1
|
Xu C, Nie X, Xu R, Zhou L, Wang D. Protective effects of Apelin-13 on nicotine-induced H9c2 cardiomyocyte apoptosis and oxidative stress. Tob Induc Dis 2025; 23:TID-23-33. [PMID: 40104400 PMCID: PMC11915093 DOI: 10.18332/tid/201400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 03/20/2025] Open
Abstract
INTRODUCTION We aimed to explore the role of Apelin-13 in resisting oxidation, inflammation as well as apoptosis and its underlying mechanisms of action using a model of nicotine-induced H9c2 cardiomyocyte injury. METHODS H9c2 cardiomyocytes were randomly divided into control, nicotine, nicotine + Apelin-13, and Apelin-13 groups. Cell counting kit-8 assay was conducted to determine the cell viability. Interleukin (IL)-6, superoxide dismutase, tumor necrosis factor-alpha (TNF-α), glutathione peroxidase (GSH-Px), IL-β, catalase (CAT), IL-8, lactate dehydrogenase (LDH), and malondialdehyde (MDA) levels were examined. A 2',7'-dichlorodihydrofluorescein diacetate assay was conducted to measure the intracellular reactive oxygen species (ROS) level. The morphology of apoptotic cardiomyocytes was observed by 4',6-diamidino-2-phenylindole staining. Western blotting was employed to measure the protein expressions of apoptotic factors B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X (Bax). Apoptosis was quantified using Annexin V/propidium iodide staining. RESULTS Exposure of H9c2 cardiomyocytes to 10 μM nicotine significantly reduced cell viability and increased LDH release, oxidative stress (elevated MDA and ROS levels with decreased superoxide dismutase, GSH-Px, and CAT activities), pro-inflammatory cytokines (IL-6, TNF-α, IL-1β, IL-8), and apoptotic markers (increased Bax with decreased Bcl-2 expression, along with nuclear condensation) (p<0.05). In contrast, treatment with 2 μM Apelin-13 significantly alleviated these deleterious effects, enhancing cell viability, restoring antioxidant enzyme activities, reducing oxidative and inflammatory responses, and inhibiting apoptosis (p<0.05). CONCLUSIONS Nicotine induction increases the oxidative stress and apoptotic capacity of H9c2 cardiomyocytes, but Apelin-13 protects H9c2 cardiomyocytes against nicotine-induced apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Can Xu
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Xinyu Nie
- Nanjing University Medical School, Nanjing, People's Republic of China
| | - Ru Xu
- Nanjing University Medical School, Nanjing, People's Republic of China
| | - Luyang Zhou
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Dongjin Wang
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Gluvic Z, Obradovic M, Manojlovic M, Vincenza Giglio R, Maria Patti A, Ciaccio M, Suri JS, Rizzo M, Isenovic ER. Impact of different hormones on the regulation of nitric oxide in diabetes. Mol Cell Endocrinol 2024; 592:112325. [PMID: 38968968 DOI: 10.1016/j.mce.2024.112325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Polymetabolic syndrome achieved pandemic proportions and dramatically influenced public health systems functioning worldwide. Chronic vascular complications are the major contributors to increased morbidity, disability, and mortality rates in diabetes patients. Nitric oxide (NO) is among the most important vascular bed function regulators. However, NO homeostasis is significantly deranged in pathological conditions. Additionally, different hormones directly or indirectly affect NO production and activity and subsequently act on vascular physiology. In this paper, we summarize the recent literature data related to the effects of insulin, estradiol, insulin-like growth factor-1, ghrelin, angiotensin II and irisin on the NO regulation in physiological and diabetes circumstances.
Collapse
Affiliation(s)
- Zoran Gluvic
- University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, Department of Endocrinology and Diabetes, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Milan Obradovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mia Manojlovic
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia; Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Rosaria Vincenza Giglio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy; Department of Laboratory Medicine, University Hospital, Palermo, Italy
| | - Angelo Maria Patti
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy; Department of Laboratory Medicine, University Hospital, Palermo, Italy
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
| | - Manfredi Rizzo
- Internal Medicine Unit, "Vittorio Emanuele II" Hospital, Castelvetrano, Italy
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Eid RA. Acylated ghrelin protection inhibits apoptosis in the remote myocardium post-myocardial infarction by inhibiting calcineurin and activating ARC. Arch Physiol Biochem 2024; 130:215-229. [PMID: 34965150 DOI: 10.1080/13813455.2021.2017463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
This study investigated if acylated ghrelin (AG) could inhibit myocardial infarction (MI)-induced apoptosis in the left ventricles (LV) of male rats and tested if this protection involves modulating ARC anti-apoptotic protein. Rats (n = 12/group) were assigned as a sham-operated, a sham + AG (100 µg/kg, 2x/d, S.C.), MI, and MI + AG. With no antioxidant activity or expression of FAS, AG inhibited caspase-3, 8, and 9 and decreased cytosolic/mitochondrial levels of cytochrome-c, Bax, Bad, and Bad-BCL-2 complex in the LVs of the sham-operated and MI-treated rats. Concomitantly, AG preserved the mitochondria structure, decreased mtPTP, and enhanced state-3 respiration in the LVs of both treated groups. These effects were associated with increased mitochondrial levels of ARC and a reduction in the activity of calcineurin. Overall, AG suppresses MI-induced ventricular apoptosis by inhibition of calcineurin, activation of ARC, and preserving mitochondria integrity.
Collapse
Affiliation(s)
- Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
4
|
Kok CY, Ghossein G, Igoor S, Rao R, Titus T, Tsurusaki S, Chong JJ, Kizana E. Ghrelin mediated cardioprotection using in vitro models of oxidative stress. Gene Ther 2024; 31:165-174. [PMID: 38177343 PMCID: PMC10940144 DOI: 10.1038/s41434-023-00435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Ghrelin is commonly known as the 'hunger hormone' due to its role in stimulating food intake in humans. However, the roles of ghrelin extend beyond regulating hunger. Our aim was to investigate the ability of ghrelin to protect against hydrogen peroxide (H2O2), a reactive oxygen species commonly associated with cardiac injury. An in vitro model of oxidative stress was developed using H2O2 injured H9c2 cells. Despite lentiviral ghrelin overexpression, H9c2 cell viability and mitochondrial function were not protected following H2O2 injury. We found that H9c2 cells lack expression of the preproghrelin cleavage enzyme prohormone convertase 1 (encoded by PCSK1), required to convert ghrelin to its active form. In contrast, we found that primary rat cardiomyocytes do express PCSK1 and were protected from H2O2 injury by lentiviral ghrelin overexpression. In conclusion, we have shown that ghrelin expression can protect primary rat cardiomyocytes against H2O2, though this effect was not observed in other cell types tested.
Collapse
Affiliation(s)
- Cindy Y Kok
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Westmead Clinical School, the Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - George Ghossein
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Sindhu Igoor
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Renuka Rao
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Tracy Titus
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Shinya Tsurusaki
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - James Jh Chong
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Westmead Clinical School, the Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Cardiology, Westmead Hospital, Westmead, NSW, Australia
| | - Eddy Kizana
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.
- Westmead Clinical School, the Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Department of Cardiology, Westmead Hospital, Westmead, NSW, Australia.
| |
Collapse
|
5
|
Merabet N, Ramoz N, Boulmaiz A, Bourefis A, Benabdelkrim M, Djeffal O, Moyse E, Tolle V, Berredjem H. SNPs-Panel Polymorphism Variations in GHRL and GHSR Genes Are Not Associated with Prostate Cancer. Biomedicines 2023; 11:3276. [PMID: 38137497 PMCID: PMC10741232 DOI: 10.3390/biomedicines11123276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Prostate cancer (PCa) is a major public health problem worldwide. Recent studies have suggested that ghrelin and its receptor could be involved in the susceptibility to several cancers such as PCa, leading to their use as an important predictive way for the clinical progression and prognosis of cancer. However, conflicting results of single nucleotide polymorphisms (SNPs) with ghrelin (GHRL) and its receptor (GHSR) genes were demonstrated in different studies. Thus, the present case-control study was undertaken to investigate the association of GHRL and GHSR polymorphisms with the susceptibility to sporadic PCa. A cohort of 120 PCa patients and 95 healthy subjects were enrolled in this study. Genotyping of six SNPs was performed: three tag SNPs in GHRL (rs696217, rs4684677, rs3491141) and three tag SNPs in the GHSR (rs2922126, rs572169, rs2948694) using TaqMan. The allele and genotype distribution, as well as haplotypes frequencies and linked disequilibrium (LD), were established. Multifactor dimensionality reduction (MDR) analysis was used to study gene-gene interactions between the six SNPs. Our results showed no significant association of the target polymorphisms with PCa (p > 0.05). Nevertheless, SNPs are often just markers that help identify or delimit specific genomic regions that may harbour functional variants rather than the variants causing the disease. Furthermore, we found that one GHSR rs2922126, namely the TT genotype, was significantly more frequent in PCa patients than in controls (p = 0.040). These data suggest that this genotype could be a PCa susceptibility genotype. MDR analyses revealed that the rs2922126 and rs572169 combination was the best model, with 81.08% accuracy (p = 0.0001) for predicting susceptibility to PCa. The results also showed a precision of 98.1% (p < 0.0001) and a PR-AUC of 1.00. Our findings provide new insights into the influence of GHRL and GHSR polymorphisms and significant evidence for gene-gene interactions in PCa susceptibility, and they may guide clinical decision-making to prevent overtreatment and enhance patients' quality of life.
