1
|
Candelli M, Sacco Fernandez M, Triunfo C, Piccioni A, Ojetti V, Franceschi F, Pignataro G. Vibrio vulnificus-A Review with a Special Focus on Sepsis. Microorganisms 2025; 13:128. [PMID: 39858896 PMCID: PMC11768060 DOI: 10.3390/microorganisms13010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Vibrio vulnificus (V. vulnificus) is a Gram-negative, halophilic bacillus known for causing severe infections such as gastroenteritis, necrotizing fasciitis, and septic shock, with mortality rates exceeding 50% in high-risk individuals. Transmission occurs primarily through the consumption of contaminated seafood, exposure of open wounds to infected water, or, in rare cases, insect bites. The bacterium thrives in warm, brackish waters with high salinity levels, and its prevalence is rising due to the effects of climate change, including warming ocean temperatures and expanding coastal habitats. High-risk populations include individuals with underlying conditions such as chronic liver disease, diabetes, or immunosuppression, which heighten susceptibility to severe outcomes. The pathogenicity of V. vulnificus is mediated by an array of virulence factors, including hemolysins, proteases, and capsular polysaccharides, as well as mechanisms facilitating iron acquisition and immune system evasion. Clinical manifestations range from localized gastrointestinal symptoms to life-threatening systemic infections such as septicemia. Rare but severe complications, including pneumonia and meningitis, have also been reported. Treatment typically involves the use of doxycycline in combination with third-generation cephalosporins, although the emergence of multidrug-resistant strains is an escalating concern. Alternative therapeutic approaches under investigation include natural compounds such as resveratrol and the application of antimicrobial blue light. For necrotizing infections, prompt and aggressive surgical intervention remains essential to improving patient outcomes. As global temperatures continue to rise, understanding the epidemiology of V. vulnificus and developing innovative therapeutic strategies are critical to mitigating its growing public health impact.
Collapse
Affiliation(s)
- Marcello Candelli
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (M.C.); (M.S.F.); (C.T.); (A.P.); (F.F.)
| | - Marta Sacco Fernandez
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (M.C.); (M.S.F.); (C.T.); (A.P.); (F.F.)
| | - Cristina Triunfo
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (M.C.); (M.S.F.); (C.T.); (A.P.); (F.F.)
| | - Andrea Piccioni
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (M.C.); (M.S.F.); (C.T.); (A.P.); (F.F.)
| | - Veronica Ojetti
- Department of Internal Medicine, UniCamillus International Medical University of Rome, 00131 Rome, Italy;
| | - Francesco Franceschi
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (M.C.); (M.S.F.); (C.T.); (A.P.); (F.F.)
| | - Giulia Pignataro
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (M.C.); (M.S.F.); (C.T.); (A.P.); (F.F.)
| |
Collapse
|
2
|
Vinciguerra C, Bellia L, Corbi G, Rengo S, Cannavo A. Resveratrol supplementation as a non-surgical treatment in periodontitis and related systemic conditions. J Tradit Complement Med 2024. [DOI: 10.1016/j.jtcme.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
3
|
Pei MQ, Xu LM, Yang YS, Chen WC, Chen XL, Fang YM, Lin S, He HF. Latest advances and clinical application prospects of resveratrol therapy for neurocognitive disorders. Brain Res 2024; 1830:148821. [PMID: 38401770 DOI: 10.1016/j.brainres.2024.148821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/13/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Neurocognitive disorders, such as Alzheimer's disease, vascular dementia, and postoperative cognitive dysfunction, are non-psychiatric brain syndromes in which a significant decline in cognitive function causes great trauma to the mental status of the patient. The lack of effective treatments for neurocognitive disorders imposes a considerable burden on society, including a substantial economic impact. Over the past few decades, the identification of resveratrol, a natural plant compound, has provided researchers with an opportunity to formulate novel strategies for the treatment of neurocognitive disorders. This is because resveratrol effectively protects the brain of those with neurocognitive disorders by targeting some mechanisms such as inflammation and oxidative stress. This article reviews the status of recent research investigating the use of resveratrol for the treatment of different neurocognitive disorders. By examining the possible mechanisms of action of resveratrol and the shared mechanisms of different neurocognitive disorders, treatments for neurocognitive disorders may be further clarified.
