1
|
Conde T, Neves B, Couto D, Melo T, Lopes D, Pais R, Batista J, Cardoso H, Silva JL, Domingues P, Domingues MR. Polar Lipids of Marine Microalgae Nannochloropsis oceanica and Chlorococcum amblystomatis Mitigate the LPS-Induced Pro-Inflammatory Response in Macrophages. Mar Drugs 2023; 21:629. [PMID: 38132950 PMCID: PMC10745121 DOI: 10.3390/md21120629] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Microalgae are recognized as a relevant source of bioactive compounds. Among these bioactive products, lipids, mainly glycolipids, have been shown to present immunomodulatory properties with the potential to mitigate chronic inflammation. This study aimed to evaluate the anti-inflammatory effect of polar lipids isolated from Nannochloropsis oceanica and Chlorococcum amblystomatis. Three fractions enriched in (1) digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol (SQDG), (2) monogalactosyldiacylglycerol (MGDG), and (3) diacylglyceryl-trimethylhomoserine (DGTS) and phospholipids (PL) were obtained from the total lipid extracts (TE) of N. oceanica and C. amblystomatis, and their anti-inflammatory effect was assessed by analyzing their capacity to counteract nitric oxide (NO) production and transcription of pro-inflammatory genes Nos2, Ptgs2, Tnfa, and Il1b in lipopolysaccharide (LPS)-activated macrophages. For both microalgae, TE and Fractions 1 and 3 strongly inhibited NO production, although to different extents. A strong reduction in the LPS-induced transcription of Nos2, Ptgs2, Tnfa, and Il1b was observed for N. oceanica and C. amblystomatis lipids. The most active fractions were the DGTS-and-PL-enriched fraction from N. oceanica and the DGDG-and-SQDG-enriched fraction from C. amblystomatis. Our results reveal that microalgae lipids have strong anti-inflammatory capacity and may be explored as functional ingredients or nutraceuticals, offering a natural solution to tackle chronic inflammation-associated diseases.
Collapse
Affiliation(s)
- Tiago Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (D.C.); (T.M.); (R.P.); (J.B.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (D.L.); (P.D.)
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Bruno Neves
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Daniela Couto
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (D.C.); (T.M.); (R.P.); (J.B.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (D.L.); (P.D.)
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (D.C.); (T.M.); (R.P.); (J.B.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (D.L.); (P.D.)
| | - Diana Lopes
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (D.L.); (P.D.)
| | - Rita Pais
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (D.C.); (T.M.); (R.P.); (J.B.)
| | - Joana Batista
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (D.C.); (T.M.); (R.P.); (J.B.)
| | - Helena Cardoso
- R&D Department, Allmicroalgae—Natural Products S.A., Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (H.C.); (J.L.S.)
| | - Joana Laranjeira Silva
- R&D Department, Allmicroalgae—Natural Products S.A., Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (H.C.); (J.L.S.)
| | - Pedro Domingues
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (D.L.); (P.D.)
| | - M. Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (D.C.); (T.M.); (R.P.); (J.B.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (D.L.); (P.D.)
| |
Collapse
|
2
|
Civelek E, Ozen G. The biological actions of prostanoids in adipose tissue in physiological and pathophysiological conditions. Prostaglandins Leukot Essent Fatty Acids 2022; 186:102508. [PMID: 36270150 DOI: 10.1016/j.plefa.2022.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/29/2022] [Accepted: 10/06/2022] [Indexed: 12/29/2022]
Abstract
Adipose tissue has been established as an endocrine organ that plays an important role in maintaining metabolic homeostasis. Adipose tissue releases several bioactive molecules called adipokines. Inflammation, dysregulation of adipokine synthesis, and secretion are observed in obesity and related diseases and cause adipose tissue dysfunction. Prostanoids, belonging to the eicosanoid family of lipid mediators, can be synthesized in adipose tissue and play a critical role in adipose tissue biology. In this review, we summarized the current knowledge regarding the interaction of prostanoids with adipokines, the expression of prostanoid receptors, and prostanoid synthase enzymes in adipose tissues in health and disease. Furthermore, the involvement of prostanoids in the physiological function or dysfunction of adipose tissue including inflammation, lipolysis, adipogenesis, thermogenesis, browning of adipocytes, and vascular tone regulation was also discussed by examining studies using pharmacological approaches or genetically modified animals for prostanoid receptors/synthase enzymes. Overall, the present review provides a perspective on the evidence from literature regarding the biological effects of prostanoids in adipose tissue. Among prostanoids, prostaglandin E2 (PGE2) is prominent in regards to its substantial role in both adipose tissue physiology and pathophysiology. Targeting prostanoids may serve as a potential therapeutic strategy for preventing or treating obesity and related diseases.