Collapse
Affiliation(s)
- Nesrine Merabet
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria; (A.B.); (A.B.); (M.B.)
- Unit 85 PRC (Physiology of Reproduction and Behavior), Centre INRAe of Tours, University of Tours, 37380 Nouzilly, France;
| | - Nicolas Ramoz
- University Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris (IPNP), 75014 Paris, France; (N.R.); (V.T.)
| | - Amel Boulmaiz
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria; (A.B.); (A.B.); (M.B.)
| | - Asma Bourefis
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria; (A.B.); (A.B.); (M.B.)
| | - Maroua Benabdelkrim
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria; (A.B.); (A.B.); (M.B.)
| | - Omar Djeffal
- Private Medical Uro-Chirurgical Cabinet, Cité SafSaf, BatR02 n°S01, Annaba 23000, Algeria;
| | - Emmanuel Moyse
- Unit 85 PRC (Physiology of Reproduction and Behavior), Centre INRAe of Tours, University of Tours, 37380 Nouzilly, France;
| | - Virginie Tolle
- University Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris (IPNP), 75014 Paris, France; (N.R.); (V.T.)
| | - Hajira Berredjem
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria; (A.B.); (A.B.); (M.B.)
| |
Collapse
|
6
|
Yen PT, Huang SE, Hsu JH, Kuo CH, Chao YY, Wang LS, Yeh JL. Anti-Inflammatory and Anti-oxidative Effects of Puerarin in Postmenopausal Cardioprotection: Roles of Akt and Heme Oxygenase-1. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 51:149-168. [PMID: 36437552 DOI: 10.1142/s0192415x2350009x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During menopause, the sharp decline in estrogen levels leads to an increased risk of cardiovascular disease in women. The inflammatory response and oxidative stress are reportedly involved in the development of cardiovascular disorders postmenopause. In this study, we evaluated the cardioprotective effects of puerarin, a phytoestrogen derived from the root of Pueraria lobate, and investigated its underlying molecular mechanisms. Puerarin alleviated cytotoxicity and the production of reactive oxygen species (ROS) in lipopolysaccharide (LPS)- and hydrogen peroxide-stimulated H9c2 cardiomyoblasts. Puerarin scavenges free radicals and reduces apoptosis, thereby suppressing NADPH oxidase-1 and Bax activation to attenuate the production of ROS and restore Bcl-2 expression. Additionally, puerarin inhibited the expression of inducible nitric oxide synthase, cyclooxygenase-2, and nitric oxide production and decreased the hypertrophic phenotype under LPS stimulation. Treatment with puerarin reduced the levels of malondialdehyde and restored glutathione levels when facing oxidative stress. Mechanistically, puerarin inhibited both the LPS-induced Toll-like receptor 4/NF-[Formula: see text]B and mitogen-activated protein kinase signaling pathways. Furthermore, it reversed both the LPS-mediated downregulation of Akt activation and heme oxygenase-1 (HO-1) expression. The cardioprotective effects of puerarin were abolished by inhibitors of Akt and HO-1 and the estrogen receptor antagonist fulvestrant (ICI). This indicated that the estrogen receptor mediated by these two molecules plays important roles in conferring the anti-inflammatory and anti-oxidative functions of puerarin. These results demonstrate the therapeutic potential of puerarin for treating heart disease in postmenopausal women through Akt and HO-1 activation.
Collapse
Affiliation(s)
- Pei-Tzu Yen
- Jian Sheng Tang Chinese Medicine Clinic, Kaohsiung, Taiwan.,Department of Chinese Medicine, Sin-Lau Hospital, Tainan, Taiwan
| | - Shang-En Huang
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Hau Hsu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pediatrics, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Cheng-Hsiang Kuo
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ying Chao
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lung-Shuo Wang
- Department of Chinese Medicine, Sin-Lau Hospital, Tainan, Taiwan.,The School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Jwu-Lai Yeh
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Tang K, Zhong B, Luo Q, Liu Q, Chen X, Cao D, Li X, Yang S. Phillyrin attenuates norepinephrine-induced cardiac hypertrophy and inflammatory response by suppressing p38/ERK1/2 MAPK and AKT/NF-kappaB pathways. Eur J Pharmacol 2022; 927:175022. [DOI: 10.1016/j.ejphar.2022.175022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022]
|
8
|
Wang H, Lu H, Wu Y. Knockdown of Dual Oxidase 1 (DUOX1) Promotes Wound Healing by Regulating Reactive Oxygen Species (ROS) by Activation of Nuclear Kactor kappa B (NF-κB) Signaling. Med Sci Monit 2021; 27:e926492. [PMID: 33563887 PMCID: PMC7883404 DOI: 10.12659/msm.926492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background The aim of this study was to evaluate the potential role of dual oxidase 1 (DUOX1) in wound healing. Material/Methods Primary fibroblasts were isolated from wound granulation tissue. Fibroblasts cell lines were established using DUOX1 overexpression and interference. Cell proliferation and reactive oxygen species (ROS) production were measured and compared among the groups. Results DUOX1 expression was highest in the slow-healing tissues (P<0.05). Knockdown of DUOX1 significantly increased cell proliferation and inhibited ROS production and cell apoptosis (P<0.01). Moreover, expression of malondialdehyde (MDA) was significantly reduced, while expression of superoxide dismutase (SOD) expression was significantly increased (P<0.01). In addition, DUOX1 silencing significantly upregulated collagen I, collagen III, and NF-κB protein levels in the cytoplasm, and inhibited the protein levels of P21, P16, and NF-κB in the nucleus (P<0.01). Overexpression of DUOX1 caused a reverse reaction mediated by knockdown of DUOX1. When DUOX1-overexpressing cells were treated with the ROS inhibitor N-acetyl-L-cysteine (NAC), the protein levels that were increased by DUOX1 overexpression were reversed. Conclusions These results suggest that knockdown of DUOX1 significantly benefits wound healing, likely by the regulation of oxidative stress via NF-κB pathway activation.
Collapse
Affiliation(s)
- Hui Wang
- Department of Plastic Surgery, GongLi Hospital Pudong District Shanghai, Shanghai, China (mainland)
| | - Haowei Lu
- Department of Dermatology, GongLi Hospital Pudong District Shanghai, Shanghai, China (mainland)
| | - Yige Wu
- Department of Plastic Surgery, GongLi Hospital Pudong District Shanghai, Shanghai, China (mainland)
| |
Collapse
|
9
|
Shi P, Geng Q, Chen L, Du T, Lin Y, Lai R, Meng F, Wu Z, Miao X, Yao H. Schisandra chinensis bee pollen's chemical profiles and protective effect against H 2O 2-induced apoptosis in H9c2 cardiomyocytes. BMC Complement Med Ther 2020; 20:274. [PMID: 32912207 PMCID: PMC7487998 DOI: 10.1186/s12906-020-03069-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 09/01/2020] [Indexed: 12/20/2022] Open
Abstract
Background Schisandra chinensis (Turcz.) Baill bee pollen extract (SCBPE) is often used as a functional food in China due to its good antioxidant property. However, its chemical compositions and effects on H9c2 cardiomyocytes against H2O2-induced cell injury still lacks of reports thus far. This study aimed to characterize the main components of SCBPE and investigate its protective effects against H2O2-induced H9c2 cardiomyocyte injury. Methods The main components of SCBPE were analyzed via ultraperformance liquid chromatography–quadrupole time-of-flight tandem mass spectrometry (UPLC–QTOF MS/MS). The three main nucleosides in SCBPE were quantitatively analyzed via ultraperformance liquid chromatography–diode array detection. Furthermore, the potential mechanism by which SCBPE exerts protective effects against H2O2-induced H9c2 cardiomyocyte injury was explored for the first time via cell survival rate measurements; cell morphological observation; myocardial superoxide dismutase (SOD) activity and malondialdehyde (MDA) and glutathione (GSH) level determination; flow cytometry; and quantitative polymerase chain reaction. Results Two carbohydrates, three nucleosides, and nine quinic acid nitrogen-containing derivatives in SCBPE were identified or tentatively characterized via UPLC–QTOF MS/MS. The nine quinic acid nitrogen-containing derivatives were first reported in bee pollen. The contents of uridine, guanosine, and adenosine were 2.4945 ± 0.0185, 0.1896 ± 0.0049, and 1.8418 ± 0.0157 μg/mg, respectively. Results of in vitro experiments showed that cell survival rate, myocardial SOD activity, and GSH level significantly increased and myocardial MDA level significantly decreased in SCBPE groups compared with those in H2O2 group. Cell morphology in SCBPE groups also markedly improved compared with that in H2O2 group. Results indicated that SCBPE protected H9c2 cardiomyocytes from H2O2-induced apoptosis by downregulating the mRNA expressions of Bax, cytochrome C, and caspase-3 and upregulating the Bcl-2 mRNA expression. Conclusions This study is the first to report that SCBPE could protect against oxidative stress injury and apoptosis in H2O2-injured H9c2 cells. Results indicated that the nucleosides and quinic acid nitrogen-containing derivatives could be the main substances that exert protective effects against H2O2-induced H9c2 cardiomyocyte injury.