Collapse
Affiliation(s)
- Meng-Qin Pei
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Li-Ming Xu
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Yu-Shen Yang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Wei-Can Chen
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Xin-Li Chen
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Yu-Ming Fang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Shu Lin
- Center of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China; Neuroendocrinology Group, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China.
| |
Collapse
|
4
|
Qin T, Chen K, Xi B, Pan L, Xie J, Lu L, Liu K. In Vitro Antibiofilm Activity of Resveratrol against Aeromonas hydrophila. Antibiotics (Basel) 2023; 12:antibiotics12040686. [PMID: 37107048 PMCID: PMC10135085 DOI: 10.3390/antibiotics12040686] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Aeromonas hydrophila is a Gram-negative bacterium that widely exists in various aquatic environments and causes septicemia in fish and humans. Resveratrol, a natural polyterpenoid product, has potential chemo-preventive and antibacterial properties. In this study, we investigated the effect of resveratrol on A. hydrophila biofilm formation and motility. The results demonstrated that resveratrol, at sub-MIC levels, can significantly inhibit the biofilm formation of A. hydrophila, and the biofilm was decreased with increasing concentrations. The motility assay showed that resveratrol could diminish the swimming and swarming motility of A. hydrophila. Transcriptome analyses (RNA-seq) showed that A. hydrophila treated with 50 and 100 μg/mL resveratrol, respectively, presented 230 and 308 differentially expressed genes (DEGs), including 90 or 130 upregulated genes and 130 or 178 downregulated genes. Among them, genes related to flagellar, type IV pilus and chemotaxis were significantly repressed. In addition, mRNA of virulence factors OmpA, extracellular proteases, lipases and T6SS were dramatically suppressed. Further analysis revealed that the major DEGs involved in flagellar assembly and bacterial chemotaxis pathways could be regulated by cyclic-di-guanosine monophosphate (c-di-GMP)- and LysR-Type transcriptional regulator (LTTR)-dependent quorum sensing (QS) systems. Overall, our results indicate that resveratrol can inhibit A. hydrophila biofilm formation by disturbing motility and QS systems, and can be used as a promising candidate drug against motile Aeromonad septicemia.
Collapse
|
5
|
Therapeutic potential of otilonium bromide against Vibrio vulnificus. Res Microbiol 2023; 174:103992. [PMID: 36122890 DOI: 10.1016/j.resmic.2022.103992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/29/2022] [Accepted: 09/13/2022] [Indexed: 01/11/2023]
Abstract
New drugs are urgently required for the treatment of infections due to an increasing number of new strains of diseases-causing pathogens and antibiotic-resistant bacteria. A library of drugs approved by Food and Drug Administration was screened for efficacy against Vibrio vulnificus using antimicrobial assays. We found that otilonium bromide showed potent antimicrobial activity against V.vulnificus and had a synergistic effect in combination with antibiotics. Field emission transmission electron microscope images revealed that otilonium bromide caused cell division defects in V.vulnificus. Moreover, it significantly inhibited V.vulnificus swarming motility and adhesion to host cells at concentrations lower than the minimum inhibitory concentration. To investigate its inhibitory action mechanisms, we examined the effect of otilonium bromide on the expression levels of several proteins crucial for V.vulnificus growth, motility, and adhesion. It decreased the protein expression levels of cAMP receptor protein and flagellin B, but not HlyU or OmpU. In addition, otilonium bromide significantly decreased the expression levels of outer membrane protein TolCV1, thus inhibiting RtxA1 toxin secretion and substantially reducing V.vulnificus cytotoxicity to host cells. Collectively, these findings suggest that otilonium bromide may be considered as a promising candidate for treating V.vulnificus infections.