Collapse
Affiliation(s)
- Erkan Civelek
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Gulsev Ozen
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
3
|
Chan PC, Liao MT, Hsieh PS. The Dualistic Effect of COX-2-Mediated Signaling in Obesity and Insulin Resistance. Int J Mol Sci 2019; 20:ijms20133115. [PMID: 31247902 PMCID: PMC6651192 DOI: 10.3390/ijms20133115] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Obesity and insulin resistance are two major risk factors for the development of metabolic syndrome, type 2 diabetes and associated cardiovascular diseases (CVDs). Cyclooxygenase (COX), a rate-limiting enzyme responsible for the biosynthesis of prostaglandins (PGs), exists in two isoforms: COX-1, the constitutive form, and COX-2, mainly the inducible form. COX-2 is the key enzyme in eicosanoid metabolism that converts eicosanoids into a number of PGs, including PGD2, PGE2, PGF2α, and prostacyclin (PGI2), all of which exert diverse hormone-like effects via autocrine or paracrine mechanisms. The COX-2 gene and immunoreactive proteins have been documented to be highly expressed and elevated in adipose tissue (AT) under morbid obesity conditions. On the other hand, the environmental stress-induced expression and constitutive over-expression of COX-2 have been reported to play distinctive roles under different pathological and physiological conditions; i.e., over-expression of the COX-2 gene in white AT (WAT) has been shown to induce de novo brown AT (BAT) recruitment in WAT and then facilitate systemic energy expenditure to protect mice against high-fat diet-induced obesity. Hepatic COX-2 expression was found to protect against diet-induced steatosis, obesity, and insulin resistance. However, COX-2 activation in the epidydimal AT is strongly correlated with the development of AT inflammation, insulin resistance, and fatty liver in high-fat-diet-induced obese rats. This review will provide updated information regarding the role of COX-2-derived signals in the regulation of energy metabolism and the pathogenesis of obesity and MS.
Collapse
Affiliation(s)
- Pei-Chi Chan
- Institute of Physiology, National Defense Medical Center, Taipei 114, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Po-Shiuan Hsieh
- Institute of Physiology, National Defense Medical Center, Taipei 114, Taiwan.
- Department of Medical Research, Tri-Service General Hospital, Taipei 114, Taiwan.
| |
Collapse
|
4
|
Chan P, Hsiao F, Chang H, Wabitsch M, Hsieh PS. Importance of adipocyte cyclooxygenase‐2 and prostaglandin E
2
‐prostaglandin E receptor 3 signaling in the development of obesity‐induced adipose tissue inflammation and insulin resistance. FASEB J 2016; 30:2282-2297. [DOI: 10.1096/fj.201500127] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Pei‐Chi Chan
- Graduate Institute of Life Sciences, National Defense Medical CenterTaipeiTaiwan
| | - Fone‐Ching Hsiao
- Division of Endocrinology and MetabolismDepartment of Internal MedicineTri‐Service General HospitalTaipeiTaiwan
| | - Hao‐Ming Chang
- Division of General SurgeryDepartment of SurgeryTri‐Service General HospitalTaipeiTaiwan
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and DiabetesDepartment of Pediatrics and Adolescent MedicineUlm UniversityUlmGermany
| | - Po Shiuan Hsieh
- Graduate Institute of Life Sciences, National Defense Medical CenterTaipeiTaiwan
- Department of Physiology and BiophysicsNational Defense Medical CenterTaipeiTaiwan
- Institute of Preventive Medicine, National Defense Medical CenterTaipeiTaiwan
- Department of Medical ResearchTri‐Service General HospitalTaipeiTaiwan
| |
Collapse
|
5
|
Chennareddy S, Kishore Babu KV, Kommireddy S, Varaprasad R, Rajasekhar L. Serum adiponectin and its impact on disease activity and radiographic joint damage in early rheumatoid arthritis – A cross-sectional study. INDIAN JOURNAL OF RHEUMATOLOGY 2016. [DOI: 10.1016/j.injr.2016.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
6
|
