1
|
Hassan RM, Elsayed M, Kholief TE, Hassanen NHM, Gafer JA, Attia YA. Mitigating effect of single or combined administration of nanoparticles of zinc oxide, chromium oxide, and selenium on genotoxicity and metabolic insult in fructose/streptozotocin diabetic rat model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48517-48534. [PMID: 33907960 PMCID: PMC8079231 DOI: 10.1007/s11356-021-14089-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
This research was intended to evaluate the antidiabetic effect of single or combined administration of nanoparticles of zinc oxide nanoparticles (ZnONPs), chromium oxide nanoparticles (Cr2O3NPs), and selenium nanoparticles (SeNPs), on genetic and metabolic insult in fructose/streptozotocin diabetic rat model. Type 2 diabetes mellitus was induced by feeding sixty adult male albino rats with a high fructose diet accompanied by a single i.p. injection of streptozotocin (STZ). The rats were divided into 6 groups (10 rats/each) and the doses of nanoparticles were 10 mg/kg b.wt for ZnONPs, 1 mg/kg b.wt for Cr2O3, and 0.4 mg/kg b.wt for SeNPs. The results displayed that diabetes significantly decreased bodyweight, serum insulin, C-peptide, adiponectin levels, erythrocyte glutathione peroxidase, serum superoxide dismutase activities, high-density lipoprotein cholesterol (HDL-C), and total antioxidant capacity while causing a substantial increase in serum glucose, C-reactive protein, atherogenic index, HOMA-IR, malondialdehyde, lipid profile, interleukin-6 levels, and liver function and kidney function parameters. Furthermore, the findings showed a decrease in insulin receptor substrate-1 (IRS-1) hepatic mRNA expression level and peroxisome proliferator-activated receptor (PPAR-γ) adipocyte mRNA expression level in type 2 diabetic rats. DNA damage was confirmed by performing the comet assay. Moreover, histological observation of pancreatic and hepatic tissues was performed, which were consistent with the biochemical results. The present study confirmed that oral administration of ZnONPs, Cr2O3NPs, SeNPs, and their mixture improved all the biochemical and genetic parameters toward normal levels and ameliorated the diabetic consequences that were manifested by restricting cellular DNA damage which maintaining pancreatic and hepatic tissues from oxidative damage. The best reported antidiabetic effect was observed in the mixture administered group.
Collapse
Affiliation(s)
- Rasha M Hassan
- Department of biochemistry and nutrition, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, 11757, Egypt
- Egyptian Ministry of Environment, Cairo, 11728, Egypt
| | - Mai Elsayed
- Department of biochemistry and nutrition, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, 11757, Egypt
| | - Tahany E Kholief
- Department of biochemistry and nutrition, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, 11757, Egypt
| | - Naglaa H M Hassanen
- Department of Special Food and Nutrition, Agricultural Research Center, Giza, 12619, Egypt
| | - Jehan A Gafer
- Animal Reproduction Research Institute, Giza, 12556, Egypt
| | - Yasser A Attia
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
2
|
Yang BY, Jiang CY, Dai CY, Zhao RZ, Wang XJ, Zhu YP, Qian YX, Yin FL, Fu XY, Jing YF, Han BM, Xia SJ, Ruan Y. 5-ARI induces autophagy of prostate epithelial cells through suppressing IGF-1 expression in prostate fibroblasts. Cell Prolif 2019; 52:e12590. [PMID: 30883989 PMCID: PMC6536403 DOI: 10.1111/cpr.12590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/11/2019] [Accepted: 01/27/2019] [Indexed: 12/12/2022] Open
Abstract
Objectives 5α‐reductase inhibitor (5‐ARI) is a commonly used medicine in the treatment of lower urinary tract symptoms (LUTS) associated with benign prostatic hyperplasia (BPH). Our study mainly focuses on the mechanism of BPH development after 5ARI treatment. Materials and Methods Prostate specimens from patients were collected. Insulin‐like growth factor 1 (IGF‐1), Beclin‐1, LC3 levels, was analysed by immunohistochemistry. The role IGF‐1 on autophagic flux in prostate epithelial cells was studied. Additionally, effect of autophagy on recombinant grafts consisting of prostate stromal and epithelial cells in nude mice was investigated. Results We demonstrated that IGF‐1 expression is down‐regulated in prostate fibroblasts after long‐term 5‐ARI application. A decrease in IGF‐1 levels was found to activate autophagic flux through the mTOR pathway in prostate epithelial cells, while the inhibition of IGF‐1 receptor function induced autophagy in prostate epithelial cells. In addition, we revealed that blocking autophagic flux initiation can reduce the volume of recombinant grafts in vivo. Finally, our findings suggest that long‐term 5‐ARI application reduces IGF‐1 secretion by prostatic stromal cells, thereby inducing autophagy of prostatic epithelial cells, which is one of the mechanisms underlying BPH pathogenesis and progression. Conclusions Focusing on the autophagy induced by low levels of IGF‐1 in prostatic epithelial cells, after elucidating AR signalling impairment of prostate stromal cells, might provide a novel strategy for the treatment and prevention of BPH development.