Collapse
|
6
|
Ruan X, Deng X, Tan M, Yu C, Zhang M, Sun Y, Jiang N. In vitro antibiofilm activity of resveratrol against avian pathogenic Escherichia coli. BMC Vet Res 2021; 17:249. [PMID: 34284781 PMCID: PMC8290534 DOI: 10.1186/s12917-021-02961-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Avian pathogenic Escherichia coli (APEC) strains cause infectious diseases in poultry. Resveratrol is extracted from Polygonum cuspidatum, Cassia tora Linn and Vitis vinifera, and displays good antimicrobial activity. The present study aimed to investigate the antibiofilm effect of resveratrol on APEC in vitro. The minimum inhibitory concentration (MIC) of resveratrol and the antibiotic florfenicol toward APEC were detected using the broth microdilution method. Then, the effect of resveratrol on swimming and swarming motility was investigated using a semisolid medium culture method. Subsequently, the minimum biofilm inhibitory concentration (MBIC) and the biofilm eradication rate were evaluated using crystal violet staining. Finally, the antibiofilm activity of resveratrol was observed using scanning electron microscopy (SEM). Meanwhile, the effects of florfenicol combined with resveratrol against biofilm formation by APEC were evaluated using optical microscopy (OM) and a confocal laser scanning microscopy (CLSM). RESULTS The MICs of resveratrol and florfenicol toward APEC were 128 μg/mL and 64 μg/mL, respectively. The swimming and swarming motility abilities of APEC were inhibited in a resveratrol dose-dependent manner. Furthermore, resveratrol showed a significant inhibitory activity against APEC biofilm formation at concentrations above 1 μg/mL (p < 0.01). Meanwhile, the inhibitory effect of resveratrol at 32 μg/mL on biofilm formation was observed using SEM. The APEC biofilm was eradicated at 32 μg/mL of resveratrol combined with 64 μg/mL of florfenicol, which was observed using CLSM and OM. Florfenicol had a slight eradication effect of biofilm formation, whereas resveratrol had a strong biofilm eradication effect toward APEC. CONCLUSION Resveratrol displayed good antibiofilm activity against APEC in vitro, including inhibition of swimming and swarming motility, biofilm formation, and could eradicate the biofilm.
Collapse
Affiliation(s)
- Xiangchun Ruan
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui Province, China. .,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, 230036, Anhui Province, China.
| | - Xiaoling Deng
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui Province, China
| | - Meiling Tan
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui Province, China
| | - Chengbo Yu
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui Province, China
| | - Meishi Zhang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui Province, China
| | - Ying Sun
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui Province, China
| | - Nuohao Jiang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui Province, China
| |
Collapse
|
7
|
Di Fermo P, Di Lodovico S, Amoroso R, De Filippis B, D’Ercole S, Di Campli E, Cellini L, Di Giulio M. Searching for New Tools to Counteract the Helicobacter pylori Resistance: The Positive Action of Resveratrol Derivatives. Antibiotics (Basel) 2020; 9:E891. [PMID: 33322025 PMCID: PMC7763357 DOI: 10.3390/antibiotics9120891] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 01/02/2023] Open
Abstract
The drug-resistance phenomenon in Helicobacter pylori underlines the need of novel strategies to improve the eradication rate including alternative treatments combining antibiotic and non-antibiotic compounds with synergistic action. In this study, the antibacterial (MIC/MBC) and anti-virulence effects (biofilm reduction and swarming motility inhibition) of resveratrol-RSV and new synthetized RSV-phenol derivatives, with a higher bioavailability, alone and combined with levofloxacin-LVX were evaluated against resistant H. pylori clinical strains. The experiments were confirmed in vivo using the Galleria mellonella model. Among the studied RSV derivatives, RSV-3 and RSV-4 possessed higher antibacterial activity with respect to RSV (MICs from 6.25 to 200 µg/mL and from 3.12 to 200 µg/mL, respectively). RSV, RSV-3, and RSV-4 were able to synergize with LVX restoring its effect in two out of seven clinical resistant strains tested for the study. RSV, RSV-3, and RSV-4, alone and with LVX at sub-MIC and sub-synergistic concentrations, significantly reduced the biofilm formation. Moreover, RSV-3 and RSV-4 reduced the H. pylori swarming motility on soft agar. RSV, RSV-3, and RSV-4 were non-toxic for G. mellonella larvae and displayed a protective effect against H. pylori infection. Overall, RSV-phenol derivatives should be considered interesting candidates for innovative therapeutic schemes to tackle the H. pylori antibiotic resistance.
