorylation of Egr-1 by ERK1. N-FGSFPH(pS)PTMDNYC-C was used as an antigen to generate mouse monoclonal antibodies (pS26 MAb). pS26 MAb recognised ERK1-phosphorylated Egr-1 but not Egr-1 bearing a point mutation at Ser26. pS26 MAb recognised inducible ∼75 kDa and 100 kDa species in nuclear extracts of cells exposed to FGF-2. Peptide blocking revealed both inducible species were phosphosite-specific. Immunoprecipitation of nuclear extracts of cells exposed to FGF-2 with pS26 MAb followed by SDS-PAGE and mass spectrometry identified Egr-1 sequences corresponding to the ∼75 kDa species but not ∼100 kDa species. This study identifies a specific amino acid phosphorylated in endogenous Egr-1.
Collapse
Affiliation(s)
- Fernando S Santiago
- Vascular Biology and Translational Research Laboratory, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | - Guishui Zhang
- UNSW Medicine, University of New South Wales, Sydney, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, Australia
| | - Mark J Raftery
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research Laboratory, School of Medical Sciences, University of New South Wales, Sydney, Australia; UNSW Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
2
|
Severino A, Zara C, Campioni M, Flego D, Angelini G, Pedicino D, Giglio AF, Trotta F, Giubilato S, Pazzano V, Lucci C, Iaconelli A, Ruggio A, Biasucci LM, Crea F, Liuzzo G. Atorvastatin inhibits the immediate-early response gene EGR1 and improves the functional profile of CD4+T-lymphocytes in acute coronary syndromes. Oncotarget 2017; 8:17529-17550. [PMID: 28407684 PMCID: PMC5392205 DOI: 10.18632/oncotarget.15420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/07/2017] [Indexed: 01/03/2023] Open
Abstract
Background- Adaptive immune-response is associated with a worse outcome in acute coronary syndromes. Statins have anti-inflammatory activity beyond lowering lipid levels. We investigated the effects of ex-vivo and in-vivo atorvastatin treatment in acute coronary syndromes on CD4+T-cells, and the underlying molecular mechanisms.Approach and results- Blood samples were collected from 50 statin-naïve acute coronary syndrome patients. We assessed CD4+T-cell activation by flow-cytometry, the expression of 84 T-helper transcription-factors and 84 T-cell related genes by RT-qPCR, and protein expression by Western-blot, before and after 24-hours incubation with increasing doses of atorvastatin: 3-10-26 μg/ml (corresponding to blood levels achieved with doses of 10-40-80 mg, respectively). After incubation, we found a significant decrease in interferon-γ-producing CD4+CD28nullT-cells (P = 0.009) and a significant increase in interleukin-10-producing CD4+CD25highT-cells (P < 0.001). Atorvastatin increased the expression of 2 genes and decreased the expression of 12 genes (in particular, EGR1, FOS,CCR2 and toll like receptor-4; >3-fold changes).The in-vivo effects of atorvastatin were analyzed in 10 statin-free acute coronary syndrome patients at baseline, and after 24h and 48h of atorvastatin therapy (80 mg/daily): EGR1-gene expression decreased at 24h (P = 0.01) and 48h (P = 0.005); EGR1-protein levels decreased at 48h (P = 0.03).Conclusions-In acute coronary syndromes, the effects of atorvastatin on immune system might be partially related to the inhibition of the master regulator gene EGR1. Our finding might offer a causal explanation on why statins improve the early outcome in acute coronary syndromes.