Collapse
Affiliation(s)
- Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qianqian Geng
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lifu Chen
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianyu Du
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Lin
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rongcai Lai
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fei Meng
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenhong Wu
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoqing Miao
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, 350122, People's Republic of China.
| |
Collapse
|
10
|
Chen TS, Lai CH, Shen CY, Pai PY, Chen RJ, PadmaViswanadha V, Yang CK, Chen MC, Lin YM, Huang CY. Orally administered resveratrol enhances the therapeutic effect of autologous transplanted adipose-derived stem cells on rats with diabetic hepatopathy. Biotech Histochem 2019; 95:37-45. [PMID: 31423853 DOI: 10.1080/10520295.2019.1631481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Stem cell therapy is a promising treatment for hepatopathy due to diabetes mellitus (DM); oral resveratrol treatment exhibits protective effects. We investigated whether protective effects could be produced in liver of diabetic rats receiving autologous adipose-derived stem cell transplantation (ADSC) plus oral resveratrol administration. Male rats were divided into four groups: sham group; streptozotocin induced DM group; DM + ADSC group, in which DM rats were treated with 106 stem cells/rat; and DM + R + ADSC group, in which DM rats were treated with ADSC and oral resveratrol. The DM group exhibited apoptosis, inflammation and fibrosis, whereas Sirt-1 and survival signaling were suppressed. Pathological conditions other than survival signaling were improved in the DM + ADSC group. All pathological conditions were improved in the DM + R + ADSC group. Also, the oxidative stress level in the blood was reduced in the DM + R + ADSC group compared to the sham group. Oral resveratrol administration appears to reduce oxidative damage and enhances survival signaling in diabetic liver. The therapeutic response in the DM + R + ADSC group was better than in the DM + ADSC group.
Collapse
Affiliation(s)
- T-S Chen
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - C-H Lai
- Division of Cardiology, Department of Internal Medicine, Armed Force Taichung General Hospital, Taichung, Taiwan
| | - C-Y Shen
- Department of Nursing, Meiho University, Pingtung, Taiwan
| | - P-Y Pai
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - R-J Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - V PadmaViswanadha
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - C-K Yang
- Division of Colorectal Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - M-C Chen
- Division of Colorectal Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Y-M Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - C-Y Huang
- Medical Research Center for Exosome and Mitochondria Related Diseases, China Medical University and Hospital, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan.,Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.,College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
11
|
Cui S, Nian Q, Chen G, Wang X, Zhang J, Qiu J, Zhang Z. Ghrelin ameliorates A549 cell apoptosis caused by paraquat via p38-MAPK regulated mitochondrial apoptotic pathway. Toxicology 2019; 426:152267. [PMID: 31381934 DOI: 10.1016/j.tox.2019.152267] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 11/19/2022]
Abstract
Paraquat has relatively strong detrimental effects on humans and animals and can cause acute lung injury with high mortality. Ghrelin is a brain-gut peptide which plays important roles in regulating various physiological processes. This study investigated whether ghrelin could inhibit paraquat-induced lung injuries and attempted to elucidate the possible molecular mechanisms. A549 cells were preincubated with different concentrations of ghrelin and then treated with 200 μM of PQ for 24 h. Then cell survival, apoptosis, cellular oxidative stress and lipid peroxidation of A549 cells were detected after different treatments. Subsequently, we analyzed the mitochondrial membrane potential (ΔΨm) and measured caspase-3 activation in A549 cells. In addition, we investigated the activation of the MAPKs pathway and the function of p38-MAPK within mitochondrial apoptosis. Our study indicated that ghrelin administration improved cell viability and reduced apoptosis of PQ-treated A549 cells dose-dependently. Ghrelin treatment reduced the elevation of ROS and MDA, while improved GSH content in A549 cells after paraquat exposure. Moreover, we found that ghrelin dose-dependently increased ΔΨm and decreased caspase-3 activity. The phosphorylated p38 MAPK and JNK levels elevated following PQ exposure, while the phosphorylation of p38 MAPK decreased following ghrelin pretreatment. p38 MAPK siRNA or SB203580 pretreatment ameliorated PQ-caused cell injury and apoptosis related signals, however, the intracellular ROS production was not affected. N-Acetylcysteine (NAC), a classic antioxidant pretreatment decreased the phosphorylated p38 MAPK level and intracellular ROS production, alleviated cell injury, and inhibited apoptosis. The results showed that p38-MAPK pathway plays an important role in PQ-caused alveolar epithelial cell insult, and ghrelin might attenuate PQ-induced cell injury by inhibiting ROS-induced p38-MAPK modulated mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Shuqing Cui
- Standardized Residency Training Center, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Qing Nian
- Department of Emergency, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Gang Chen
- Department of Vascular Intervention, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Xingyong Wang
- Department of Emergency, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jinying Zhang
- Department of Emergency, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Jianqing Qiu
- Department of Emergency, Binzhou Medical University Hospital, Binzhou 256603, China.
| | - Zhiqiang Zhang
- Department of Emergency, Binzhou Medical University Hospital, Binzhou 256603, China.
| |
Collapse
|
12
|
Mu H, Wang Y, Wei H, Lu H, Feng Z, Yu H, Xing Y, Wang H. Collagen peptide modified carboxymethyl cellulose as both antioxidant drug and carrier for drug delivery against retinal ischaemia/reperfusion injury. J Cell Mol Med 2018; 22:5008-5019. [PMID: 30030883 PMCID: PMC6156360 DOI: 10.1111/jcmm.13768] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 06/03/2018] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress can cause injury in retinal endothelial cells. Carboxymethyl cellulose modified with collagen peptide (CMCC) is of a distinct antioxidant capacity and potentially a good drug carrier. In this study, the protective effects of CMCC against H2 O2 -induced injury of primary retinal endothelial cells were investigated. In vitro, we demonstrated that CMCC significantly promoted viability of H2 O2 -treated cells, efficiently restrained cellular reactive oxygen species (ROS) production and cell apoptosis. Then, the CMCC was employed as both drug and anti-inflammatory drug carrier for treatment of retinal ischaemia/reperfusion (I/R) in rats. Animals were treated with CMCC or interleukin-10-loaded CMCC (IL-10@CMCC), respectively. In comparisons, the IL-10@CMCC treatment exhibited superior therapeutic effects, including better restoration of retinal structural thickness and less retinal apoptosis. Also, chemiluminescence demonstrated that transplantation of IL-10@CMCC markedly reduced the retinal oxidative stress level compared with CMCC alone and potently recovered the activities of typical antioxidant enzymes, SOD and CAT. Therefore, it could be concluded that CMCC provides a promising platform to enhance the drug-based therapy for I/R-related retinal injury.