Collapse
Affiliation(s)
- Paola Di Fermo
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (P.D.F.); (S.D.L.); (R.A.); (B.D.F.); (E.D.C.); (M.D.G.)
| | - Silvia Di Lodovico
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (P.D.F.); (S.D.L.); (R.A.); (B.D.F.); (E.D.C.); (M.D.G.)
| | - Rosa Amoroso
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (P.D.F.); (S.D.L.); (R.A.); (B.D.F.); (E.D.C.); (M.D.G.)
| | - Barbara De Filippis
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (P.D.F.); (S.D.L.); (R.A.); (B.D.F.); (E.D.C.); (M.D.G.)
| | - Simonetta D’Ercole
- Department of Medical Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Emanuela Di Campli
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (P.D.F.); (S.D.L.); (R.A.); (B.D.F.); (E.D.C.); (M.D.G.)
| | - Luigina Cellini
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (P.D.F.); (S.D.L.); (R.A.); (B.D.F.); (E.D.C.); (M.D.G.)
| | - Mara Di Giulio
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (P.D.F.); (S.D.L.); (R.A.); (B.D.F.); (E.D.C.); (M.D.G.)
| |
Collapse
|
8
|
Khan F, Tabassum N, Anand R, Kim YM. Motility of Vibrio spp.: regulation and controlling strategies. Appl Microbiol Biotechnol 2020; 104:8187-8208. [PMID: 32816086 DOI: 10.1007/s00253-020-10794-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Flagellar motility in bacteria is a highly regulated and complex cellular process that requires high energy investment for movement and host colonization. Motility plays an important role in the lifestyle of Vibrio spp. in the aquatic environment and during host colonization. Flagellar motility in vibrios is associated with several cellular processes, such as movement, colonization, adhesion, biofilm formation, and virulence. The transcription of all flagella-related genes occurs hierarchically and is regulated positively or negatively by several transcription factors and regulatory proteins. The flagellar regulatory hierarchy is well studied in Vibrio cholerae and Vibrio parahaemolyticus. Here, we compared the regulatory cascade and molecules involved in the flagellar motility of V. cholerae and V. parahaemolyticus in detail. The evolutionary relatedness of the master regulator of the polar and lateral flagella in different Vibrio species is also discussed. Although they can form symbiotic associations of some Vibrio species with humans and aquatic organisms can be harmed by several species of Vibrio as a result of surface contact, characterized by flagellar movement. Thus, targeting flagellar motility in pathogenic Vibrio species is considered a promising approach to control Vibrio infections. This approach, along with the strategies for controlling flagellar motility in different species of Vibrio using naturally derived and chemically synthesized compounds, is discussed in this review. KEY POINTS: • Vibrio species are ubiquitous and distributed across the aquatic environments. • The flagellar motility is responsible for the chemotactic movement and initial colonization to the host. • The transition from the motile into the biofilm stage is one of the crucial events in the infection. • Several signaling pathways are involved in the motility and formation of biofilm. • Attenuation of motility by naturally derived or chemically synthesized compounds could be a potential treatment for preventing Vibrio biofilm-associated infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan, 48513, South Korea.
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Raksha Anand
- Department of Life Science, School of Basic Science and Research, Sharda University, 201306, Greater Noida, U.P., India
| | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan, 48513, South Korea. .,Department of Food Science and Technology, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
9
|
Guo RH, Gong Y, Kim SY, Rhee JH, Kim YR. DIDS inhibits Vibrio vulnificus cytotoxicity by interfering with TolC-mediated RtxA1 toxin secretion. Eur J Pharmacol 2020; 884:173407. [PMID: 32735984 DOI: 10.1016/j.ejphar.2020.173407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 12/28/2022]
Abstract
Vibrio vulnificus (V. vulnificus) infection, frequently resulting in fatal septicemia, has become a growing health concern worldwide. The present study aimed to explore the potential agents that could protect against V. vulnificus cytotoxicity, and to analyze the possible underlying mechanisms. First, we observed that 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid disodium salt hydrate (DIDS) significantly suppressed V. vulnificus cytotoxicity to host cells by using a lactate dehydrogenase (LDH) assay. DIDS did not exhibit any effect on host cell viability, bacterial growth, microbial adhesion and swarming motility. DIDS effectively lowered V. vulnificus RtxA1 toxin-induced calcium influx into host mitochondria and RtxA1 binding to host cells. To further elucidate the underlying mechanism, the synthesis and secretion of RtxA1 toxin were investigated by Western blotting. Intriguingly, DIDS selectively inhibited the secretion of RtxA1 toxin, but did not influence its synthesis. Consequently, the outer membrane portal TolC, a key conduit for RtxA1 export coupled with tripartite efflux pumps, was examined by RT-PCR and Western blotting. We found that DIDS significantly reduced the expression of TolCV1 protein at the transcriptional level. Taken together, these results suggest that DIDS is a promising new paradigm as an antimicrobial drug that targets TolC-mediated toxin.
