2
|
Wellhauser L, Chalmers JA, Belsham DD. Nitric Oxide Exerts Basal and Insulin-Dependent Anorexigenic Actions in POMC Hypothalamic Neurons. Mol Endocrinol 2016; 30:402-16. [PMID: 26930171 DOI: 10.1210/me.2015-1275] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The arcuate nucleus of the hypothalamus represents a key center for the control of appetite and feeding through the regulation of 2 key neuronal populations, notably agouti-related peptide/neuropeptide Y and proopimelanocortin (POMC)/cocaine- and amphetamine-regulated transcript neurons. Altered regulation of these neuronal networks, in particular the dysfunction of POMC neurons upon high-fat consumption, is a major pathogenic mechanism involved in the development of obesity and type 2 diabetes mellitus. Efforts are underway to preserve the integrity or enhance the functionality of POMC neurons in order to prevent or treat these metabolic diseases. Here, we report for the first time that the nitric oxide (NO(-)) donor, sodium nitroprusside (SNP) mediates anorexigenic actions in both hypothalamic tissue and hypothalamic-derived cell models by mediating the up-regulation of POMC levels. SNP increased POMC mRNA in a dose-dependent manner and enhanced α-melanocortin-secreting hormone production and secretion in mHypoA-POMC/GFP-2 cells. SNP also enhanced insulin-driven POMC expression likely by inhibiting the deacetylase activity of sirtuin 1. Furthermore, SNP enhanced insulin-dependent POMC expression, likely by reducing the transcriptional repression of Foxo1 on the POMC gene. Prolonged SNP exposure prevented the development of insulin resistance. Taken together, the NO(-) donor SNP enhances the anorexigenic potential of POMC neurons by promoting its transcriptional expression independent and in cooperation with insulin. Thus, increasing cellular NO(-) levels represents a hormone-independent method of promoting anorexigenic output from the existing POMC neuronal populations and may be advantageous in the fight against these prevalent disorders.
Collapse
Affiliation(s)
- Leigh Wellhauser
- Department of Physiology (L.W., J.A.C., D.D.B.), University of Toronto, Toronto, Ontario, Canada M5G 1A8; and Departments of Obstetrics, Gynaecology, and Medicine (D.D.B.), University of Toronto and Division of Cellular and Molecular Biology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada M5S 1A8
| | - Jennifer A Chalmers
- Department of Physiology (L.W., J.A.C., D.D.B.), University of Toronto, Toronto, Ontario, Canada M5G 1A8; and Departments of Obstetrics, Gynaecology, and Medicine (D.D.B.), University of Toronto and Division of Cellular and Molecular Biology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada M5S 1A8
| | - Denise D Belsham
- Department of Physiology (L.W., J.A.C., D.D.B.), University of Toronto, Toronto, Ontario, Canada M5G 1A8; and Departments of Obstetrics, Gynaecology, and Medicine (D.D.B.), University of Toronto and Division of Cellular and Molecular Biology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
3
|
Chang HS, Won ES, Lee HY, Ham BJ, Kim YG, Lee MS. The association of proopiomelanocortin polymorphisms with the risk of major depressive disorder and the response to antidepressants via interactions with stressful life events. J Neural Transm (Vienna) 2014; 122:59-68. [PMID: 25448875 DOI: 10.1007/s00702-014-1333-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 11/05/2014] [Indexed: 11/30/2022]
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis is among the most consistent neuroendocrine abnormalities in major depressive disorder (MDD). The peptide adrenocorticotropin hormone (ACTH) mediates HPA axis function during stress and is encoded by the proopiomelanocortin (POMC) gene polycistronically. After screening 39 POMC polymorphisms, we evaluated the association of polymorphisms with susceptibility to MDD in 145 MDD patients and 193 normal subjects; in patients, we also evaluated the response to treatment with antidepressants. Additionally, we investigated the role of gene-environment interaction between POMC haplotypes and stressful life events (SLE) in the treatment response. Although genotypes and haplotypes were not significantly associated with the risk of MDD, non-remitters were more likely to carry haplotype 1 (ht1) and to have no ht2 than were remitters (corrected P = 0.010-0.035). Although observations were limited in patients without SLE, a significant haplotype-SLE interaction was observed (P = 0.020). Additionally, at 1, 2, and 8 weeks of treatment, the 21-item Hamilton Depression Rating scores of MDD subjects with POMC ht2 were significantly (P = 0.003-0.044) lower than those of patients with ht1 in subjects those did not experience SLE. MDD subjects possessing POMC ht2 achieved remission significantly (P = 0.013; survival analysis) faster than patients with ht1. This study suggests that POMC haplotypes, via an interaction with SLE, are associated with antidepressant treatment outcomes in MDD patients. Regarding SLE, haplotypes of the POMC gene could be useful markers for predicting the response to antidepressant treatment in MDD patients.