Collapse
Affiliation(s)
- Hua Mu
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Yeqing Wang
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Haiying Wei
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Hong Lu
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Zhuolei Feng
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Hongmin Yu
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Yue Xing
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Haijing Wang
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| |
Collapse
|
13
|
Zhang Q, Dong XW, Xia JY, Xu KY, Xu ZR. Obestatin Plays Beneficial Role in Cardiomyocyte Injury Induced by Ischemia-Reperfusion In Vivo and In Vitro. Med Sci Monit 2017; 23:2127-2136. [PMID: 28472020 PMCID: PMC5426386 DOI: 10.12659/msm.901361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/13/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Obestatin, primarily recognized as a peptide within the gastrointestinal system, has been shown to benefit the cardiovascular system. We designed this experiment to study the protective role and underlying mechanism of obestatin against ischemia-reperfusion(I/R) injury in myocardial cells. MATERIAL AND METHODS In an In vivo experiment, LAD was ligated for 0.5 h and then opened for reperfusion with obestatin for 24 h. Then, the infarction area was shown with TTC staining, and inflammation factors in serum were analyzed by qRT-PCR. In primary cultured cardiomyocytes, we measured the level of LDH, MDA, GSH, and SOD. Finally, we assessed cells apoptosis using flow cytometry and detected the concentrations of caspase-3, Bax, and Bcl-2 using Western blot analysis. RESULTS TTC staining showed that in the 3 obestatin groups, the infarct area became smaller with the increase of obestatin concentration. Obestatin also inhibited LDH expression in rat serum and decreased mRNA levels of TNF-α, IL-6, ICAM-1, and iNOS in rat cardiomyocytes after reperfusion. In primary cultured cardiomyocytes, obestatin decreased LDH content and increased GSH level after I/R injury. Obestatin was also found to antagonize the apoptosis of cardiomyocytes in a dose-dependent manner. Western blot analysis showed that obestatin downregulated the expression of caspase-3 and Bax and upregulated the expression of Bcl-2. CONCLUSIONS Obestatin can protect cardiomyocyte from I/R-induced injury in vitro and in vivo. This beneficial effect is closely related with its properties of anti-inflammation, anti-cytotoxicity, and anti-apoptosis. The protective effect of obestatin might be associated with activation of Bcl-2 and inhibition of caspase-3 and Bax.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Xin-wei Dong
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Jia-ying Xia
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Ke-ying Xu
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Zhe-rong Xu
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
14
|
Cardioprotective effect of KR-33889, a novel PARP inhibitor, against oxidative stress-induced apoptosis in H9c2 cells and isolated rat hearts. Arch Pharm Res 2017; 40:640-654. [PMID: 28378219 DOI: 10.1007/s12272-017-0912-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/27/2017] [Indexed: 01/29/2023]
Abstract
Oxidative stress plays a critical role in cardiac injury during ischemia/reperfusion (I/R). Despite a potent cardioprotective activity of KR-33889, a novel poly (ADP-ribose) polymerase inhibitor, its underlying mechanism remains unresolved. This study was designed to investigate the protective effects of KR-33889 against oxidative stress-induced apoptosis in rat cardiomyocytes H9c2 cells and isolated rat hearts. H2O2 caused severe injury to H9c2 cells, mainly due to apoptosis, as revealed by TUNEL assay. However, KR-33889 pretreatment significantly attenuated H2O2-induced apoptosis of H9c2 cells, which was accompanied by decrease in expression of both cleaved caspase-3 and Bax and increase in Bcl-2 expression and the ratio of Bcl-2/Bax. KR-33889 also significantly enhanced the expression of anti-oxidant enzymes including heme oxygenase-1, Cu/Zn-superoxide dismutase (SOD), Mn-SOD, and catalase, thereby inhibiting production of intracellular ROS. Furthermore, KR-33889 reversed H2O2-induced decrease in phosphorylation of Akt, GSK-3β, ERK1/2, p38 MAPK, and SAPK/JNK during most H2O2 exposure time. In globally ischemic rat hearts, KR-33889 inhibited both I/R-induced decrease in cardiac contractility and apoptosis by increasing Bcl-2, decreasing both cleaved caspase-3 and Bax expression, and enhancing expression of anti-oxidant enzymes. Taken together, these results suggest that KR-33889 may have therapeutic potential to prevent I/R-induced heart injury in ischemic heart diseases mainly by reducing oxidative stress-mediated myocardial apoptosis.
Collapse
|
15
|
Erythropoietin Modification Enhances the Protection of Mesenchymal Stem Cells on Diabetic Rat-Derived Schwann Cells: Implications for Diabetic Neuropathy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6352858. [PMID: 28299330 PMCID: PMC5337339 DOI: 10.1155/2017/6352858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 01/05/2017] [Indexed: 11/18/2022]
Abstract
Diabetes-triggered apoptosis of Schwann cells (SC) contributes to the degradation of diabetic peripheral neuropathy (DNP). In recent years, mesenchymal stem cells (MSC) were applied to DPN repair and it was demonstrated that paracrine secretion played a key role in neuroprotection exerted by MSC. Erythropoietin (EPO) is a potent cytokine capable of reducing apoptosis of SC. However, the expression of EPO in MSC is limited. In this study, we hypothesized that overexpression of EPO in MSC (EPO-MSC) may significantly improve their neuroprotective potentials. The EPO overexpression in MSC was achieved by lentivirus transduction. SC derived from the periphery nerve of diabetic rats were cocultured with MSC or EPO-MSC in normal or high glucose culture condition, respectively. In normal glucose culture condition, the overexpression of EPO in MSC promoted the MSC-induced restoration of SC from diabetic rats, including increases in GSH level and cell viability, decrease in TUNEL apoptosis, upregulation of antiapoptotic proteins, p-Akt, and Bcl-2, and downregulation of proapoptotic proteins, cleaved caspase-3, and Bax. The subsequent results in high glucose culture condition showed similar promotions achieved by EPO-MSC. Thus, it could be concluded that EPO-MSC possessed a potent potential in hampering apoptosis of SC, and the suppression was probably attributed to attenuating oxidative stress and regulating apoptosis related protein factors.
Collapse
|
16
|
Overexpression of Heme Oxygenase-1 in Mesenchymal Stem Cells Augments Their Protection on Retinal Cells In Vitro and Attenuates Retinal Ischemia/Reperfusion Injury In Vivo against Oxidative Stress. Stem Cells Int 2017; 2017:4985323. [PMID: 28255307 PMCID: PMC5309411 DOI: 10.1155/2017/4985323] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/26/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023] Open
Abstract
Retinal ischemia/reperfusion (I/R) injury, involving several ocular diseases, seriously threatens human ocular health, mainly treated by attenuating I/R-induced oxidative stress. Currently, mesenchymal stem cells (MSCs) could restore I/R-injured retina through paracrine secretion. Additionally, heme oxygenase-1 (HO-1) could ameliorate oxidative stress and thus retinal apoptosis, but the expression of HO-1 in MSC is limited. Here, we hypothesized that overexpression of HO-1 in MSC (MSC-HO-1) may significantly improve their retina-protective potentials. The overexpression of HO-1 in MSC was achieved by lentivirus transduction. Then, MSC or MSC-HO-1 was cocultured with retinal ganglion cells (RGC-5) in H2O2-simulated oxidative condition and their protection on RGC-5 was systemically valuated in vitro. Compared with MSC, MSC-HO-1 significantly attenuated H2O2-induced injury of RGC-5, including decrease in cellular ROS level and apoptosis, activation of antiapoptotic proteins p-Akt and Bcl-2, and blockage of proapoptotic proteins cleaved caspase 3 and Bax. In retinal I/R rats model, compared with control MSC, MSC-HO-1-treated retina significantly retrieved its structural thickness, reduced cell apoptosis, markedly attenuated retinal oxidative stress level, and largely regained the activities of typical antioxidant enzymes, SOD and CAT. Therefore, it could be concluded that overexpression of HO-1 provides a promising strategy to enhance the MSC-based therapy for I/R-related retinal injury.
Collapse
|
17
|
Tsubouchi H, Onomura H, Saito Y, Yanagi S, Miura A, Matsuo A, Matsumoto N, Nakazato M. Ghrelin does not influence cancer progression in a lung adenocarcinoma cell line. Endocr J 2017; 64:S41-S46. [PMID: 28652543 DOI: 10.1507/endocrj.64.s41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor (GHSR), is produced in the human stomach. Although ghrelin has therapeutic potential for cancer cachexia, ghrelin treatment may have a concern about accelerating cancer progression. Here, using the human lung adenocarcinoma cell line HLC-1, we investigated the effects of ghrelin on molecular mechanisms linked to cancer progression, including cell viability, proliferation, resistance to apoptosis, and mitochondrial activity. Both types of mouse alveolar epithelial cells (types I and II) expressed the GHSR, as did the human normal airway cell lines BEAS-2B and HLC-1. Treatment with ghrelin (10-2, 10-1, 1, 10 μM) did not affect cell viability or proliferation. Pretreatment of HLC-1 cells with ghrelin (10 μM) did not affect resistance to paclitaxel-induced apoptosis. The parameters of mitochondrial respiration, including basal respiration, proton leak, ATP production, maximal respiration, spare respiratory capacity, and non-mitochondrial respiration, of the HLC-1 cells pretreated with or without ghrelin were unchanged. Taken together, ghrelin does not influence cancer progression in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Hironobu Tsubouchi
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hitomi Onomura
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yusuke Saito
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shigehisa Yanagi
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ayako Miura
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ayako Matsuo
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Nobuhiro Matsumoto
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
- Research director of CREST, Japan Agency for Medical Research and Development (AMED)
| |
Collapse
|
18
|
Ghrelin ameliorates the human alveolar epithelial A549 cell apoptosis induced by lipopolysaccharide. Biochem Biophys Res Commun 2016; 474:83-90. [PMID: 27103436 DOI: 10.1016/j.bbrc.2016.04.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 12/14/2022]
Abstract
Ghrelin is a gastric acyl-peptide that plays an inhibitory role in cell apoptosis. Herein we investigate the protective effects of ghrelin in LPS-induced apoptosis of human alveolar epithelial A549 cells, along with the possible molecular mechanisms. LPS exposure impaired cell viability and increased apoptosis of A549 cells significantly in concentration- and time-dependent manners embodied in increased Bax and cleaved caspase-3 production, coupled with decreased Bcl-2 levels. Simultaneously, LPS remarkably decreased the expression of phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinas (ERK) in A549 cells. However, ghrelin'pretreatment ameliorated LPS-caused alterations in the ratio of Bax/Bcl-2 and cleaved caspase-3 expression, whereas activated the PI3K/Akt and ERK signaling. These results demonstrate that ghrelin lightens LPS-induced apoptosis of human alveolar epithelial cells partly through activating the PI3K/Akt and ERK pathway and thereby might benefit alleviating septic ALI.