Collapse
Affiliation(s)
- Rui Hong Guo
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Republic of Korea
| | - Yue Gong
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Republic of Korea
| | - Soo Young Kim
- Clinical Vaccine R&D Center and Department of Microbiology, Chonnam National University Medical School, Republic of Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center and Department of Microbiology, Chonnam National University Medical School, Republic of Korea
| | - Young Ran Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Republic of Korea.
| |
Collapse
|
10
|
Small-molecule inhibitor of HlyU attenuates virulence of Vibrio species. Sci Rep 2019; 9:4346. [PMID: 30867441 PMCID: PMC6416295 DOI: 10.1038/s41598-019-39554-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/10/2019] [Indexed: 02/08/2023] Open
Abstract
Increasing antibiotic resistance has led to the development of new strategies to combat bacterial infection. Anti-virulence strategies that impair virulence of bacterial pathogens are one of the novel approaches with less selective pressure for developing resistance than traditional strategies that impede viability. In this study, a small molecule CM14 [N-(4-oxo-4H-thieno[3,4-c]chromen-3-yl)-3-phenylprop-2-ynamide] that inhibits the activity of HlyU, a transcriptional regulator essential for the virulence of the fulminating human pathogen Vibrio vulnificus, has been identified. Without affecting bacterial growth or triggering the host cell death, CM14 reduces HlyU-dependent expression of virulence genes in V. vulnificus. In addition to the decreased hemolysis of human erythrocytes, CM14 impedes host cell rounding and lysis caused by V. vulnificus. Notably, CM14 significantly enhances survival of mice infected with V. vulnificus by alleviating hepatic and renal dysfunction and systemic inflammation. Biochemical, mass spectrometric, and mutational analyses revealed that CM14 inhibits HlyU from binding to target DNA by covalently modifying Cys30. Remarkably, CM14 decreases the expression of various virulence genes of other Vibrio species and thus attenuates their virulence phenotypes. Together, this molecule could be an anti-virulence agent against HlyU-harboring Vibrio species with a low selective pressure for the emergence of resistance.
Collapse
|
11
|
Vestergaard M, Ingmer H. Antibacterial and antifungal properties of resveratrol. Int J Antimicrob Agents 2019; 53:716-723. [PMID: 30825504 DOI: 10.1016/j.ijantimicag.2019.02.015] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 12/30/2022]
Abstract
Resveratrol is a naturally occurring polyphenolic antioxidant that has received massive attention for its potential health benefits, including anticarcinogenesis, anti-aging and antimicrobial properties. The compound is well tolerated by humans and in recent years has been widely used as a nutraceutical. Its common use makes it interesting to investigate with respect to antimicrobial properties both as a single agent and in combination with conventional antibiotics. Resveratrol displays antimicrobial activity against a surprisingly wide range of bacterial, viral and fungal species. At subinhibitory concentrations, resveratrol can alter bacterial expression of virulence traits leading to reduced toxin production, inhibition of biofilm formation, reduced motility and interference with quorum sensing. In combination with conventional antibiotics, resveratrol enhances the activity of aminoglycosides against Staphylococcus aureus, whereas it antagonises the lethal activity of fluoroquinolones against S. aureus and Escherichia coli. Whilst the antimicrobial properties of the compound have been extensively studied in vitro, little is known about its efficacy in vivo. Nonetheless, following topical application resveratrol has alleviated acne lesions caused by the bacterium Propionibacterium acnes. There are currently no in vivo studies addressing its effect in combination with antibiotics, but recent research suggests that there may be a potential for enhancing the antimicrobial efficacy of certain existing antibiotic classes in combination with resveratrol. Given the difficulties associated with introducing new antimicrobial agents to the market, nutraceuticals such as resveratrol may prove to be interesting candidates when searching for solutions for the growing problem of antimicrobial resistance.