Collapse
Affiliation(s)
- Bo-Yu Yang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen-Yi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen-Yun Dai
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai, China
| | - Rui-Zhe Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing-Jie Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Ping Zhu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Xin Qian
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fu-Li Yin
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang-Yu Fu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Feng Jing
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bang-Min Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu-Jie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Ruan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Sreenivasulu K, Nandeesha H, Dorairajan LN, Rajappa M, Vinayagam V. Elevated insulin and reduced insulin like growth factor binding protein-3/prostate specific antigen ratio with increase in prostate size in Benign Prostatic Hyperplasia. Clin Chim Acta 2017; 469:37-41. [DOI: 10.1016/j.cca.2017.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 01/08/2023]
|
4
|
Parental High-Fat Diet Promotes Inflammatory and Senescence-Related Changes in Prostate. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4962950. [PMID: 28261375 PMCID: PMC5316447 DOI: 10.1155/2017/4962950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/24/2016] [Accepted: 12/08/2016] [Indexed: 01/08/2023]
Abstract
Background. Obesity and dietary habits are associated with increased incidences of aging-related prostatic diseases. The present study was aimed to investigate transgenerational effects of chronic high-fat diet (HFD) feeding on inflammation and senescence-related changes in prostate. Methods. Sprague-Dawley rats were kept on either normal or HFD one. Senescence-associated β-galactosidase (SA β-gal) activity, inflammation, and cellular proliferation were determined in the prostate. Results. Increased SA β-gal activity, expression of p53, and cell proliferation marker PCNA were observed in ventral prostate of HFD-fed rats. Immunostaining for p53 and PCNA revealed that the p53 immunopositive cells were primarily in stroma while PCNA immunopositive cells were epithelial cells. An increase in expression of cycloxygenase-2 (COX-2) and phosphorylation of nuclear factor-kappa B (NF-kB) was observed in prostate of weaning pups HFD-fed parents. However, in adult pups, irrespective of dietary habit, a significant increase in the expression of COX-2, PCNA, phosphorylation of NF-kB, infiltration of inflammatory cells, and SA β-gal activity was observed. Conclusions. Present investigation reports that HFD feeding promotes accumulation of p53 expressing cells, proliferation of epithelial cells, and senescence-related changes in prostate. Further, parental HFD-feeding upholds inflammatory, proliferative, and senescence-related changes in prostate of pups.