Collapse
|
19
|
Gortan Cappellari G, Zanetti M, Semolic A, Vinci P, Ruozi G, Falcione A, Filigheddu N, Guarnieri G, Graziani A, Giacca M, Barazzoni R. Unacylated Ghrelin Reduces Skeletal Muscle Reactive Oxygen Species Generation and Inflammation and Prevents High-Fat Diet-Induced Hyperglycemia and Whole-Body Insulin Resistance in Rodents. Diabetes 2016; 65:874-86. [PMID: 26822085 DOI: 10.2337/db15-1019] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/13/2016] [Indexed: 11/13/2022]
Abstract
Excess reactive oxygen species (ROS) generation and inflammation may contribute to obesity-associated skeletal muscle insulin resistance. Ghrelin is a gastric hormone whose unacylated form (UnAG) is associated with whole-body insulin sensitivity in humans and may reduce oxidative stress in nonmuscle cells in vitro. We hypothesized that UnAG 1) lowers muscle ROS production and inflammation and enhances tissue insulin action in lean rats and 2) prevents muscle metabolic alterations and normalizes insulin resistance and hyperglycemia in high-fat diet (HFD)-induced obesity. In 12-week-old lean rats, UnAG (4-day, twice-daily subcutaneous 200-µg injections) reduced gastrocnemius mitochondrial ROS generation and inflammatory cytokines while enhancing AKT-dependent signaling and insulin-stimulated glucose uptake. In HFD-treated mice, chronic UnAG overexpression prevented obesity-associated hyperglycemia and whole-body insulin resistance (insulin tolerance test) as well as muscle oxidative stress, inflammation, and altered insulin signaling. In myotubes, UnAG consistently lowered mitochondrial ROS production and enhanced insulin signaling, whereas UnAG effects were prevented by small interfering RNA-mediated silencing of the autophagy mediator ATG5. Thus, UnAG lowers mitochondrial ROS production and inflammation while enhancing insulin action in rodent skeletal muscle. In HFD-induced obesity, these effects prevent hyperglycemia and insulin resistance. Stimulated muscle autophagy could contribute to UnAG activities. These findings support UnAG as a therapeutic strategy for obesity-associated metabolic alterations.
Collapse
Affiliation(s)
| | - Michela Zanetti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Annamaria Semolic
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Pierandrea Vinci
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulia Ruozi
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Antonella Falcione
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Nicoletta Filigheddu
- Department of Translational Medicine, University of Piemonte Orientale "Amedeo Avogadro," Novara, Italy
| | - Gianfranco Guarnieri
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Andrea Graziani
- Department of Translational Medicine, University of Piemonte Orientale "Amedeo Avogadro," Novara, Italy Medical School, Università Vita-Salute San Raffaele, Milan, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Rocco Barazzoni
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
20
|
Sulforaphane prevents rat cardiomyocytes from hypoxia/reoxygenation injury in vitro via activating SIRT1 and subsequently inhibiting ER stress. Acta Pharmacol Sin 2016; 37:344-53. [PMID: 26775664 DOI: 10.1038/aps.2015.130] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/26/2015] [Indexed: 02/06/2023]
Abstract
AIM Sulforaphane (SFN), a natural dietary isothiocyanate, is found to exert beneficial effects for cardiovascular diseases. This study aimed to investigate the mechanisms underlying the protective effects of SFN in a model of myocardial hypoxia/reoxygenation (H/R) injury in vitro. METHODS Cultured neonatal rat cardiomyocytes pretreated with SFN were subjected to 3-h hypoxia followed by 3-h reoxygenation. Cell viability and apoptosis were detected. Caspase-3 activity and mitochondrial membrane potential (ΔΨm) was measured. The expression of ER stress-related apoptotic proteins were analyzed with Western blot analyses. Silent information regulator 1 (SIRT1) activity was determined with SIRT1 deacetylase fluorometric assay kit. RESULTS SFN (0.1-5 μmol/L) dose-dependently improved the viability of cardiomyocytes, diminished apoptotic cells and suppressed caspase-3 activity. Meanwhile, SFN significantly alleviated the damage of ΔΨm and decreased the expression of ER stress-related apoptosis proteins (GRP78, CHOP and caspase-12), elevating the expression of SIRT1 and Bcl-2/Bax ratio in the cardiomyocytes. Co-treatment of the cardiomyocytes with the SIRT1-specific inhibitor Ex-527 (1 μmol/L) blocked the SFN-induced cardioprotective effects. CONCLUSION SFN prevents cardiomyocytes from H/R injury in vitro most likely via activating SIRT1 pathway and subsequently inhibiting the ER stress-dependent apoptosis.
Collapse
|
21
|
Gortan Cappellari G, Zanetti M, Semolic A, Vinci P, Ruozi G, De Nardo M, Filigheddu N, Guarnieri G, Giacca M, Graziani A, Barazzoni R. Unacylated ghrelin does not alter mitochondrial function, redox state and triglyceride content in rat liver in vivo. CLINICAL NUTRITION EXPERIMENTAL 2015. [DOI: 10.1016/j.yclnex.2015.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Hao Y, Liu C, Huang J, Gu Y, Li H, Yang Z, Liu J, Wang W, Li R. Ghrelin protects against depleted uranium-induced apoptosis of MC3T3-E1 cells through oxidative stress-mediated p38-mitogen-activated protein kinase pathway. Toxicol Appl Pharmacol 2015; 290:116-25. [PMID: 26529667 DOI: 10.1016/j.taap.2015.10.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/10/2015] [Accepted: 10/28/2015] [Indexed: 11/19/2022]
Abstract
Depleted uranium (DU) mainly accumulates in the bone over the long term. Osteoblast cells are responsible for the formation of bone, and they are sensitive to DU damage. However, studies investigating methods of reducing DU damage in osteoblasts are rarely reported. Ghrelin is a stomach hormone that stimulates growth hormones released from the hypothalamic-pituitary axis, and it is believed to play an important physiological role in bone metabolism. This study evaluates the impact of ghrelin on DU-induced apoptosis of the osteoblast MC3T3-E1 and investigates its underlying mechanisms. The results show that ghrelin relieved the intracellular oxidative stress induced by DU, eliminated reactive oxygen species (ROS) and reduced lipid peroxidation by increasing intracellular GSH levels; in addition, ghrelin effectively suppressed apoptosis, enhanced mitochondrial membrane potential, and inhibited cytochrome c release and caspase-3 activation after DU exposure. Moreover, ghrelin significantly reduced the expression of DU-induced phosphorylated p38-mitogen-activated protein kinase (MAPK). A specific inhibitor (SB203580) or specific siRNA of p38-MAPK could significantly suppress DU-induced apoptosis and related signals, whereas ROS production was not affected. In addition, ghrelin receptor inhibition could reduce the anti-apoptosis effect of ghrelin on DU and reverse the effect of ghrelin on intracellular ROS and p38-MAPK after DU exposure. These results suggest that ghrelin can suppress DU-induced apoptosis of MC3T3-E1 cells, reduce DU-induced oxidative stress by interacting with its receptor, and inhibit downstream p38-MAPK activation, thereby suppressing the mitochondrial-dependent apoptosis pathway.
Collapse
Affiliation(s)
- Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Cong Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Jiawei Huang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Ying Gu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Hong Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Zhangyou Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Jing Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Weidong Wang
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People Hospital, Shanghai 200233, PR China.
| | - Rong Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China.
| |
Collapse
|
23
|
Mosa RMH, Zhang Z, Shao R, Deng C, Chen J, Chen C. Implications of ghrelin and hexarelin in diabetes and diabetes-associated heart diseases. Endocrine 2015; 49:307-23. [PMID: 25645463 DOI: 10.1007/s12020-015-0531-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/12/2015] [Indexed: 02/07/2023]
Abstract
Ghrelin and its synthetic analog hexarelin are specific ligands of growth hormone secretagogue (GHS) receptor. GHS have strong growth hormone-releasing effect and other neuroendocrine activities such as stimulatory effects on prolactin and adrenocorticotropic hormone secretion. Recently, several studies have reported other beneficial functions of GHS that are independent of GH. Ghrelin and hexarelin, for examples, have been shown to exert GH-independent cardiovascular activity. Hexarelin has been reported to regulate peroxisome proliferator-activated receptor gamma (PPAR-γ) in macrophages and adipocytes. PPAR-γ is an important regulator of adipogenesis, lipid metabolism, and insulin sensitization. Ghrelin also shows protective effects on beta cells against lipotoxicity through activation of phosphatidylinositol-3 kinase/protein kinase B, c-Jun N-terminal kinase (JNK) inhibition, and nuclear exclusion of forkhead box protein O1. Acylated ghrelin (AG) and unacylated ghrelin (UAG) administration reduces glucose levels and increases insulin-producing beta cell number, and insulin secretion in pancreatectomized rats and in newborn rats treated with streptozotocin, suggesting a possible role of GHS in pancreatic regeneration. Therefore, the discovery of GHS has opened many new perspectives in endocrine, metabolic, and cardiovascular research areas, suggesting the possible therapeutic application in diabetes and diabetic complications especially diabetic cardiomyopathy. Here, we review the physiological roles of ghrelin and hexarelin in the protection and regeneration of beta cells and their roles in the regulation of insulin release, glucose, and fat metabolism and present their potential therapeutic effects in the treatment of diabetes and diabetic-associated heart diseases.