Collapse
Affiliation(s)
- Martin Vestergaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark.
| |
Collapse
|
12
|
Imdad S, Batool N, Pradhan S, Chaurasia AK, Kim KK. Identification of 2',4'-Dihydroxychalcone as an Antivirulence Agent Targeting HlyU, a Master Virulence Regulator in Vibrio vulnificus. Molecules 2018; 23:E1492. [PMID: 29925801 PMCID: PMC6099652 DOI: 10.3390/molecules23061492] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022] Open
Abstract
The emergence of antimicrobial resistance and rapid acclimation allows Vibrio vulnificus to rapidly propagate in the host. This problematic pathological scenario can be circumvented by employing an antivirulence strategy, treating Vibrio infections without hindering the bacterial growth. We developed a genome-integrated orthogonal inhibitor screening platform in E. coli to identify antivirulence agents targeting a master virulence regulator of V. vulnificus. We identified 2′,4′-dihydroxychalcone (DHC) from the natural compound library and verified that it decreases the expression of the major toxin network which is equivalent to the ∆hlyU deletion mutant. 2′,4′-DHC also reduced the hemolytic activity of V. vulnificus which was tested as an example of virulence phenotype. The electrophoretic mobility shift assay confirmed that 2′,4′-DHC specifically targeted HlyU and inhibited its binding to PrtxA1 promoter. Under in vivo conditions, a single dose of 2′,4′-DHC protected ~50% wax-worm larvae from V. vulnificus infection at a non-toxic concentration to both V. vulnificus and wax-worm larvae. In the current study, we demonstrated that an orthogonal reporter system is suitable for the identification of antivirulence compounds with accuracy, and identified 2′,4′-DHC as a potent antivirulence agent that specifically targets the HlyU virulence transcriptional regulator and significantly reduces the virulence and infection potential of V. vulnificus.
Collapse
Affiliation(s)
- Saba Imdad
- Department of Molecular Cell Biology, School of Medicine, Samsung Medical Center, Sungkyunkwan University, Suwon 16419, Korea.
| | - Nayab Batool
- Department of Molecular Cell Biology, School of Medicine, Samsung Medical Center, Sungkyunkwan University, Suwon 16419, Korea.
| | - Subhra Pradhan
- Department of Molecular Cell Biology, School of Medicine, Samsung Medical Center, Sungkyunkwan University, Suwon 16419, Korea.
| | - Akhilesh Kumar Chaurasia
- Department of Molecular Cell Biology, School of Medicine, Samsung Medical Center, Sungkyunkwan University, Suwon 16419, Korea.
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, School of Medicine, Samsung Medical Center, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
13
|
Imdad S, Chaurasia AK, Kim KK. Identification and Validation of an Antivirulence Agent Targeting HlyU-Regulated Virulence in Vibrio vulnificus. Front Cell Infect Microbiol 2018; 8:152. [PMID: 29868508 PMCID: PMC5958221 DOI: 10.3389/fcimb.2018.00152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/23/2018] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance (AMR) in pathogens is the result of indiscriminate use of antibiotics and consequent metabolic/genetic modulation to evolve survival strategies and clonal-selection in AMR strains. As an alternative to antibiotic treatment, antivirulence strategies are being developed, not only to combat bacterial pathogenesis, but also to avoid emerging antibiotic resistance. Vibrio vulnificus is a foodborne pathogen that causes gastroenteritis, necrotizing wound infections, and sepsis with a high rate of mortality. Here, we developed an inhibitor-screening reporter platform to target HlyU, a master transcriptional regulator of virulence factors in V. vulnificus by assessing rtxA1 transcription under its control. The inhibitor-screening platform includes wild type and ΔhlyU mutant strains of V. vulnificus harboring the reporter construct PrtxA1::luxCDABE for desired luminescence signal detection and control background luminescence, respectively. Using the inhibitor-screening platform, we identified a small molecule, fursultiamine hydrochloride (FTH), that inhibits the transcription of the highly invasive repeat-in-toxin (rtxA1) and hemolysin (vvhA) along with other HlyU regulated virulence genes. FTH has no cytotoxic effects on either host cells or pathogen at the tested concentrations. FTH rescues host cells from the necrotic cell-death induced by RtxA1 and decreases the hemolytic activity under in vitro conditions. The most important point is that FTH treatment does not induce the antivirulence resistance. Current study validated the antivirulence strategy targeting the HlyU virulence transcription factor and toxin-network of V. vulnificus and demonstrated that FTH, exhibits a potential to inhibit the pathogenesis of deadly, opportunistic human pathogen, V. vulnificus without inducing AMR.