Collapse
Affiliation(s)
- Hun Soo Chang
- Department of Medical Bioscience, Graduated School, Soonchunhyang University, Bucheon, 420-767, Republic of Korea
| | | | | | | | | | | |
Collapse
|
4
|
Yilmaz Z, Kaplan AS, Tiwari AK, Levitan RD, Piran S, Bergen AW, Kaye WH, Hakonarson H, Wang K, Berrettini WH, Brandt HA, Bulik CM, Crawford S, Crow S, Fichter MM, Halmi KA, Johnson CL, Keel PK, Klump KL, Magistretti P, Mitchell JE, Strober M, Thornton LM, Treasure J, Woodside DB, Knight J, Kennedy JL. The role of leptin, melanocortin, and neurotrophin system genes on body weight in anorexia nervosa and bulimia nervosa. J Psychiatr Res 2014; 55:77-86. [PMID: 24831852 PMCID: PMC4191922 DOI: 10.1016/j.jpsychires.2014.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/05/2014] [Accepted: 04/04/2014] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Although low weight is a key factor contributing to the high mortality in anorexia nervosa (AN), it is unclear how AN patients sustain low weight compared with bulimia nervosa (BN) patients with similar psychopathology. Studies of genes involved in appetite and weight regulation in eating disorders have yielded variable findings, in part due to small sample size and clinical heterogeneity. This study: (1) assessed the role of leptin, melanocortin, and neurotrophin genetic variants in conferring risk for AN and BN; and (2) explored the involvement of these genes in body mass index (BMI) variations within AN and BN. METHOD Our sample consisted of 745 individuals with AN without a history of BN, 245 individuals with BN without a history of AN, and 321 controls. We genotyped 20 markers with known or putative function among genes selected from leptin, melanocortin, and neurotrophin systems. RESULTS There were no significant differences in allele frequencies among individuals with AN, BN, and controls. AGRP rs13338499 polymorphism was associated with lowest illness-related BMI in those with AN (p = 0.0013), and NTRK2 rs1042571 was associated with highest BMI in those with BN (p = 0.0018). DISCUSSION To our knowledge, this is the first study to address the issue of clinical heterogeneity in eating disorder genetic research and to explore the role of known or putatively functional markers in genes regulating appetite and weight in individuals with AN and BN. If replicated, our results may serve as an important first step toward gaining a better understanding of weight regulation in eating disorders.
Collapse
Affiliation(s)
- Zeynep Yilmaz
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Clinical Research Department, Centre for Addiction and Mental Health, Toronto, Canada
| | - Allan S Kaplan
- Clinical Research Department, Centre for Addiction and Mental Health, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Arun K Tiwari
- Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Canada
| | - Robert D Levitan
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Mood and Anxiety Program, Centre for Addiction and Mental Health, Toronto, Canada
| | - Sara Piran
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Andrew W Bergen
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - Walter H Kaye
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Hakon Hakonarson
- Joseph Stokes Jr. Research Institute, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kai Wang
- Department of Psychiatry, University of Southern California, Los Angeles, CA, USA
| | - Wade H Berrettini
- Department of Psychiatry, Center of Neurobiology and Behavior, University of Pennsylvania, Philadelphia, PA, USA
| | - Harry A Brandt
- Department of Psychiatry, Sheppard Pratt Health System, Towson, MD, USA
| | - Cynthia M Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Steven Crawford
- Department of Psychiatry, Sheppard Pratt Health System, Towson, MD, USA
| | - Scott Crow
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Manfred M Fichter
- Department of Psychiatry, University of Munich (LMU), Munich, Germany; Roseneck Hospital for Behavioral Medicine, Prien, Germany
| | - Katherine A Halmi
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| | | | - Pamela K Keel
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Kelly L Klump
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Pierre Magistretti
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - James E Mitchell
- Department of Clinical Neuroscience, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA; Neuropsychiatric Research Institute, Fargo, ND, USA
| | - Michael Strober
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Laura M Thornton
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janet Treasure
- Department of Academic Psychiatry, King's College London, Institute of Psychiatry, London, United Kingdom
| | - D Blake Woodside
- Department of Psychiatry, University of Toronto, Toronto, Canada; Eating Disorders Program, Toronto General Hospital, Toronto, Canada
| | - Joanne Knight
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Canada
| | - James L Kennedy
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Canada.
| |
Collapse
|
5
|
Chowdhury NI, Souza RP, Tiwari AK, Brandl EJ, Sicard M, Meltzer HY, Lieberman JA, Kennedy JL, Müller DJ. Investigation of melanocortin system gene variants in antipsychotic-induced weight gain. World J Biol Psychiatry 2014; 15:251-8. [PMID: 24564533 DOI: 10.3109/15622975.2013.858827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The use of second-generation antipsychotic medications may result in substantial weight gain in a subset of schizophrenia patients. Distinct populations of neurons expressed in the hypothalamus, including the cocaine- and amphetamine-regulated transcript (CART), the polypeptide pro-opiomelanocortin (POMC) and the agouti-related protein (AGRP), have regulatory roles in weight control and energy homeostasis. Thus, we investigated the potential role of CART, POMC and AGRP genetic variants in antipsychotic-induced weight gain (AIWG). METHODS Five CART single nucleotide polymorphisms (SNPs) (rs10515115, rs3763153, rs3857384, rs11575893, rs16871471), three POMC SNPs (rs6713532, rs1047521, rs3754860) and one AGRP SNP (rs1338993), were genotyped in 218 patients treated with antipsychotics for chronic schizophrenia and evaluated for AIWG. We compared weight change (%) across genotypic groups using analysis of covariance. RESULTS None of the SNPs in POMC, CART, AGRP were significantly associated with AIWG in the refined samples stratified by ethnicity and medication treatment. CONCLUSIONS In this exploratory study, we observed that POMC, CART and AGRP gene variants are not a major contributor to AIWG. However larger samples are required to completely rule out their effect on AIWG.
Collapse
Affiliation(s)
- Nabilah I Chowdhury
- Neurogenetics Section, Neuroscience Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto, ON , Canada
| | | | | | | | | | | | | | | | | |
Collapse
|