Amor S, Iglesias-de la Cruz MC, Ferrero E, García-Villar O, Barrios V, Fernandez N, Monge L, García-Villalón AL, Granado M. Peritumoral adipose tissue as a source of inflammatory and angiogenic factors in colorectal cancer. Int J Colorectal Dis 2016; 31:365-75. [PMID: 26493186 DOI: 10.1007/s00384-015-2420-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2015] [Indexed: 02/04/2023]
Abstract
PURPOSE Obesity is a risk factor for the development of human colorectal cancer (CC). The aim of this work is to report the inflammatory and angiogenic scenario in lean (BMI < 25 kg/m2) and obese (BMI > 30 kg/m2) patients with and without CC and to assess the role of peritumoral adipose tissue in CC-induced inflammation. MATERIAL AND METHODS Patients were divided in four experimental groups: obese patients with CC (OB-CC), lean patients with CC (LEAN-CC), obese patients without CC (OB), and lean patients without CC (LEAN). RESULTS Plasma levels of pro-inflammatory cytokines (interleukin (IL)-6, IL-4, IL-8) and granulocyte-macrophage colony-stimulating factor (GM-CSF) were increased in OB-CC patients. Peritumoral adipose tissue (TF) explants and cultured mature adipocytes secreted higher amounts of nitrites and nitrates than did control and non-tumoral (NTF) adipose tissue both alone and in response to lipopolysaccharide (LPS). Nitrite and nitrate secretion was also increased in TF explants from OB-CC patients compared with that from LEAN-CC patients. Gene expression of adiponectin, tumor necrosis factor alpha (TNF-α), insulin-like growth factor type I (IGF-I), cyclooxygenase-2 (COX-2), and peroxisome proliferator-activated receptor γ (PPAR-γ) was increased in TF explants from CC patients. LPS increased the gene expression of IL-6, IL-10, TNF-α, vascular endothelial growth factor (VEGF), and COX-2 in OB and in TF explants from OB-CC patients. COX-2 and PPAR-γ inhibition further increased LPS-induced release of nitrites and nitrates in TF explants and adipocytes from OB-CC patients. CONCLUSIONS In conclusion, OB-CC patients have increased plasma levels of pro-inflammatory and angiogenic factors. TF from OB-CC patients shows an increased secretion of inflammatory markers compared with both TF from LEAN-CC and non-tumoral adipose tissue (AT) through a COX-2- and PPAR-γ-independent mechanism.
Collapse
|
7
|
|
8
|
Gochberg-Sarver A, Kedmi M, Gana-Weisz M, Bar-Shira A, Orr-Urtreger A. Tnfα, Cox2 and AdipoQ adipokine gene expression levels are modulated in murine adipose tissues by both nicotine and nACh receptors containing the β2 subunit. Mol Genet Metab 2012; 107:561-70. [PMID: 22926197 DOI: 10.1016/j.ymgme.2012.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/08/2012] [Indexed: 12/24/2022]
Abstract
Studies have provided evidences for the effects of nicotine on adipose tissues, as well as in inflammatory response. We hypothesized that nicotine affects adipokine gene expression in adipose tissues via specific neuronal nicotinic acetylcholine receptors (nAChRs). First, we described the expression of multiple nAChR subunit genes in mouse white and brown adipose tissues (WAT and BAT), and detected differential expression in WAT and BAT (α2>α5>β2 and α2>β2>β4, respectively). Additionally, when nicotine was administered to wild-type mice, it significantly affected the expression of adipokine genes, such as Tnfα, AdipoQ, Haptoglobin and Mcp1 in WAT. Next, we demonstrated that in mice deficient for the β2 nAChR subunit (β2-/- mice), the expression levels of Cox2 and Ngfβ genes in WAT, and Leptin, Cox2, AdipoQ and Haptoglobin in BAT, were significantly altered. Furthermore, interactions between mouse β2 subunit and nicotine treatment affected the expression levels of the adipokine genes Tnfα, Cox2 and AdipoQ in WAT and of AdipoQ in BAT. Finally, analysis of a cellular model of cultured adipocytes demonstrated that application of nicotine after silencing of the β2 nAChR subunit significantly elevated the expression level of Cox2 gene. Together, our data suggest a molecular link between the β2 nACh receptor subunit and the expression levels of specific adipokines, which is also affected by nicotine.
