Gao X, Sun Q, Zhang W, Jiang Y, Li R, Ye J. Anti-inflammatory effect and mechanism of the spirocyclopiperazinium salt compound LXM-15 in rats and mice.
Inflamm Res 2018;
67:363-370. [PMID:
29302720 DOI:
10.1007/s00011-017-1127-2]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/05/2017] [Accepted: 12/28/2017] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE
This study aimed to investigate the anti-inflammatory effects of a novel spirocyclopiperazinium salt compound LXM-15, and explore the underlying mechanisms.
METHODS
Xylene-induced mouse ear oedema and carrageenan-induced rat paw oedema tests were used to evaluate the anti-inflammatory effects of LXM-15. The protein levels of TNF-α, IL-6, phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) were detected by ELISA or Western blot analysis. Additionally, receptor blocking test was performed to explore the possible target.
RESULTS
Intragastric administration with LXM-15 (2, 1, 0.5 mg/kg in mice, and 6, 3, 1.5 mg/kg in rats) produced distinct anti-inflammatory effects in vivo, the highest inhibition percentage was 60 and 52%, respectively (P < 0.01). Following treatment with LXM-15 (6 mg/kg, i.g.), the levels of TNF-α and IL-6 in the rats paws were attenuated by 40 and 41%; and the phosphorylation of JAK2 and STAT3 was restrained by 35 and 45%, respectively (P < 0.01). All effects of LXM-15 were blocked by pretreatment with methyllycaconitine citrate or tropicamide.
CONCLUSION
This study provides the first report that the spirocyclopiperazinium salt compound LXM-15 displays considerable anti-inflammatory effects. The underlying mechanism may be through activating the peripheral α7 nicotinic acetylcholine receptor and M4 muscarinic acetylcholine receptor, leading to the inhibition of the JAK2/STAT3 signalling pathway, eventually resulting in the reduction of TNF-α and IL-6.
Collapse