Collapse
|
24
|
Testosterone protects cardiac myocytes from superoxide injury via NF-κB signalling pathways. Life Sci 2015; 133:45-52. [PMID: 26032259 DOI: 10.1016/j.lfs.2015.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/03/2015] [Accepted: 05/05/2015] [Indexed: 11/24/2022]
Abstract
AIMS Cellular and molecular mechanisms underlying the effects of androgenic hormone testosterone on the heart remain unclear. This study examined the impact of testosterone on viability of cardiac myocytes and the role of NF-κB signalling pathways. MATERIALS AND METHODS Rat H9c2 myocytes were cultured in steroid-free media and incubated with hydrogen peroxide (H2O2, 200 μM, 6h). NF-κB expression was knocked down by RelA (p65) siRNA interference. Testosterone (5-100 nM, 24-48 h) was provided into the media and androgen receptor (AR) blocked by flutamide (100 nM). Cell apoptotic/necrotic death was determined by morphological examination and flow-cytometric analysis. Gene expression was examined by Western blotting analysis. KEY FINDINGS Testosterone supplements reduced the superoxide-induced apoptotic/necrotic death, stimulated NF-κB (RelA) expression, activated Akt activity, and inhibited Caspase-3 expression in the cardiac myocytes. The hormonal effects were abolished by either AR blocker flutamide or NF-κB-knockdown. Testosterone also induced ERK1/2 activation, which was not affected by flutamide or NF-κB knockdown, and blocking the ERK activity did not affect the protective effect of the hormone on the cells. SIGNIFICANCE This study demonstrates that exogenous testosterone supplementation protects cardiac myocytes from superoxide injury via AR mediation and dependent on normally functional canonical NF-κB (RelA/p50) signalling pathways. The NF-κB signalling may be an important key molecular basis for myocardial benefits of hormone (testosterone) therapy.
Collapse
|
25
|
Potential ghrelin-mediated benefits and risks of hydrogen water. Med Hypotheses 2015; 84:350-5. [PMID: 25649854 DOI: 10.1016/j.mehy.2015.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 01/15/2015] [Indexed: 12/12/2022]
Abstract
Molecular hydrogen (H2) can scavenge hydroxyl radical and diminish the toxicity of peroxynitrite; hence, it has interesting potential for antioxidant protection. Recently, a number of studies have explored the utility of inhaled hydrogen gas, or of hydrogen-saturated water, administered parenterally or orally, in rodent models of pathology and in clinical trials, oftentimes with very positive outcomes. The efficacy of orally ingested hydrogen-rich water (HW) has been particularly surprising, given that only transient and rather small increments in plasma hydrogen can be achieved by this method. A recent study in mice has discovered that orally administered HW provokes increased gastric production of the orexic hormone ghrelin, and that this ghrelin mediates the favorable impact of HW on a mouse model of Parkinson's disease. The possibility that most of the benefits observed with HW in experimental studies are mediated by ghrelin merits consideration. Ghrelin is well known to function as an appetite stimulant and secretagogue for growth hormone, but it influences physiological function throughout the body via interaction with the widely express GHS-R1a receptor. Rodent and, to a more limited extent, clinical studies establish that ghrelin has versatile neuroprotective and cognitive enhancing activity, favorably impacts vascular health, exerts anti-inflammatory activity useful in autoimmune disorders, and is markedly hepatoprotective. The stimulatory impact of ghrelin on GH-IGF-I activity, while potentially beneficial in sarcopenia or cachectic disorders, does raise concerns regarding the long-term impact of ghrelin up-regulation on cancer risk. The impact of ingesting HW water on ghrelin production in humans needs to be evaluated; if HW does up-regulate ghrelin in humans, it may have versatile potential for prevention and control of a number of health disorders.
Collapse
|
26
|
Sinapic acid protects heart against ischemia/reperfusion injury and H9c2 cardiomyoblast cells against oxidative stress. Biochem Biophys Res Commun 2015; 456:853-9. [DOI: 10.1016/j.bbrc.2014.12.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 12/05/2014] [Indexed: 12/31/2022]
|
27
|
Bonora M, Pinton P. The mitochondrial permeability transition pore and cancer: molecular mechanisms involved in cell death. Front Oncol 2014; 4:302. [PMID: 25478322 PMCID: PMC4235083 DOI: 10.3389/fonc.2014.00302] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/14/2014] [Indexed: 12/11/2022] Open
Abstract
Since its discovery in the 1970s, the mitochondrial permeability transition (MPT) has been proposed to be a strategic regulator of cell death. Intense research efforts have focused on elucidating the molecular components of the MPT because this knowledge may help to better understand and treat various pathologies ranging from neurodegenerative and cardiac diseases to cancer. In the case of cancer, several studies have revealed alterations in the activity of the mitochondrial permeability transition pore (mPTP) and have determined its regulatory mechanism; these studies have also suggested that suppression of the activity of the mPTP, rather than its inactivation, commonly occurs in solid neoplasms. This review focuses on the most recent advances in understanding mPTP regulation in cancer and highlights the ability of the mPTP to impede the mechanisms of cell death.
Collapse
Affiliation(s)
- Massimo Bonora
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| | - Paolo Pinton
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| |
Collapse
|
28
|
Callaghan B, Furness JB. Novel and conventional receptors for ghrelin, desacyl-ghrelin, and pharmacologically related compounds. Pharmacol Rev 2014; 66:984-1001. [PMID: 25107984 DOI: 10.1124/pr.113.008433] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The only molecularly identified ghrelin receptor is the growth hormone secretagogue receptor GHSR1a. Its natural ligand, ghrelin, is an acylated peptide whose unacylated counterpart (UAG) is almost inactive at GHSR1a. A truncated, nonfunctional receptor, GHSR1b, derives from the same gene. We have critically evaluated evidence for effects of ghrelin receptor ligands that are not consistent with actions at GHSR1a. Effects of ghrelin are observed in cells or tissues where the expression of GHSR1a is not detectable or after the Ghsr gene has been inactivated. In several, effects of ghrelin are mimicked by UAG, and ghrelin binding is competitively reduced by UAG. Effects in the absence of GHSR1a and sites at which ghrelin and UAG have similar potency suggest the presence of novel nonspecific ghrelin receptors (ghrelin receptor-like receptors [GRLRs]). A third class of receptor, the UAG receptors, at which UAG, but not ghrelin, is an agonist has been proposed. None of the novel receptors, with the exception of the glycoprotein CD36, which accounts for ghrelin action at a limited number of sites, have been identified. GHSR1a and GHSR1b combine with other G protein-coupled receptors to form heterodimers, whose pharmacologies differ from their components. Thus, it is feasible some GRLRs and some UAG receptors are heterodimers. Effects mediated through GRLRs or UAG receptors include adipocyte lipid accumulation, myoblast differentiation, osteoblast proliferation, insulin release, cardioprotection, coronary artery constriction, vascular endothelial cell proliferation, and tumor cell proliferation. The molecular identification and pharmacologic characterization of novel ghrelin receptors are thus important objectives.