Collapse
|
9
|
Castillero E, Martín AI, Nieto-Bona MP, Fernández-Galaz C, López-Menduiña M, Villanúa MÁ, López-Calderón A. Fenofibrate administration to arthritic rats increases adiponectin and leptin and prevents oxidative muscle wasting. Endocr Connect 2012; 1:1-12. [PMID: 23781298 PMCID: PMC3681315 DOI: 10.1530/ec-12-0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 11/08/2022]
Abstract
Chronic inflammation induces skeletal muscle wasting and cachexia. In arthritic rats, fenofibrate, a peroxisome proliferator-activated receptor α (PPARα (PPARA)) agonist, reduces wasting of gastrocnemius, a predominantly glycolytic muscle, by decreasing atrogenes and myostatin. Considering that fenofibrate increases fatty acid oxidation, the aim of this study was to elucidate whether fenofibrate is able to prevent the effect of arthritis on serum adipokines and on soleus, a type I muscle in which oxidative metabolism is the dominant source of energy. Arthritis was induced by injection of Freund's adjuvant. Four days after the injection, control and arthritic rats were gavaged daily with fenofibrate (300 mg/kg bw) or vehicle over 12 days. Arthritis decreased serum leptin, adiponectin, and insulin (P<0.01) but not resistin levels. In arthritic rats, fenofibrate administration increased serum concentrations of leptin and adiponectin. Arthritis decreased soleus weight, cross-sectional area, fiber size, and its Ppar α mRNA expression. In arthritic rats, fenofibrate increased soleus weight, fiber size, and Ppar α expression and prevented the increase in Murf1 mRNA. Fenofibrate decreased myostatin, whereas it increased MyoD (Myod1) and myogenin expressions in the soleus of control and arthritic rats. These data suggest that in oxidative muscle, fenofibrate treatment is able to prevent arthritis-induced muscle wasting by decreasing Murf1 and myostatin expression and also by increasing the myogenic regulatory factors, MyoD and myogenin. Taking into account the beneficial action of adiponectin on muscle wasting and the correlation between adiponectin and soleus mass, part of the anticachectic action of fenofibrate may be mediated through stimulation of adiponectin secretion.
Collapse
Affiliation(s)
| | | | - Maria Paz Nieto-Bona
- Department of Histology, Faculty of Health SciencesRey Juan Carlos University28922 Alcorcón, MadridSpain
| | | | | | | | | |
Collapse
|
10
|
Neumann E, Frommer KW, Vasile M, Müller-Ladner U. Adipocytokines as driving forces in rheumatoid arthritis and related inflammatory diseases? ACTA ACUST UNITED AC 2011; 63:1159-69. [PMID: 21337317 DOI: 10.1002/art.30291] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- E Neumann
- Justus-Liebig University Giessen, Giessen and Kerckhoff-Klinik, Bad Nauheim, Germany.