Collapse
Affiliation(s)
- Anna Severino
- Institute of Cardiology, Catholic University, Rome, Italy
| | - Chiara Zara
- Institute of Cardiology, Catholic University, Rome, Italy
| | - Mara Campioni
- Institute of Cardiology, Catholic University, Rome, Italy
| | - Davide Flego
- Institute of Cardiology, Catholic University, Rome, Italy
| | | | | | | | | | | | | | - Claudia Lucci
- Institute of Cardiology, Catholic University, Rome, Italy
| | | | | | | | - Filippo Crea
- Institute of Cardiology, Catholic University, Rome, Italy
| | | |
Collapse
|
3
|
Mouawad CA, Mrad MF, El-Achkar GA, Abdul-Sater A, Nemer GM, Creminon C, Lotersztajn S, Habib A. Statins Modulate Cyclooxygenase-2 and Microsomal Prostaglandin E Synthase-1 in Human Hepatic Myofibroblasts. J Cell Biochem 2015; 117:1176-86. [PMID: 26477987 DOI: 10.1002/jcb.25401] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 10/06/2015] [Indexed: 12/22/2022]
Abstract
Statins have been shown to exert anti-inflammatory and anti-fibrogenic properties in the liver. In the present study, we explored the mechanisms underlying anti-fibrogenic effects of statins in isolated hepatic myofibroblasts and focused on cyclooxyegnase-2, a major anti-proliferative pathway in these cells. We show that simvastatin and fluvastatin inhibit thymidine incorporation in hMF in a dose-dependent manner. Pretreatment of cells with NS398, a COX-2 inhibitor, partially blunted this effect. cAMP levels, essential to the inhibition of hMF proliferation, were increased by statins and inhibited by non-steroidal anti-inflammatory drugs. Since statins modify prenylation of some important proteins in gene expression, we investigated the targets involved using selective inhibitors of prenyltransferases. Inhibition of geranylgeranylation resulted in the induction of COX-2 and mPGES-1. Using gel retardation assays, we further demonstrated that statins potentially activated the NFκB and CRE/E-box binding for COX-2 promoter and the binding of GC-rich regions and GATA for mPGES-1. Together these data demonstrate that statin limit hepatic myofibroblasts proliferation via a COX-2 and mPGES-1 dependent pathway. These data suggest that statin-dependent increase of prostaglandin in hMF contributes to its anti-fibrogenic effect.
Collapse
Affiliation(s)
- Charbel A Mouawad
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-236 Beirut, Lebanon.,Department of Food Technologies, Al-Kafaat University, Ain Saadeh, Fanar, Lebanon
| | - May F Mrad
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-236 Beirut, Lebanon.,Nehme and Therese Tohme Multiple Sclerosis Center-American University of Beirut Medical Center, Beirut, Lebanon
| | - Ghewa A El-Achkar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-236 Beirut, Lebanon
| | - Ali Abdul-Sater
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-236 Beirut, Lebanon.,Deparment of Immunology, University of Toronto, Canada
| | - Georges M Nemer
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-236 Beirut, Lebanon
| | - Christophe Creminon
- iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, CEA Saclay - Bât. 136, 91191 Gif-Sur-Yvette Cedex, France
| | - Sophie Lotersztajn
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France.,Université Paris 7 Diderot, Sorbonne Paris Cité-Laboratoire d'excellence Inflamex, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, F-75018 Paris, France
| | - Aïda Habib
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-236 Beirut, Lebanon.,Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France.,Université Paris 7 Diderot, Sorbonne Paris Cité-Laboratoire d'excellence Inflamex, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, F-75018 Paris, France
| |
Collapse
|
4
|
Postprandial lipoproteins and the molecular regulation of vascular homeostasis. Prog Lipid Res 2013; 52:446-64. [DOI: 10.1016/j.plipres.2013.06.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 12/17/2022]
|
5
|
Lunder M, Drevenšek G, Černe D, Marc J, Janić M, Šabovič M. Treatment With Low-dose Atorvastatin, Losartan, and Their Combination Increases Expression of Vasoactive-Related Genes in Rat Aortas. J Cardiovasc Pharmacol Ther 2012; 18:177-83. [DOI: 10.1177/1074248412463966] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recently it has been shown that statins and angiotensin receptor blockers (ARBs) at low doses express beneficial pleiotropic vascular effects. We aimed to explore whether these drugs at low doses induce the expression of vasoactive-related genes. Sixty adult Wistar rats were treated with low-dose atorvastatin (2 mg/kg), low-dose losartan (5 mg/kg), their combination or saline daily for 4, 6, or 8 weeks. Expression of the vasoactive-related genes endothelin receptor type A ( EDNRA), endothelial nitric oxide synthase 3 ( NOS3), inducible nitric oxide synthase 2 ( NOS2), and angiotensin II receptor type 1 ( AGTRL1a) was measured in isolated thoracic aortas. Expression of EDNRA gradually decreased, the lowest values being obtained after 8 weeks (low-dose atorvastatin, losartan [1.6- and 1-7-fold vs controls, respectively; both P < .05], and the combination [2.3-fold vs control, P < .001]). The highest values of NOS3 were obtained after 6 weeks (low-dose atorvastatin, losartan, and their combination, 3.1-fold, P < .01; 3.4-fold, P < .001; and 3.6-fold, P < .001 vs controls, respectively) and then declined after 8 weeks. The combination was more effective in inducing total NOS3 expression when compared to the separate drugs (1.4-fold; P < .05). Importantly, expression of NOS3 was associated with increased plasma NO levels and positively correlated with thoracic aorta relaxation. No changes in expression of NOS2 and AGTRL1a were observed. We showed that low-dose atorvastatin or losartan and especially their combination increases the expression of NOS3 and decreases the expression of EDNRA. These findings are valuable in explaining the effectiveness of the “low-dose pharmacological approach” for improvement in arterial function.