Collapse
Affiliation(s)
- Saba Imdad
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Akhilesh Kumar Chaurasia
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| |
Collapse
|
14
|
Guo RH, Lim JY, Tra My DN, Jo SJ, Park JU, Rhee JH, Kim YR. Vibrio vulnificus RtxA1 Toxin Expression Upon Contact With Host Cells Is RpoS-Dependent. Front Cell Infect Microbiol 2018; 8:70. [PMID: 29600196 PMCID: PMC5862816 DOI: 10.3389/fcimb.2018.00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/27/2018] [Indexed: 12/18/2022] Open
Abstract
The expression of virulence genes in bacteria is known to be regulated by various environmental and host factors. Vibrio vulnificus, an estuarine bacterium, experiences a dramatic environmental change during its infection process. We reported that V. vulnificus RtxA1 toxin caused acute cell death only when close contact to host cells was allowed. A sigma factor RpoS is a very important regulator for the maximal survival of pathogens under stress conditions. Here, we studied the role of RpoS in V. vulnificus cytotoxicity and mouse lethality. The growth of rpoS mutant strain was comparable to that of wild-type in heart infusion (HI) media and DMEM with HeLa cell lysate. An rpoS mutation resulted in decreased cytotoxicity, which was restored by in trans complementation. Interestingly, host contact increased the expression and secretion of V. vulnificus RtxA1 toxin, which was decreased and delayed by the rpoS mutation. Transcription of the cytotoxic gene rtxA1 and its transporter rtxB1 was significantly increased after host factor contact, whereas the activity was decreased by the rpoS mutation. In contrast, the rpoS mutation showed no effect on the transcriptional activity of a cytolytic heamolysin gene (vvhA). Additionally, the LD50 of the rpoS mutant was 15-fold higher than that of the wild-type in specific pathogen-free CD-1 female mice. Taken together, these results show that RpoS regulates the expression of V. vulnificus RtxA1 toxin and its transporter upon host contact.
Collapse
Affiliation(s)
- Rui Hong Guo
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Ju Young Lim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Duong Nu Tra My
- Department of Molecular Medicine, Chonnam National University, Gwangju, South Korea
| | - Se Jin Jo
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Jung Up Park
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Joon Haeng Rhee
- Department of Microbiology, Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, South Korea
| | - Young Ran Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
15
|
Lim JY, Kim CM, Rhee JH, Kim YR. Effects of Pyrogallol on Growth and Cytotoxicity of Wild-Type and katG Mutant Strains of Vibrio vulnificus. PLoS One 2016; 11:e0167699. [PMID: 27936080 PMCID: PMC5147952 DOI: 10.1371/journal.pone.0167699] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/18/2016] [Indexed: 12/05/2022] Open
Abstract
Vibrio vulnificus is a causative agent of fatal septicemia and necrotic wound infection and the pathogen infection became an important public health problem in many counties. Vibrio vulnificus causes RtxA1 toxin-induced acute cell death. We tried to identify natural products that inhibit the acute cytotoxicity of V. vulnificus using a lactate hydrogenase assay. A polyphenol pyrogallol protected HeLa cells from V. vulnificus-induced cytotoxicity. Pyrogallol also decreased the growth of V. vulnificus; this inhibitory effect was more significant during log phase than stationary phase. To further elucidate the inhibitory mechanism, pyrogallol-induced toxicity was compared between a V. vulnificus catalase-peroxidase mutant (katG−) and the isogenic wild-type MO6-24/O strains. No growth was observed for the katG− mutant in the presence of pyrogallol (50 μg/mL) even after 24 h, whereas the wild-type strain demonstrated growth recovery following a prolonged lag phase. Pyrogallol-mediated growth inhibition of the katG− mutant strain was partially rescued by exogenous catalase treatment. These results indicate that the mechanism by which pyrogallol inhibits the growth and cytotoxicity of V. vulnificus likely involves polyphenol-induced prooxidant damage. Taken together, these results suggest that pyrogallol has potential for development as a new paradigm drug to treat infectious diseases.