| | | | | | | |
Collapse
|
11
|
Otvos L, Shao WH, Vanniasinghe AS, Amon MA, Holub MC, Kovalszky I, Wade JD, Doll M, Cohen PL, Manolios N, Surmacz E. Toward understanding the role of leptin and leptin receptor antagonism in preclinical models of rheumatoid arthritis. Peptides 2011; 32:1567-74. [PMID: 21723351 DOI: 10.1016/j.peptides.2011.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 01/20/2023]
Abstract
A potential link between obesity, circulating leptin levels and autoimmune disease symptoms suggests that targeting the leptin receptor (ObR) might be a viable novel strategy to combat rheumatoid arthritis (RA). However, studies in animal models and evaluation of clinical cases did not provide clear view on leptin's involvement in RA. To validate ObR as RA target, we used our peptide-based ObR agonists and antagonist in different in vitro and in vivo models of the disease. In human peripheral blood mononuclear cells, leptin and its agonist fragment, desI(2)-E1/Aca, moderately induced constitutive activation of a major proinflammatory transcription factor, NF-κB, while the ObR antagonist peptide Allo-aca inhibited the process. Leptin administration itself did not induce arthritis in rats, but worsened the clinical condition of mice given K/BxN serum transfer arthritis. Simultaneous administration of Allo-aca reduced leptin-dependent increase in disease severity by more than 50%, but the antagonist was ineffective when injected with a 3-day delay. In rats inflicted with mild adjuvant-induced arthritis, both leptin and Allo-aca reduced the extent of joint swelling and the number of arthritic joints. In a more aggressive disease stage, Allo-aca decreased the number of arthritic joints in a dose-dependent manner but did not affect other arthritis markers. In summary, leptin exerts diverse effects on RA depending on the experimental model. This might reflect the heterogeneous character of RA, which is differently impacted by leptin and is unmasked by ObR antagonism. Nevertheless, the results suggest that ObR antagonists might become useful therapeutics in leptin-sensitive early stages of RA.
Collapse
Affiliation(s)
- Laszlo Otvos
- Department of Biology, Temple University, Philadelphia, PA 19122, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ghoshal S, Trivedi DB, Graf GA, Loftin CD. Cyclooxygenase-2 deficiency attenuates adipose tissue differentiation and inflammation in mice. J Biol Chem 2011; 286:889-98. [PMID: 20961858 PMCID: PMC3013048 DOI: 10.1074/jbc.m110.139139] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 09/19/2010] [Indexed: 01/15/2023] Open
Abstract
Obesity is associated with a variety of disorders and is a significant health problem in developed countries. One factor controlling the level of adiposity is the differentiation of cells into adipocytes. Adipocyte differentiation requires expression of peroxisome proliferator-activated receptor γ (PPARγ), which is activated by ligands to regulate expression of genes involved in adipocyte differentiation. Although 15-deoxy-Δ(12,14)-prostaglandin (PG) J(2) (15d-PGJ(2)) has long been known to be a potent activator of PPARγ, the importance of its synthesis in adipose tissue in vivo is not clear. The current study utilized mice deficient in cyclooxygenase-2 (COX-2) to examine the role of COX-2-derived PGs as in vivo modulators of adiposity. As compared with strain- and age-matched wild-type controls, the genetic deficiency of COX-2 resulted in a significant reduction in total body weight and percent body fat. Although there were no significant differences in food consumption between groups, COX-2-deficient mice showed increased metabolic activity. Epididymal adipose tissue from wild-type mice produced a significantly greater level of 15d-PGJ(2), as compared with adipose tissue isolated from mice deficient in COX-2. Furthermore, production of the precursor required for 15d-PGJ(2) formation, PGD(2), was also significantly reduced in COX-2-deficient adipose tissue. The expression of markers for differentiated adipocytes was significantly reduced in adipose tissue from COX-2-deficient mice, whereas preadipocyte marker expression was increased. Macrophage-dependent inflammation was also significantly reduced in adipose tissue of COX-2-deficient mice. These findings suggest that reduced adiposity in COX-2-deficient mice results from attenuated PPARγ ligand production and adipocyte differentiation.
Collapse
Affiliation(s)
- Sarbani Ghoshal
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536 and
| | - Darshini B. Trivedi
- the Laboratory of Toxicology and Pharmacology, NIEHS, National Institutes Health, Research Triangle Park, North Carolina 27709
| | - Gregory A. Graf
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536 and
| | - Charles D. Loftin
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536 and
| |
Collapse
|
13
|
Experimental food allergy leads to adipose tissue inflammation, systemic metabolic alterations and weight loss in mice. Cell Immunol 2011; 270:198-206. [DOI: 10.1016/j.cellimm.2011.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 04/27/2011] [Accepted: 05/09/2011] [Indexed: 01/09/2023]
|