Collapse
Affiliation(s)
- Brid Callaghan
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - John B Furness
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
29
|
Yu AP, Pei XM, Sin TK, Yip SP, Yung BY, Chan LW, Wong CS, Siu PM. Acylated and unacylated ghrelin inhibit doxorubicin-induced apoptosis in skeletal muscle. Acta Physiol (Oxf) 2014; 211:201-13. [PMID: 24581239 DOI: 10.1111/apha.12263] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 01/28/2014] [Accepted: 02/24/2014] [Indexed: 12/28/2022]
Abstract
AIM Doxorubicin, a potent chemotherapeutic drug, has been demonstrated previously as an inducer of apoptosis in muscle cells. Extensive induction of apoptosis may cause excessive loss of muscle cells and subsequent functional decline in skeletal muscle. This study examined the effects of acylated ghrelin, a potential agent for treating cancer cachexia, on inhibiting apoptotic signalling in doxorubicin-treated skeletal muscle. Unacylated ghrelin, a form of ghrelin that does not bind to GHSR-1a, is also employed in this study to examine the GHSR-1a signalling dependency of the effects of ghrelin. METHODS Adult C57BL/6 mice were randomly assigned to saline control (CON), doxorubicin (DOX), doxorubicin with treatment of acylated ghrelin (DOX+Acylated Ghrelin) and doxorubicin with treatment of unacylated ghrelin (DOX+Unacylated Ghrelin). Mice in all groups that involved DOX were intraperitoneally injected with 15 mg of doxorubicin per kg body weight, whereas mice in CON group received saline as placebo. Gastrocnemius muscle tissues were harvested after the experimental period for analysis. RESULTS The elevation of apoptotic DNA fragmentation and number of TUNEL-positive nuclei were accompanied with the upregulation of Bax in muscle after exposure to doxorubicin, but all these changes were neither seen in the muscle treated with acylated ghrelin nor unacylated ghrelin after doxorubicin exposure. Protein abundances of autophagic markers including LC3 II-to-LC3 I ratio, Atg12-5 complex, Atg5 and Beclin-1 were not altered by doxorubicin but were upregulated by the treatment of either acylated or unacyated ghrelin. Histological analysis revealed that the amount of centronucleated myofibres was elevated in doxorubicin-treated muscle while muscle of others groups showed normal histology. CONCLUSIONS Collectively, our data demonstrated that acylated ghrelin administration suppresses the doxorubicin-induced activation of apoptosis and enhances the cellular signalling of autophagy. The treatment of unacylated ghrelin has similar effects as acylated ghrelin on apoptotic and autophagic signalling, suggesting that the effects of ghrelin are probably mediated through a signalling pathway that is independent of GHSR-1a. These findings were consistent with the hypothesis that acylated ghrelin inhibits doxorubicin-induced upregulation of apoptosis in skeletal muscle while treatment of unacylated ghrelin can achieve similar effects as the treatment of acylated ghrelin. The inhibition of apoptosis and enhancement of autophagy induced by acylated and unacylated ghrelin might exert myoprotective effects on doxorubicin-induced toxicity in skeletal muscle.
Collapse
Affiliation(s)
- A. P. Yu
- Department of Health Technology and Informatics; The Hong Kong Polytechnic University; Hong Kong China
| | - X. M. Pei
- Department of Health Technology and Informatics; The Hong Kong Polytechnic University; Hong Kong China
| | - T. K. Sin
- Department of Health Technology and Informatics; The Hong Kong Polytechnic University; Hong Kong China
| | - S. P. Yip
- Department of Health Technology and Informatics; The Hong Kong Polytechnic University; Hong Kong China
| | - B. Y. Yung
- Department of Health Technology and Informatics; The Hong Kong Polytechnic University; Hong Kong China
| | - L. W. Chan
- Department of Health Technology and Informatics; The Hong Kong Polytechnic University; Hong Kong China
| | - C. S. Wong
- Department of Health Technology and Informatics; The Hong Kong Polytechnic University; Hong Kong China
| | - P. M. Siu
- Department of Health Technology and Informatics; The Hong Kong Polytechnic University; Hong Kong China
| |
Collapse
|
30
|
Acylated and unacylated ghrelin protect MC3T3-E1 cells against tert-butyl hydroperoxide-induced oxidative injury: pharmacological characterization of ghrelin receptor and possible epigenetic involvement. Amino Acids 2014; 46:1715-25. [PMID: 24705647 DOI: 10.1007/s00726-014-1734-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/21/2014] [Indexed: 01/02/2023]
Abstract
Increasing evidence suggests a role for oxidative stress in age-related decrease in osteoblast number and function leading to the development of osteoporosis. This study was undertaken to investigate whether ghrelin, previously reported to stimulate osteoblast proliferation, counteracts tert-butyl hydroperoxide (t-BHP)-induced oxidative damage in MC3T3-E1 osteoblastic cells as well as to characterize the ghrelin receptor (GHS-R) involved in such activity. Pretreatment with ghrelin (10(-7)-10(-11)M) significantly increased viability and reduced apoptosis of MC3T3-E1 cells cultured with t-BHP (250 μM) for three hours at the low concentration of 10(-9)M as shown by MTT assay and Hoechst-33258 staining. Furthermore, ghrelin prevented t-BHP-induced osteoblastic dysfunction and changes in the cytoskeleton organization evidenced by the staining of the actin fibers with Phalloidin-FITC by reducing reactive oxygen species generation. The GHS-R type 1a agonist, EP1572 (10(-7)-10(-11)M), had no effect against t-BHP-induced cytotoxicity and pretreatment with the selective GHS-R1a antagonist, D-Lys(3)-GHRP-6 (10(-7)M), failed to remove ghrelin (10(-9) M)-protective effects against oxidative injury, indicating that GHS-R1a is not involved in such ghrelin activity. Accordingly, unacylated ghrelin (DAG), not binding GHS-R1a, displays the same protective actions of ghrelin against t-BHP-induced cytotoxicity. Preliminary observations indicate that ghrelin increased the trimethylation of lys4 on histones H3, a known epigenetic mark activator, which may regulate the expression of some genes limiting oxidative damage. In conclusion, our data demonstrate that ghrelin and DAG promote survival of MC3T3-E1 cell exposed to t-BHP-induced oxidative damage. Such effect is independent of GHS-R1a and is likely mediated by a common ghrelin/DAG binding site.
Collapse
|
31
|
Han J, Tan P, Li Z, Wu Y, Li C, Wang Y, Wang B, Zhao S, Liu Y. Fuzi attenuates diabetic neuropathy in rats and protects schwann cells from apoptosis induced by high glucose. PLoS One 2014; 9:e86539. [PMID: 24466139 PMCID: PMC3900563 DOI: 10.1371/journal.pone.0086539] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/15/2013] [Indexed: 02/04/2023] Open
Abstract
Radix aconite lateralis preparata (Fuzi), a folk medicine, has long been used for the treatment of diabetes and paralysis in China. We examined the effect of Fuzi alone on diabetic rats and Schwann cells in high glucose and the components responsible for its activity. The major constituents of FZE were identified by HPLC-MS/MS data. Male Sprague Dawley rats (n = 36) were randomly divided into control, diabetic, FZE 1.75 g/kg, FZE 3.50 g/kg, FZE 7.00 g/kg, and methylcobalamin groups. After two weeks treatment, nerve conduction velocity and paw withdrawal latency were measured. In vitro, the Schwann cells were grouped according to exposure: normal glucose (NG), normal glucose plus mannitol (NG+M), high glucose (HG), and HG plus different concentrations of FZE (0.1 µg/ml, 1.0 µg/ml, and 10.0 µg/ml). Oxygen free radicals and apoptosis were evaluated through DCFH2DA, DHE and annexin-PE/7-AAD assay, respectively. Apoptosis factors (Bax, Bcl-2, CytoC, caspase-3, and caspase-9) were analyzed using immunofluorescence. Nine alkaloids were identified. The results from animal model showed that FZE was effective in accelerating nerve conduction velocity and shortening paw withdrawal latency in diabetic rats. And in vitro, FZE was also found to protect Schwann cells against high glucose injury. FZE could significantly decrease the apoptotic ratio, superoxide anion and peroxide level. Furthermore, the apoptosis factors, including Bax, Bcl-2, CytoC, caspase-3, and caspase-9 were ameliorated in FZE treated groups. The HPLC-MSn method is simple and suitable for the identification of alkaloids in Fuzi. FZE has a protective effect in diabetic neuropathic rats, which is probably achieved by the antiapoptotic effect of FZE on Schwann cells. Apoptosis factor data imply that FZE protected Schwann cells through the mitochondria pathway. Alkaloids are major components contributing to the protective effect.
Collapse
Affiliation(s)
- Jing Han
- Beijing University of Chinese Medicine, Beijing, China
| | - Peng Tan
- Beijing University of Chinese Medicine, Beijing, China
| | - Zhiyong Li
- Minzu University of China, Beijing, China
| | - Yan Wu
- Beijing University of Chinese Medicine, Beijing, China
| | - Chun Li
- Beijing University of Chinese Medicine, Beijing, China
| | - Yong Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Beibei Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Shuang Zhao
- Beijing University of Chinese Medicine, Beijing, China
| | - Yonggang Liu
- Beijing University of Chinese Medicine, Beijing, China
- * E-mail:
| |
Collapse
|
32
|
Wei C, Li L, Kim IK, Sun P, Gupta S. NF-κB mediated miR-21 regulation in cardiomyocytes apoptosis under oxidative stress. Free Radic Res 2013; 48:282-91. [PMID: 24237305 DOI: 10.3109/10715762.2013.865839] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxidative stress, defined as an excess production of reactive oxygen species (ROS), is shown to play an important role in the pathophysiology of cardiac remodeling including cell death and contractile dysfunction. Therefore, the balance between ROS production and removal of excess ROS is essential in maintaining the redox state and homeostasis balance in the cell. The increased ROS further activates nuclear factor-κB (NF-κB), a redox-sensitive transcription factor and promotes cell death. Recently, microRNAs (miRNAs) have been identified as critical regulators of various pathophysiological processes of cardiac remodeling; however, NF-κB-mediated miRNA's role in cardiomyocytes under oxidative stress remains undetermined. The miR-21 has been implicated in diverse cardiac remodeling; but, NF-κB-mediated miR-21 modulation in oxidative stress is currently unknown. Neonatal cardiomyocytes were transfected with IκBα mutant, miR-21 mimetic, and inhibitors separately, and were challenged with H2O2. The target gene, programmed cell death 4 (PDCD4), ROS activity, and NF-κB translocation were analyzed. Our results indicated that NF-κB positively regulated miR-21 expression under oxidative stress, and PDCD4 was a direct target for miR-21. NF-κB further regulated the expression of PDCD4 in H2O2-induced oxidative stress. Moreover, H2O2-induced ROS activity and cardiomyocytes apoptosis were partly protected by overexpression of miR-21 and displayed an important role in ROS-mediated cardiomyocytes injury. We evaluated a critical role of NF-κB-mediated miR-21 modulation in H2O2-induced oxidative stress in cardiomyocytes by targeting PDCD4. Our data may provide a new insight of miR-21's role in cardiac diseases primarily mediated by ROS.