Collapse
|
5
|
Zhang X, Zeng X, Liu Y, Dong L, Zhao X, Qu X. Impact of metabolic syndrome on benign prostatic hyperplasia in elderly Chinese men. Urol Int 2014; 93:214-9. [PMID: 24862628 DOI: 10.1159/000357760] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/13/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of the present study was to evaluate the impact of metabolic syndrome (MetS) on benign prostatic hyperplasia (BPH) in elderly Chinese men. METHODS A total of 401 elderly BPH patients were divided into the without or with MetS group to assess the associations of MetS and components of MetS with BPH. Urologic evaluation included prostate volume, International Prostate Symptom Score, serum prostate-specific antigen, duration of concomitant lower urinary tract symptoms (LUTS) and maximum flow rate. RESULTS Body mass index (BMI), waist circumference, fasting glucose, glycosylated hemoglobin, triglyceride, fasting insulin (FINS), insulin resistance assessed by homeostasis model assessment (HOMA-IR) were greater and high-density lipoprotein cholesterol (HDL-C) was lower in BPH patients with MetS than in those without MetS. The patients with MetS showed a significantly larger prostate volume (p = 0.000) and longer duration of LUTS (p = 0.006) than those without MetS. Prostate volume was positively correlated with BMI (p = 0.000), FINS (p = 0.001), HOMA-IR (p = 0.003) and inversely correlated with HDL-C (p = 0.000). Multiple linear regression analysis showed that prostate volume was significantly correlated with HOMA-IR (p = 0.015). CONCLUSIONS Our results suggest that MetS, BMI, low HDL-C level, increased serum insulin and especially insulin resistance are considered risk factors for prostate enlargement in elderly Chinese men.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Geriatrics, Second Xiangya Hospital of Central South University, Changsha, P.R. China
| | | | | | | | | | | |
Collapse
|
6
|
Vikram A, Kushwaha S, Jena GB. Relative influence of testosterone and insulin in the regulation of prostatic cell proliferation and growth. Steroids 2011; 76:416-23. [PMID: 21215763 DOI: 10.1016/j.steroids.2010.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/22/2010] [Accepted: 12/28/2010] [Indexed: 10/18/2022]
Abstract
Prostatic hyperplasia is a common problem of the aged men population. Recent experimental and clinical studies provide sufficient evidence that apart from androgens, insulin also plays an important role in the pathogenesis of prostatic hyperplasia. The present study was aimed to investigate the relative influence of testosterone and insulin on the cellular proliferation and prostatic growth. Effect of testosterone on the prostate of hypoinsulinemic, and glandular injection of insulin-receptor antagonist S961 on the prostate of castrated Sprague-Dawley rat (220±10 g) was examined. Significant decrease in the weight of the ventral prostate was observed in the streptozotocin-induced hypoinsulinemic rats (~6 fold), which is restored by the intervention of testosterone. Although, glandular injection of S961 did not led to any change in the frequency of proliferating cell nuclear antigen (PCNA) positive cells in normal rats, significant decrease was observed in the castrated rats. Castration led to increase in the frequency of the caspase-3 and the TUNEL positive cells in the ventral prostate. Further, long-term (6 weeks) administration of S961 induced significant decrease in the weight of the ventral prostate. Results of the present study provide that both testosterone and insulin promote prostatic cell proliferation and change in the level of either of the hormone results in the destabilization of cellular equilibrium, and modulation of the insulin-receptor signaling in the prostate may provide an alternative strategy for the treatment of prostatic enlargement. Further, studies are required to better understand the interplay between these hormones in the regulation of prostatic growth.
Collapse
Affiliation(s)
- A Vikram
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Mohali, Punjab 160062, India.
| | | | | |
Collapse
|
7
|
Vikram A, Jena G. Role of insulin and testosterone in prostatic growth: who is doing what? Med Hypotheses 2010; 76:474-8. [PMID: 21159446 DOI: 10.1016/j.mehy.2010.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/04/2010] [Accepted: 11/21/2010] [Indexed: 11/29/2022]
Abstract
Previous studies have demonstrated increased incidence of benign prostatic hyperplasia in insulin-resistant individuals. In addition to androgens, prostatic growth is sensitive to the peptide growth factors including insulin. Experimental studies employing intervention of selective β-cell toxin streptozotocin and castration suggest that depletion of either insulin or testosterone results in the severe prostatic atrophy (>80%). Exogenous testosterone and diet-induced experimental hyperinsulinemia induces prostatic enlargement in rats. Further, hyperinsulinemia sensitizes prostate towards the growth promoting effect of testosterone, and testosterone augments prostatic growth even in the hypoinsulinemic rats. However, in castrated rats diet-induced hyperinsulinemia fails to promote prostatic growth. Based on these evidences it is hypothesized that in the presence of testosterone insulin plays an important role in the prostatic growth. The epidemiological reports witnessing increased incidences of prostatic enlargement in men with metabolic syndrome, which are known to have increased level of insulin, provides a validating clue to the hypothesis. Further, the hypothesis suggests that targeting insulin signaling pathway could be a new objective for the treatment of prostatic enlargement.
Collapse
Affiliation(s)
- Ajit Vikram
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab 160062, India.
| | | |
Collapse
|