Collapse
Affiliation(s)
- Ju Young Lim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Chonnam National University, Gwangju, Republic of Korea
| | - Choon-Mee Kim
- Premedical Sciences, Chosun University Medical School, Gwangju, Republic of Korea
| | - Joon Haeng Rhee
- Clinical Vaccine Research and Development Center, Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Young Ran Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Chonnam National University, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
16
|
In vivo efficacy of the combination of ciprofloxacin and cefotaxime against Vibrio vulnificus sepsis. PLoS One 2014; 9:e101118. [PMID: 24978586 PMCID: PMC4076242 DOI: 10.1371/journal.pone.0101118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/03/2014] [Indexed: 12/18/2022] Open
Abstract
Objectives The invivo efficacy of a cefotaxime-ciprofloxacin combination against Vibrio vulnificus and the effects on rtxA1 expression of commonly used antibiotics are unknown. Methods In vitro time-kill studies were performed to evaluate synergism. Female BALB/c mice were injected subcutaneously with 1×107 or 1×108 cfu of V. vulnificus. Antibiotic therapy was initiated at 2 h after inoculation in the following four therapy groups: cefotaxime; ciprofloxacin; cefotaxime-plus-ciprofloxacin; and cefotaxime-plus-minocycline. The cytotoxicity of V. vulnificus for HeLa cells was measured using the lactate dehydrogenase assay; rtxA1 transcription was measured in a transcriptional reporter strain using a β-galactosidase assay. Results In vitro time-kill assays exhibited synergism between cefotaxime and ciprofloxacin. In the animal experiments, the 96-h survival rate for the cefotaxime-plus-ciprofloxacin group (85%; 17/20) was significantly higher than that of the cefotaxime-plus-minocycline (35%; 7/20) and cefotaxime alone (0%; 0/20) groups (P<0.05 for both). Bacterial counts in the liver and spleen were significantly lower in the cefotaxime-plus-ciprofloxacin group 24 and 48 h after treatment, relative to the other groups. At sub-inhibitory concentrations, ciprofloxacin inhibited more effectively rtxA1 transcription and mammalian cell cytotoxicity than either minocycline or cefotaxime (P<0.05 for both). Conclusions Ciprofloxacin is more effective at reducing rtxA1 transcription and subsequent cytotoxicity than either minocycline or cefotaxime, and the combination of ciprofloxacin and cefotaxime was more effective in clearing V. vulnificus invivo than previously used regimens. These data suggest that the combination of ciprofloxacin and cefotaxime is an effective option for the treatment of V. vulnificus sepsis in humans.
Collapse
|
17
|
Arora T, Mehta AK, Joshi V, Mehta KD, Rathor N, Mediratta PK, Sharma KK. Substitute of Animals in Drug Research: An Approach Towards Fulfillment of 4R's. Indian J Pharm Sci 2012; 73:1-6. [PMID: 22131615 PMCID: PMC3224398 DOI: 10.4103/0250-474x.89750] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 12/16/2010] [Accepted: 01/02/2011] [Indexed: 11/04/2022] Open
Abstract
The preclinical studies for drug screening involve the use of animals which is very time consuming and expensive and at times leads to suffering of the used organism. Animal right activists around the world are increasingly opposing the use of animals. This has forced the researchers to find ways to not only decrease the time involved in drug screening procedures but also decrease the number of animals used and also increase the humane care of animals. To fulfill this goal a number of new in vitro techniques have been devised which are called 'Alternatives' or 'Substitutes' for use of animals in research involving drugs. These 'Alternatives' are defined as the adjuncts which help to decrease the use as well as the number of animals in biomedical research. Russell and Burch have defined these alternatives by three R's - Reduction, Refinement and Replacement. These alternative strategies include physico-chemical methods and techniques utilizing tissue culture, microbiological system, stem cells, DNA chips, micro fluidics, computer analysis models, epidemiological surveys and plant-tissue based materials. The advantages of these alternatives include the decrease in the number of animals used, ability to obtain the results quickly, reduction in the costs and flexibility to control the variables of the experiment. However these techniques are not glittering gold and have their own shortcomings. The disadvantages include the lack of an appropriate alternative to study the whole animal's metabolic response, inability to study transplant models and idiosyncratic responses and inability to study the body's handling of drugs and its subsequent metabolites. None-the-less these aalternative methods to certain extent help to reduce the number of animals required for research. But such alternatives cannot eliminate the need for animals in research completely. Even though no animal model is a complete set of replica for a process within a human body, the intact animal does provide a better model of the complex interaction of the physiological processes.
Collapse
Affiliation(s)
- T Arora
- Department of Pharmacology, University College of Medical Sciences, Delhi - 110 095, India
| | | | | | | | | | | | | |
Collapse
|