Collapse
Affiliation(s)
- C Wei
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A & M Health Science Center, Scott & White, Central Texas Veterans Health Care System , Temple, TX , USA
| | | | | | | | | |
Collapse
|
33
|
Azevedo-Pinto S, Pereira-Silva P, Rocha-Sousa A. Ghrelin in ocular pathophysiology: from the anterior to the posterior segment. Peptides 2013; 47:12-9. [PMID: 23816797 DOI: 10.1016/j.peptides.2013.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 06/20/2013] [Accepted: 06/20/2013] [Indexed: 12/15/2022]
Abstract
Ghrelin is a 28 amino acid acylated peptide produced in several organs that binds the growth hormone secretagogues receptor type 1a (GHSR-1a). It acts over a wide range of systems, e.g. the endocrine, cardiovascular, musculoskeletal and immune systems and the eye. The aim of this work is to review the physiologic and pathologic implications of the ghrelin-GHSR-1a in the eye. A systematic revision of studies published between 2000 and 2013 in English, Spanish or Portuguese in MEDLINE, EMBASE and Scopus was performed. Search words used included: ghrelin, GHSR-1a, ocular production, iris muscular kinetics, ciliary body, glaucoma, retinopathy and uvea. The production of ghrelin by the ocular tissue has been detected both in the anterior and posterior segments, as well as the presence of GHSR-1a. This peptide promotes the relaxation of the iris sphincter and dilator muscles, being this effect independent from GHSR-1a and dependent on prostaglandins release in the first case and dependent on GHSR-1a in the second. Regarding ocular pathology, ghrelin levels in the aqueous humor appear to be decreased in individuals with glaucoma. Moreover, ghrelin has been shown to decrease the intraocular pressure in animal models of ocular hypertension through GHSR-1a. In the posterior segment, the ghrelin-GHSR-1a system interferes with the development of oxygen-induced retinopathy, being protective in the vaso-obliterative phase and deleterious in the vaso-proliferative stage of the disease. Thus, the ghrelin-GHSR-1a system presents as a possible local regulatory mechanism in the eye, with pathophysiological implications, constituting a target for future clinical and therapeutic research and interventions.
Collapse
Affiliation(s)
- Sara Azevedo-Pinto
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal
| | | | | |
Collapse
|
34
|
Chopin LK, Seim I, Walpole CM, Herington AC. The ghrelin axis--does it have an appetite for cancer progression? Endocr Rev 2012; 33:849-91. [PMID: 22826465 DOI: 10.1210/er.2011-1007] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ghrelin, the endogenous ligand for the GH secretagogue receptor (GHSR), is a peptide hormone with diverse physiological roles. Ghrelin regulates GH release, appetite and feeding, gut motility, and energy balance and also has roles in the cardiovascular, immune, and reproductive systems. Ghrelin and the GHSR are expressed in a wide range of normal and tumor tissues, and a fluorescein-labeled, truncated form of ghrelin is showing promise as a biomarker for prostate cancer. Plasma ghrelin levels are generally inversely related to body mass index and are unlikely to be useful as a biomarker for cancer, but may be useful as a marker for cancer cachexia. Some single nucleotide polymorphisms in the ghrelin and GHSR genes have shown associations with cancer risk; however, larger studies are required. Ghrelin regulates processes associated with cancer, including cell proliferation, apoptosis, cell migration, cell invasion, inflammation, and angiogenesis; however, the role of ghrelin in cancer is currently unclear. Ghrelin has predominantly antiinflammatory effects and may play a role in protecting against cancer-related inflammation. Ghrelin and its analogs show promise as treatments for cancer-related cachexia. Further studies using in vivo models are required to determine whether ghrelin has a role in cancer progression.
Collapse
Affiliation(s)
- Lisa K Chopin
- Ghrelin Research Group, Institute of Health and Biomedical Innovation, Queensland University of Technology and Australian Prostate Cancer Research Centre-Queensland, Brisbane, Queensland 4001, Australia.
| | | | | | | |
Collapse
|
35
|
Ma Y, Zhang L, Launikonis BS, Chen C. Growth hormone secretagogues preserve the electrophysiological properties of mouse cardiomyocytes isolated from in vitro ischemia/reperfusion heart. Endocrinology 2012; 153:5480-90. [PMID: 22948211 DOI: 10.1210/en.2012-1404] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ischemic heart diseases often induce cardiac arrhythmia with irregular cardiac action potential (AP). This study aims to demonstrate that GH secretagogues (GHS) ghrelin and its synthetic analog hexarelin can preserve the electrophysiological properties of cardiomyocytes experiencing ischemia/reperfusion (I/R). Isolated hearts from adult male mice underwent 20 min global ischemia followed by 30 min reperfusion using a Langendorff apparatus. Ghrelin (10 nM) or hexarelin (1 nM) was administered in the perfusion solution either 10 min before or after ischemia, termed pre- or posttreatments. Cardiomyocytes isolated from these hearts were used for whole-cell patch clamping to measure AP, voltage-gated L-type calcium current (I(CaL)), transient outward potassium current (I(to)), and sodium current (I(Na)). AP amplitude and duration were significantly decreased by I/R, but GHS treatments maintained their normality. GHS treatments prevented the decrease in I(CaL) and I(Na) after I/R, thereby maintaining AP amplitude. Although the significant increase in I(to) after I/R partially explained the shortened AP duration, the normalization of it by GHS treatments might contribute to the preservation of AP duration. Phosphorylated p38 and c-Jun NH(2)-terminal kinase and the downstream active caspase-9 in the cellular apoptosis pathway were significantly increased after I/R but not when GHS treatments were included, whereas phosphorylation of ERK1/2 associated with cell survival showed increase after I/R and a further increase after GHS treatments by binding to its receptor GHS receptor type 1a. These results suggest GHS can not only preserve the electrophysiological properties of cardiomyocytes after I/R but also inhibit cardiomyocyte apoptosis and promote cell survival by modification of MAPK pathways through activating GHS receptor type 1a.
Collapse
Affiliation(s)
- Yi Ma
- School of Biomedical Sciences, University of Queensland, St. Lucia, Australia
| | | | | | | |
Collapse
|
36
|
Association of obestatin, ghrelin, and inflammatory cytokines in obese patients with non-alcoholic fatty liver disease. Obes Surg 2012; 21:1750-7. [PMID: 21744131 DOI: 10.1007/s11695-011-0475-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Three protein products of ghrelin gene (acylated ghrelin, des-acylated ghrelin, and obestatin) are involved in appetite stimulation and suppression. Additionally, there is some evidence suggesting their involvement in metabolic and inflammatory pathways which may be implicated in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). The aim of this study was to examine the relationships of ghrelin gene products in patients with NAFLD. METHODS We included 75 morbidly obese patients with biopsy-proven NAFLD (41 with histologic non-alcoholic steatohepatitis (NASH)) with clinical and laboratory data as well as frozen serum samples from the time of liver biopsy. Fasting serum was assayed for obestatin as well as acylated and des-acyl-ghrelin concentrations using ELISA. Bio-Plex inflammatory cytokine assays were used to profile expression of 17 inflammatory mediators, including IL-6, IL-7, IL-8, G-CSF, CCL2, and MIP-1β. RESULTS Patients with NASH had twofold higher concentration of des-acyl-ghrelin than patients with non-NASH (2.58 vs. 1.24 pg/ml, P < 0.02). Ghrelin concentrations in NASH patients with fibrosis stage ≥2 were almost double the concentration of NASH patients with fibrosis stage <2 (8.73 vs. 4.22 pg/ml, P < 0.04). Obestatin levels also increased with the fibrosis stage (2.54 vs. 3.46 pg/ml, P < 0.03). NAFLD patients with higher fibrosis stage had lower IL-7 concentrations (16.89 vs. 10.68 pg/ml, P = 0.014). Obestatin levels at baseline significantly correlated with rate of weight loss after bariatric surgery at various time points. CONCLUSIONS This study suggests that products of the GHRL gene may be important for the pathogenesis of NASH and fibrosis. Additional confirmatory studies are needed.
Collapse
|