Collapse
Affiliation(s)
- Mojca Lunder
- Institute of Pharmacology and Experimental Toxicology, University of Ljubljana, Ljubljana, Slovenia
- Department of Vascular Diseases, University of Ljubljana Medical Centre, Ljubljana, Slovenia
| | - Gorazd Drevenšek
- Institute of Pharmacology and Experimental Toxicology, University of Ljubljana, Ljubljana, Slovenia
| | - Darko Černe
- Department of Clinical Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Janja Marc
- Department of Clinical Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Miodrag Janić
- Department of Vascular Diseases, University of Ljubljana Medical Centre, Ljubljana, Slovenia
| | - Mišo Šabovič
- Department of Vascular Diseases, University of Ljubljana Medical Centre, Ljubljana, Slovenia
| |
Collapse
|
6
|
Hisada T, Ayaori M, Ohrui N, Nakashima H, Nakaya K, Uto-Kondo H, Yakushiji E, Takiguchi S, Terao Y, Miyamoto Y, Adachi T, Nakamura H, Ohsuzu F, Ikewaki K, Sakurai Y. Statin inhibits hypoxia-induced endothelin-1 via accelerated degradation of HIF-1α in vascular smooth muscle cells. Cardiovasc Res 2012; 95:251-9. [PMID: 22396501 DOI: 10.1093/cvr/cvs110] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Endothelin-1 (ET-1) contributes to the pathogenesis of cardiovascular diseases with multiple properties such as vasoconstriction. Human ET-1 gene expression is up-regulated by the transcription factor hypoxia-inducible factor-1 (HIF-1) through hypoxia response element (HRE). Although previous studies suggested that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) alter HIF-1-related gene expression, it remained unclear whether statins modulate HIF-1-mediated ET-1 expression. Therefore, we investigated the effect of fluvastatin on hypoxia-induced human ET-1 expression in vascular smooth muscle cells (VSMC). METHODS AND RESULTS Hypoxia (1% O(2)), compared with the normoxic condition (21% O(2)), significantly induced the expression of preproET-1 mRNA, ET-1 protein, and ET-1 secretion in VSMC. Hypoxia induced a 2.3-fold increase in HRE-dependent ET-1 reporter gene activation. Under concentrations of 1 µmol/L or greater, fluvastatin attenuated the hypoxia-induced ET-1 gene expression through the accelerated ubiquitin/proteasome-dependent degradation of HIF-1α, thus consequently attenuating HIF-1α binding to the HRE of the ET-1 gene. These inhibitory effects of fluvastatin were cancelled by concomitant treatment with mevalonate, farnesyl pyrophosphate, or geranylgeranyl pyrophosphate, but not squalene. CONCLUSION The present study suggests that fluvastatin attenuates HIF-1-dependent ET-1 gene expression in conjunction with the stimulation of HIF-1α ubiquitin/proteasome-dependent degradation via isoprenoid-dependent mechanisms.
Collapse
Affiliation(s)
- Tetsuya Hisada
- Department of Preventive Medicine and Public Health, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Gotto AM, Moon J. Pitavastatin for the treatment of primary hyperlipidemia and mixed dyslipidemia. Expert Rev Cardiovasc Ther 2010; 8:1079-90. [PMID: 20670185 DOI: 10.1586/erc.10.82] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Pitavastatin is a new, synthetic member of the statin class of lipid-lowering drugs. Compared with other available statins, it has a unique cyclopropyl group on its base structure that is believed to increase 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibition by a factor of five and to significantly increase the transcription and activity of LDL receptors. Pitavastatin is primarily metabolized via glucuronidation and is not a substrate for the cytochrome P450 3A4 enzyme, thus avoiding the potential for cytochrome P450-mediated drug-drug interactions. Clinical trials have shown that pitavastatin is comparable to atorvastatin and simvastatin in improving lipid measures, and more potent than pravastatin. Pitavastatin is effective in reducing triglycerides and increasing HDL-cholesterol, so it will be particularly beneficial in treating patients with mixed dyslipidemia. Its safety and adverse event profile is similar to that of other available statins, and it has an established history of use in Asia indicating tolerability and safety for treatment lasting up to 7 years.
Collapse
Affiliation(s)
- Antonio M Gotto
- Weill Cornell Medical College, 1305 York Ave. Y-805, New York, NY 10021, USA
| | | |
Collapse
|